
Computing with Geometry as an Undergraduate Course:
A Three-Year Experience∗

John L. Lowther and Ching-Kuang Shene†

Department of Computer Science
Michigan Technological University

Houghton, MI 49931–1295
{john,shene}@mtu.edu

1 Motivation

Computing with geometry is a rapidly evolving interdis-
ciplinary field involving computer science, engineering
and mathematics. It has relationships to many other ar-
eas within computer science (e.g., computational geom-
etry, graphics, information/scientific visualization and
computer vision) and serves as a vehicle for engineering
students to approach product design and manufactur-
ing processes. Moreover, this is a geometric world! Un-
fortunately, in a typical computer science curriculum,
computing with geometry is virtually missing in spite
of its impact on computer science and other fields, and
its importance to increase students’ employability. Fur-
thermore, many educators still believe computing with
geometry, especially curves, surfaces and solids, belongs
to engineering and is not part of computer science cur-
ricula, despite the need in graphics and computer-aided
design for software engineers and programmers.

A course about computing with geometry is important
to computer science students and should have a place
in computer science curricula. Due to the fact that
computer science emphasizes discrete topics and that
non-discrete topics have been gradually shifted to other
disciplines, the Computer Science and Telecommunica-
tions Board and National Research Council suggested
adding continuous mathematics back into computer sci-

∗This work was partially supported by the National Sci-
ence Foundation under grant DUE-9653244. The second
author was also partially supported by the National Sci-
ence Foundation under grant CCR-9696084 (formerly CCR-
9410707) and by a grant from the Michigan Research Excel-
lence Fund 1998–1999.

†Corresponding author

ence curricula [2]. Moreover, computing with geome-
try is the foundation of new manufacturing technologies
which will help this country maintain competitiveness
in the global economy [1, 4]. Computer science curric-
ula do have some basic elements of geometric computing
scattered throughout many courses. It would be better
to organize these elements in a coherent way.

This paper suggests a possible remedy by designing
a comprehensive, intermediate level interdisciplinary
computing with geometry course for students in com-
puter science, engineering and mathematics. Under the
support of NSF, we have designed for this course an
electronic book, a number of lab manuals, and software
tools. The benefit of this course to engineering students
seems obvious, since they are using computer-aided de-
sign systems daily. This course could provide a place for
mathematics students to use their geometric knowledge
and learn “algorithmic” and “computational” aspects
that would enhance their understanding.

We will present course design merit in Section 2. De-
tails can be found in [3]. Section 3 and Section 4 cover
the course content and software tools. Course evalua-
tion and dissemination are presented in Section 5 and
Section 6. Finally, Section 7 has our conclusion.

2 Design Merit

Our course addresses the fundamentals of comput-
ing with geometry using an intuitive, elementary, and
learning-by-doing approach by emphasizing the geomet-
ric nature of curves, surfaces and solids and leaving the
complexity of algebraic derivations and computations to
software tools, which are designed to help students vi-
sualize difficult concepts and algorithms. With the help
of these fundamental concepts, students can easily learn
the necessary derivations in later courses. Even though
students may not take follow up courses, they will have
acquired fundamental knowledge which will be useful
when facing geometric problems.

The central “theme” of this course is teaching students
to do the following conversion correctly and efficiently:

Geometry ⇒ Representation ⇒ Algebra
⇒ Algorithm ⇒ Program

More precisely, a geometric object must first be con-
verted to a representation (e.g., polyhedron, paramet-
ric equations or implicit equations) from which an alge-
braic interpretation is obtained. Then, algorithms based
on this representation are developed and corresponding
programs are written. All course units are designed to
follow this universal theme.

3 Course Content

Computing with Geometry is a 3-credit elective course
for junior students in computer science, engineering and
mathematics. The course prerequisites include calculus
and linear algebra;1 however, graphics is not required
since non-CS students may not have this background.
We have offered this elective course three times and are
teaching the fourth time this year.2 The course content
is divided into eight units. The following sections briefly
discuss the major topics that are covered and exercises.

3.1 Unit 1: Course Overview

This course starts with an introduction to the field, fol-
lowed by an elaboration of the “theme.” This unit also
touches upon the dimensional, geometrical, and com-
binatorial complexity of geometric problems, and the
impact of finite precision on geometric computing. Fig-
ure 1(a) is the result of ray-tracing a cubic surface with
an early version of a well-known system. Since this
system used an “inaccurate” cubic equation solver, a
smooth surface becomes scratched with holes.

3.2 Unit 2: Review of Geometric Concepts

This unit reviews important geometric concepts, includ-
ing homogeneous coordinates and Euclidean, affine and
projective transformations and their matrix representa-
tions. Computing with floating numbers will be further
addressed with more examples of the effect of losing sig-
nificant digits, error accumulation, and problems with
associative and distributive laws. Interesting examples

1Calculus is required for the concepts of moving-triad,
curvature, continuity issues, and surface characteristics such
as the first and second fundamental forms and Dupin in-
dicatrix, while linear algebra is needed for the discussion
of transformations, the characterization of quadric surfaces,
and other surface related topics.

2Since we are converting to a semester system from a
quarter system, more materials will be covered.

(a)

(b)

Figure 1: Loss of Significant Digits and Student Work

are used to show that, without careful programming
practice, a theoretically sound stable iterative scheme
can actually become chaotic. As an exercise, students
are asked to construct examples that can demonstrate
the failure of the associative and distributive laws.

3.3 Unit 3: Object Representations

Unit 3 covers representations of geometric objects. Top-
ics include the wireframe model and its drawbacks (e.g.,
ambiguity) and polyhedron models. A natural next step
is the boundary representation in which flat facets and
straight edges become surfaces and curves. The well-
known winged-edge data structure is covered, followed
by constructive solid geometry. Students are given all
necessary tools and asked to construct an object from a
cube or sphere using set union, intersection and differ-
ence so that the three side views would show the letters
M, T and U. Student work is shown in Figure 1(b). A
programming exercise asks the student to write a pro-
gram that reads in a winged-edge data structure, dis-
plays the polyhedron, and performs some inquiries such
as listing all edges/faces adjacent to a given vertex in
clockwise order. Students receive a simple environment
and implement their algorithms in C/C++ with a few
simple OpenGL drawing primitives.

3.4 Unit 4: Parametric Curves and Surfaces

Fundamentals of parametric curves and surfaces and
their related issues are discussed in Unit 4. Major top-
ics concerning curves include (1) polynomial and ratio-
nal curves, (2) tangent, normal, and binormal vectors
(moving triad), (3) curvature and curvature sphere, (4)
singular and inflection points, and (5) Ck- and Gk- (ge-
ometric) continuity. We use intuition based arguments
to explain difficult-to-prove facts (e.g., circles do not
have polynomial parameterizations). The concept of
points and lines at infinity provides students with an
intuitive classification of conics. Parametric surfaces,
surface patches, and isoparametric lines are also dis-
cussed. Exercises include the calculation of the moving
triad and curvature at a given parameter and various
types of continuity at the joint of two curves.

3.5 Unit 5: Bézier, B-splines and NURBS

Unit 5 presents important concepts of Bézier, B-spline
and NURBS curves and surfaces, which provide a ba-
sis for our software tool DesignMentor [5, 6, 7]. We
start with important properties of Bézier curves such
as the convex hull property, partition of unity, affine
invariance, and variation diminishing. Then, we move
on to fundamental algorithms, including de Casteljau’s
algorithm, subdivision, degree elevation, and derivative
computation. Applications such as font design are dis-
cussed. With this knowledge in hand, we proceed to
Bézier surface patches, the 3D de Casteljau’s algorithm,
and joining patches together with C1-continuity.

The discussion of B-spline curves is more involved. We
start with a simple fact that a B-spline curve is merely
several Bézier curves joined together. Then, we intro-
duce knot vector, knot spans, clamping, and B-spline
basis functions. Students will see and learn that only a
few of these basis functions are non-zero on each knot
span (i.e., local control). Next, B-spline curves and sur-
faces are defined and their important properties are dis-
cussed and compared with those of the Bézier curves.
Knot insertion, degree elevation, subdivision, de Boor’s
algorithm are also covered. The NURBS curves are in-
troduced as the projections of 4-dimensional B-spline
curves to the hyperplane w = 1. Since students have al-
ready learned about B-spline curves and surfaces, they
can quickly pick up most of the important properties
and algorithms of NURBS.

We also cover surface construction from curves us-
ing cross-sectional design techniques. These surfaces
include ruled surfaces, surfaces of revolution, swung,
swept and skinned surfaces (Figure 2).

(a)

(b)

Figure 2: Swung and Skinned Surfaces

This unit has three programming assignments asking
students to implement de Casteljau’s algorithm, de
Boor’s algorithm with repeated knot insertion, and the
3D de Boor’s algorithm for B-spline and NURBS sur-
faces. There are also hand calculation problems for knot
insertions, degree elevations, and curve subdivision us-
ing de Casteljau’s and de Boor’s algorithms.

3.6 Unit 6: Implicit Curves and Surfaces

Implicit curves and surfaces and their applications are
surveyed in this unit. We start with curve definitions,
followed by the meaning and computation of tangent
plane, normal vectors, first and second fundamental
forms and curvature. Then, we proceed to impor-
tant applications of implicit surfaces, including blending
(e.g., rolling ball, potential method, and Ricci method)
and offset surfaces and their actual applications in
computer-aided design and NC machining. Since curves
and surfaces intersection requires deep mathematics, it
is only briefly covered.

There are two assignments for this unit. The first asks
students to design a model using all five non-degenerate
quadric surfaces, and the second involves a simple sur-
face tessellation. Figure 3 shows two samples.

(a) Quadrics

(b) A Twisted Sphere

Figure 3: Student Work: Quadric and Tessellation

3.7 Unit 7: Computational Geometry Topics

This unit covers traditional computational geometry
topics that are closely related to our need. These in-
clude convex hulls, Voronoi diagrams, Delauny triangu-
lations, and polygon triangulations. We do not empha-
size the theoretical nature such as proofs and complex-
ity measures. Instead, we concentrate on the conceptual
elements and tell students how and when to use a com-
putational tool or technique. We also emphasize appli-
cations such as polyhedron editing and subdivision, sur-
face reconstruction, and other topics that are currently
very popular in visualization and medical imaging.

3.8 Unit 8: Robustness Issues

Problems involving inaccuracy and imprecise geometric
input and their impact on geometric transformations
are mentioned. Topics also include exact and interval
arithmetics, robust algorithm design, and representative
examples such as Dobkin’s growing/shrinking pentagon
and error accumulation of geometric transformations.

4 Software Tools

To help students learn more about the topics and gain
deeper understanding, software tools were developed for
the lab work. Some of these tools are interactive, allow-
ing students to carry out experiments, while the others
provide students with certain pre-defined animation se-
quences. In many cases, high quality public domain
software such as POV-Ray are used.

The major component of our system, DesignMentor [5,
6, 7], is for visualizing properties of Bézier, B-spline
and NURBS curves and surfaces. Students are provided
with a drawing canvas with which they can design and
modify one or more curves and surfaces. They can se-
lect, move and delete control points, show the control
net and convex hull, and save and load curve and sur-
face data. This system can display the inner working of
de Casteljau’s and de Boor’s algorithms and their step-
wise computation, and do knot insertion, degree eleva-
tion and subdivision. It also supports cross-sectional
design as mentioned in Section 3.5. Figure 4 shows sev-
eral features of a NURBS curve and surface.

(a)

(b)

Figure 4: Our Curve and Surface Design Systems

Telling students that finite precision arithmetic may
cause problems may not be strong enough. The best
way to convince them is to show dramatic examples that
can easily be recalled. We have a collection of many ex-
amples and images for showing the effect of losing of sig-
nificance digits, error cumulation, and their impact to
geometric computing. Examples also include quadratic
equation solvers that use inaccurate methods and error
accumulation in geometric transformations.

5 Course Evaluation

This course was taught in a computer-equipped class-
room so that students can use a web-based electronic
book and user guides, and practice the skills with De-
signMentor. Most students were juniors.

The pre-test and post-test self assessments are used for
course evaluation. Both have the same set of 17 ques-
tions, each of which asks the student to assess his or her

level of understanding of a particular topic. The level
of understanding ranges from 0 (no understanding) to 4
(excellent understanding). Table 1 shows that students
assess their own understanding of the course topics as
low (17.8/17 ≈ 1) before the course and as very good
(49.37/17 ≈ 3) by the end of the course. A dependent
t-test shows that the average gain score for the students
who took both pre- and post-test is statistically signif-
icant with p < 0.001. Compared with quiz and exam
scores, this was a fair assessment. Therefore, students
did gain a good understanding of the subjects.

Table 1: Student Self Assessment Survey

n x̄ σ Min Max Range

Pre-test 20 17.80 7.83 7 37 30

Post-test 19 49.37 6.07 38 59 21

Gain 18 32.56 8.81 17 48 31

Reactions from students were also very positive. Here
are some typical comments from an attitudinal survey:
“the curve and surface programs were very nice and
helpful”, “POV-Ray assignments let us have a lot cre-
ativity”, “the notes on the web were the best and most
comprehensive of any class I’ve taken yet”, and “[the
exercises] helped understanding immensely”. Almost all
students prefer our intuitive and non-mathematical ap-
proach. There are, however, always exceptions. One
student noted “I prefer a more rigorous approach, but
generally balance was good.”

6 Project Results and Dissemination

This project generated an electronic book, which is still
evolving, three sets of user guides, and a software tool
DesignMentor. The electronic book covers most topics
presented in Section 3, while the user guides are for
POV-Ray with a focus on modeling and DesignMentor.
DesignMentor is written in C with OpenGL and GLUT,
and supports SGI, SunOS, Solaris, Linux and Windows.

Our work was announced in early March 1999. At the
end of Summer of 2000, our course information page,
electronic book, and the curve and surface user guides
had average daily hits of 9.3, 13.0, 5.2 and 3.1. Most
of these hits were likely from off campus. There are
about 1000 downloads. Table 2 is compiled from vis-
itors’ remote host addresses. CS covers all CS and
related departments, including Math/CS, EECE, and
EECS. When department information is not available,
it is counted as EDU Other if the domain name is EDU.
Those without domain names are in the Other cate-
gory. The EDU domain total is 50.1%, which suggests
that educators and students are interested in learning

computing with geometry and curve and surface design.
Some CS educators’ believe that computing with geom-
etry, especially curve and surface design, has no place
in CS curricula. Our data strongly suggest otherwise.

Table 2: Domain Distribution

CS Sci Eng EDU Other COM Other

28.0 4.0 7.2 10.9 25.9 24.0

Table 3 shows a geographical distribution of the down-
loads. The top five places, in descending order, are
US (39.3%), Germany (7.3%), France (6.9%), Sweden
(3.0%) and UK (2.9%). The most wanted version is
Windows 95/98/NT (68.0%). This is followed by SGI
(16.0%), Linux (11.9%), and Sun Solaris/SunOS (4.1%).

Table 3: Geographical Distribution

N.Amer S.Amer Europe Far East Other

41.2 2.7 39.5 9.2 7.4

7 Conclusion

In this paper, we have presented the rationale and de-
sign merit of a computing with geometry course, and de-
tailed its contents and software tools. We believe that
computer science students who are equipped with the
basic knowledge and skills of geometric computing will
have a better chance in the job market, especially at the
time when new manufacturing technology, computer-
aided design and animation software development are
entering a new era of importance. We found that ed-
ucators and students are interested in computing with
geometry. Our data also suggests that this project not
only has a national impact, but also attracts visitors
from over 50 countries. Moreover, we also have demon-
strated that a carefully managed DUE project can blend
research, curriculum design and software development
together in an effective and productive way. We believe
that this form of project development not only benefits
our undergraduate and graduate students and faculty,
but also sets a new model for curriculum development.

This project is only a first step in adding geometric
computing to computer science curricula. Additional
research work remains to be done, and our software de-
velopment effort may not meet our long term goals. For
example, we believe that stereo images are needed to
help visualizing the geometry vividly, and that a vir-
tual reality system may be used to step into the virtual
world to touch and feel important geometric character-
istics. Such extensions will benefit students and enable

them to learn curve and surface design better. More-
over, other important and useful topics such as blossom-
ing, and curve and surface interpolation and approxima-
tion might be included. We hope this ultimate goal can
be realized with additional funding in the near future.

All materials, including a syllabus, student work, ex-
ercises and exams, an electronic book, an introduction
to POV-Ray, the curve and surface user guides of De-
signMentor, and various versions of DesignMentor, are
available to the public at the following URL:

http://www.cs.mtu.edu/~shene/NSF-2

Acknowledgments

We thank our students Budirijanto Purnomo, Yuan
Zhao and Yan Zhou for their excellent programming
work, and many educators, students, engineers, and
programmers who use our material and share with us
their ideas and experience. Finally, we thank a number
of reviewers in the past three years whose constructive
comments have not only made this controversial paper
better but also helped us further polish our work.

References

[1] A. Friedman, J. Glimm and J. Lavery, The Math-
ematical and Computational Science in Emerging
Manufacturing Technologies and Management Prac-
tices, SIAM, Philadelphia, PA, 1992.

[2] J. Hartmanis and H. Lin (editors), Computing in the
Future: A Broader Agenda for Computer Science
and Engineering, National Academy Press, Wash-
ing, D.C., 1992.

[3] J. L. Lowther and C.-K. Shene, Geometric Comput-
ing in the Undergraduate Computer Science Curric-
ula, The Journal of Computing in Small Colleges,
Vol. 13 (1997), No. 2, pp. 50–61.

[4] C. Yap, Report on NSF Workshop on Manufacturing
and Computational Geometry, Department of Com-
puter Science, New York University, 1995.

[5] Y. Zhao, J. L. Lowther and C.-K. Shene, A Tool for
Teaching Curve Design, The Twenty-ninth SIGCSE
Technical Symposium, 1998, pp. 97–101.

[6] Y. Zhao, Y. Zhou, J. L. Lowther and C.-K.
Shene, Cross-Sectional Design: A Tool for Computer
Graphics and Computer-Aided Design Courses,
ASEE/IEEE Frontiers in Education, Vol. II (1999),
pp. (12b3-1)–(12b3-6).

[7] Y. Zhou, Y. Zhao, J. L. Lowther and C.-K. Shene,
Teaching Surface Design Made Easy, The Thirtieth
SIGCSE Technical Symposium, 1999, pp. 222–226.

