
A Portable Class Library for Teaching Multithreaded
Programming∗

Steve Carr and Ching-Kuang Shene†

Department of Computer Science
Michigan Technological University
Houghton, MI 49931–1295, USA
Email: {carr|shene}@mtu.edu

1 Introduction

All modern operating systems support multithreaded
programming (MTP). To ensure our students can lead
the trend of computer science in the foreseeable future,
we have been teaching MTP for four years [6]. Our expe-
rience shows that the paradigm shift from sequential to
multithreaded causes students significant problems [7],
such as (1) MTP requires a new mindset, (2) multi-
threaded program behavior is dynamic, making debug-
ging very difficult, (3) proper synchronization is more
difficult than anticipated, and (4) programming inter-
faces are usually more complex than necessary, causing
students to spend time in learning the system details
rather than the fundamentals.

An ideal pedagogical system for teaching MTP is shown
in Figure 1. A student program is first processed by a
software metric system for the complexity measures of
the program’s level of parallelism and synchronization
structures. Then, it is analyzed by a static analyzer for
potential deadlocks and race conditions. At this stage,
a student should have received sufficient information for
improving his/her program. The program is compiled
and run, and the visualization system is activated im-
plicitly. A subsystem of the visualization system moni-
tors if the running program has a deadlock and/or is in
a safe state. The program’s running activities can also
be written to a file for post-mortem analysis.

The first step of realizing this system is to implement

∗This work was partially supported by the National Sci-
ence Foundation under grant DUE-9752244.

†Corresponding author.

Compiler

Program
User Software

Metric

Static
Analyzer

Visualization

Analyzer
Post

Deadlock
Detection

Figure 1: An Ideal Pedagogical System

the components shown in the dashed rectangle because
they are the most fundamental parts that can directly
affect student learning. This involves three components
(Figure 2). The first is a class library that encapsulates
frequently used thread functions and synchronization
primitives into a number of easy-to-use classes. It will
also provide a layer of abstraction for future extension
to multiprocess, parallel and distributed programming.
Thus, problem (4) above is addressed.

Student Program

Class Library Visualization

Synchronization Primitives

Solaris Pthread Win32 mtuThread

Figure 2: System Architecture

The visualization system provides an environment for
visualizing the dynamic behavior of a threaded program
and the involved synchronization primitives [1]. It runs
as a separate process and communicates with the class
library by passing messages that describe the execution
behavior of a program. This is another advantage of us-
ing a class library since a student does not have to know
the internal message communication protocol. The vi-
sualization system can display the status and execution
history of each thread, and all relevant information for
each synchronization primitive. For example, the visu-

alization system displays a list of mutex locks used in
the user program and a particular lock can be selected
to see its status (i.e., locked/unlocked), its owner, and
the contents of its waiting queue. This information is
updated on-the-fly as the user program runs. A run-
time deadlock detection subsystem is built into the vi-
sualization system. Hence, problem (2) and problem (3)
mentioned earlier are also addressed. The unsolved and
difficult part is race condition detection which is infea-
sible to be done in real time. One possible method is
through static and/or post-mortem analysis.

The class library and visualization system are designed
to sit on top of Solaris threads, Pthreads and Win32.
We also designed a small user-level kernel mtuThread
that supports MTP [2]. Currently, it runs on Solaris,
SunOS, Linux, and Win32. By selecting an option, a
student can compile his program using any one of the
supported thread systems. When it is necessary, an
instructor can use the source code of mtuThread to il-
lustrate the implementation of multithreading.

There are commercial thread libraries available (e.g.,
Microsoft MFC, Rogue Wave’s Threads.h++ and Ob-
jectSpace’s Thread<ToolKit>) for professional use with
a steep learning curve. Brown’s Threads Package [3] is
a system similar to ours with the same design merit.
However, this is a stand-alone class library rather than
a component of a large system that can help stu-
dents learn multithreaded, multiprocess, parallel and
distributed programming. Java was not chosen due to
its well-known shortcoming [4, 5].

The remaining of this paper presents a brief discussion
of the features of our MTP class library (Section 2 and
Section 3), and a summary of our experience (Section 4).
Finally, Section 5 has our conclusions.

2 The Thread Class

Our class library provides an abstraction away from
the system dependent details of MTP so that stu-
dents can concentrate on designing and writing correct
multithreaded programs. The most important class is
Thread. A student defines a thread as a derived class
of Thread and supplies a method ThreadFunct() to be
run as a thread by calling method Begin(). A thread
uses methods Exit(), Join(), Yield(), Suspend(),
and Continue() to exit the system, to join with an-
other thread, to relinquish the execution control, to
suspend a thread, and to resume a suspended thread.
Method Delay() delays its caller for a random num-
ber of context switches. Below is the main program of
a solution to the smokers problem. It runs the agent
thread Agent and three smoker threads Smokers[0],
Smoker[1] and Smoker[2], and uses Join() to wait

class SmokerThread: public Thread
{

public:
SmokerThread(...) { }

private:
void ThreadFunct();
.....

}

class AgentThread: public Thread
{

.....
}

void main(void)
{

SmokerThread *Smoker[3];
AgentThread Agent;
.....
Agent.Begin();
for (i = 0; i < 2; i++) {

Smoker[i] = new SmokerThread(...);
Smoker[i]->Begin();

}
Agent.Join();
for (i = 0; i < 2; i++)

Smoker[i]->Join();
}

until all four threads complete.

3 Synchronization Primitives

Our class library supports mutex locks, semaphores,
reader-writer locks, barriers, and monitors. Each syn-
chronization primitive is also defined as a class. The fol-
lowing code implements the smoker thread and uses four
semaphores. Semaphore SemSmoker[i] blocks smoker
i and semaphore Table blocks the agent thread from
adding ingredients on the shared table.

Semaphore *SemSmoker[3], Table;

void SmokerThread::ThreadFunct()
{

for (...) {
SemSmoker[ID]->Wait();
Table.Signal();
Delay(); // smoking

}
}

Reader-writer locks provide a finer control over a shared
resource than mutex locks, and mimic the readers-
writers problem. A reader thread only reads the con-
tent of a shared resource, while a writer thread modifies
that resource. Hence, readers can read simultaneously,
but writers must write exclusively. There are two ver-
sions of reader-writer locks. The reader-priority version
gives higher priority to readers and, as a result, writ-

ers may starve. The writer-priority version gives writ-
ers higher priority. More precisely, once a writer de-
clares to write, all subsequent readers and writers must
wait. The reader-writer lock class has four methods:
ReaderLock(), WriterLock(), ReaderUnlock() and
WriterUnlock(). A thread that calls ReaderLock()
(resp., WriterLock()) has non-exclusive (resp., exclu-
sive) access to the resource. A student must indicate
the version of a reader-writer lock when it is created.

Our barrier class has three methods: (1) Barrier()
constructs and initializes a barrier with a positive value,
the barrier’s capacity, (2) ~Barrier(), and (3) Wait()
blocks its caller until the number of blocked threads is
equal to that barrier’s capacity. Hence, barriers can be
used to synchronize a group of threads.

The last primitive is the Monitor class that implements
the classic monitor construct. The monitor class has
two methods MonitorBegin() and MonitorEnd(), and
a private class Condition that implements classic con-
dition variables. Since C++ classes are not synchro-
nized, to ensure that a monitor procedure is executed
mutual exclusively, the first and last statements of a
monitor procedure must be a call to MonitorBegin()
and MonitorEnd(), respectively. Class Condition has
methods Signal() and Wait() in addition to its con-
structor and destructor. A thread that calls a monitor
procedure can be in one of the four possible states: (1)
waiting in the entering queue, (2) waiting on a condi-
tion variable, (3) active (i.e., running within a monitor),
and (4) inactive (e.g., released from a condition variable
but not active). The constructor of Monitor accepts a
type parameter for creating a monitor of Hoare or Mesa
style. In the former, the signaler (i.e., a thread that
calls the Signal() method of a condition variable) be-
comes inactivate, while for the latter the signaler con-
tinues to be active and the one released from a condition
variable becomes inactive. By supporting both styles,
a student can experience and compare the differences
between these two popular implementations.

class ForkMonitor: public Monitor
{

public:
ForkMonitor(...) { };
void GetForks(int No), PutForks(int No);

private:
Condition *Philos[5];
int Fork[5], CanEat(int No);

};

The above is a monitor class for the dining philosophers
problem. A monitor must be declared as a derived class
of Monitor. A philosopher can eat only if both forks are
available. Each entry of condition variable Philos[]

blocks the corresponding philosopher, and each entry of
Fork[] holds either USED or FREE.

A private monitor procedure CanEat() tests if philoso-
pher No can pick up both forks (see the program listing
below). Monitor procedure GetForks() is called when
a philosopher needs forks. If forks are not available, the
calling philosopher blocks. When a philosopher finishes
eating, he calls PutForks(), which releases both forks
and wakes up all philosophers so that they can try again.

int ForkMonitor::CanEat(int No)
{

return (both forks are available) ? 1 : 0;
}

void ForkMonitor::GetForks(int No)
{

MonitorBegin();
while (!CanEat(No))

Philos[No]->Wait();
set both forks to USED;

MonitorEnd();
}

void ForkMonitor::PutForks(int No)
{

MonitorBegin();
set both forks to FREE;
for (i = 0; i < 5; i++)

Philos[i]->Signal();
MonitorEnd();

}

4 Experience

We have been teaching MTP in a junior-level introduc-
tion to operating system course eight times in the past
four years. This course has two tracks, theory and pro-
gramming. The programming track, which focuses on
MTP, consumes about 30% of a 10-week quarter. Ini-
tially, we used Pascal-FC, and switched to the SunOS
light-weight process library. Two years ago, due to a
system upgrade, we switched to the Solaris thread li-
brary. A major problem of using a system-level inter-
face is that students frequently struggle with the com-
plex meaning of the parameters, although most can be
default values. Moreover, the mapping between the sys-
tem interface and the textbook discussion may not be
one-to-one. This is why a class library that completely
reflects the simple textbook type interface is helpful.

To build up a student’s mindset for MTP, there are
five programming assignments and one two-week mini-
project. The first program is for warm-up only. We nor-
mally use matrix multiplication or quicksort; however,
any problem that does not require synchronization will

fit our purpose. With this program, students learn how
to partition a computation task into subtasks, each of
which is handled by a thread. Only thread creation,
join and exit are involved.

Problem 2 to problem 4 cover semaphores, moni-
tors, and message passing. We have found that the
semaphore assignment is usually the most challenging
one for the following reasons: (1) semaphores and mutex
locks are unstructured low-level primitives; (2) students
are not used to properly coordinating tasks in different
threads, especially for protecting shared data items; (3)
students directly apply sequential programming tech-
niques to their threaded programs and, as a result,
race conditions occur frequently (e.g., fail to protect a
shared counter); (4) the counting mechanism built into
a semaphore is in general not appreciated fully, caus-
ing students to use additional semaphores for protect-
ing unnecessary counters; and (5) students create very
large critical sections that in effect serialize the whole
program. We have used many different programming
problems in order to identify the causes of these prob-
lems. Unfortunately, except for the easiest ones (e.g.,
the smokers problem), these problems persist. On the
other hand, most students do not have a serious problem
if the same assignment is redone using monitors. This
is perhaps because monitors provide a well-structured
mechanism and are easier to understand. Pipelined type
problems (e.g., parallel sieve, parallel insertion sort, and
backward substitution) are used for students to write
message passing programs. Surprisingly, few students
encounter difficulty.

After these four programs, most students have been
well-prepared for MTP, although the use of semaphores
still proves to be a challenge. Then, we turn to the im-
plementation of a small user-level kernel that supports
MTP. The concept and implementation of coroutines
using setjmp() and longjmp() are discussed, and a
programming assignment is given. Finally, in a two-
week period, students are given a stripped down ver-
sion of mtuThread and are asked to complete the sys-
tem with simple extensions. For example, they may
be asked to implement thread join, suspend and con-
tinue, semaphores, and mailboxes. Or, they may be
asked to extend the thread scheduler to handle priority
scheduling and priority inversion. Since students have
had more than eight weeks experience in MTP, most of
them complete this mini-project successfully.

Due to time constraints, students do not use barriers
and reader-writer locks. To make sure they are aware
of these two useful primitives, the implementation and
use of barriers is usually an exam problem. The reader-
priority version of reader-writer locks is used to solve

the readers-writers problem, while understanding the
writer-priority version is part of a weekly reading as-
signment. Thus, the use and implementation of each
primitive is covered to certain level of depth. We be-
lieve that this approach can help students understand
the merit and skills of MTP and successfully adjust their
mindset by the end of this course.

5 Conclusions

We have presented important features of our class li-
brary for MTP, and our classroom experience. Our class
library combined with the visualization system will not
only help students learn MTP more easily, but also allow
them to vividly see the dynamic behavior of a running
threaded program and the interaction of synchroniza-
tion primitives. In the future, we will extend this class
library to support multiprocess, parallel and distributed
programming, and to complete the ideal system in Fig-
ure 1. Our system will be available to the public after
it becomes stabilized. The interested readers can find
more about our work, including course material and fu-
ture software announcements, at the following site:

http://www.cs.mtu.edu/~shene/NSF-3/index.html

References

[1] Bedy, M. J., Carr, S., Huang X. and Shene, C.-
K., A Visualization System for Multithreaded Pro-
gramming, to appear in 31st SIGCSE Technical
Symposium, 2000.

[2] Bedy, M. J., Carr, S., Huang X. and Shene, C.-
K., The Design and Construction of a User-Level
Kernel for Teaching Multithreaded Programming,
to appear in Frontiers in Education, 1999.

[3] Doeppner Jr., T. W., The Brown C++ Threads
Package, Version 2.0, Dept. of Computer Science,
Brown University, 1996.

[4] Brinch Hansen, P., Java’s Insecure Parallelism,
ACM SIGPLAN Notices, Vol. 34 (1999), No.4
(April), pp. 38–45.

[5] Hartley, S. J., “Alfonse, Wait Here for My Signal!”
30th SIGCSE Technical Symposium, 1999, pp. 58–
62.

[6] Shene, C.-K., Multithreaded Programming in an
Introduction to Operating Systems Course, 29th
SIGCSE Technical Symposium, 1998, pp. 242–246.

[7] Shene, C.-K. and Carr, S., The Design of a Mul-
tithreaded Programming Course and Its Accompa-
nying Software Tools, The Journal of Computing
in Small Colleges, Vol. 14 (1998), No. 1, pp. 12–24.

