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RAYTRACING AS A TOOL FOR LEARNING COMPUTER GRAPHICS

Ching-Kuang Shene

Abstract — The commonly used programming approach in
teaching computer graphics requires students to learn a lot
before they can generate basic and not-so-realistic images.
As a result, students may easily be lost in the jungle of pro-
gramming primitives, and their high expectation fades away
quickly. Moreover, the API based programming approach
does not support global illumination models. To address these
problems, a new approach that combines ray tracing and pro-
gramming has been used in a junior level elective courseIn-
tro. to Computing with Geometry with great success. With
ray tracing, we are able to cover the camera metaphor, basic
shapes, geometric modeling, coefficients of an illumination
model, light sources, textures, surface tessellation, smooth
and non-smooth triangles, and algebraic surfaces. A student
can learn all the basics and generate beautiful and realistic
looking images easily and quickly. This paper details our ap-
proach and presents our course materials, exercises, student
work and evaluation.

Keywords —computer graphics, ray tracing, global illumi-
nation models

MOTIVATION

The programming approachis the most popular approach
in teaching introduction to computer graphics courses. How-
ever, it does have some serious drawbacks [6].First, students
usually do not know if the created image is correct. C. A.
R. Hoare once said: “You can’t teach beginning programmers
top-down design because they don’t know which way is up.”
Likewise, it is difficult to teach graphics programming to be-
ginners because they do not know what the anticipated effect
should be. As a result, we need an easy way for students to
recognize the effect of each graphics parameter before they
start to program.GraphicsMentor is a tool designed for this
purpose [2].Second, the programming approach depends on
graphics APIs which are based on local illumination models.
This means that student programs cannot do shadow, reflec-
tion and refraction. Third, the design and modeling com-
ponent is unlikely to be touched upon because students may
dedicate too much time on programming and because a typi-
cal graphics API has a limited modeling capability.

Five years ago, when we started teaching a junior elective
courseIntroduction to Computing with Geometry [7], we
found that 30% to 50% enrolled students do not have graph-
ics background. Occasionally, students from non-CS depart-
ments also take this course to learn skills for their projects.
Thus, helping students who do not have graphics background
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becomes part of the course. After an extensive study of var-
ious approaches, we believe that the best way of introduc-
ing graphics fundamentals to those who do not have graph-
ics background is the use of ray tracing. In this course, we
spend less than 5% of all lecture hours on ray tracing. How-
ever, we successfully cover all the fundamentals, design and
modeling, and a number of advanced concepts. Furthermore,
almost all students are eager to learn more and do more as
demonstrated by their creative work. Consequently, we be-
lieve our approach is a very successful one. In the following,
we will briefly discuss the course and course materials. At the
end of this paper, we present evaluation, work in progress, and
conclusions.

COURSE OVERVIEW

Introduction to Computing with Geometry is an elec-
tive course for juniors. The design goal of this course is to
provide students with important and useful skills in handling
geometry related problems. Thus, this course covers com-
monly used topics such as parametric and implicit curves and
surfaces, B´ezier, B-spline and NURBS curves and surfaces,
cross-sectional design, and curve and surface interpolation
and approximation. Even though most of these topics require
students to write programs using OpenGL in a scaled down
environment ofDesignMentor ([11], [12] and [13]), we use
ray tracing through out the whole semester for students to do
more design work and experiment various concepts that are
only possible using a global illumination model (e.g., show,
reflection and refraction). Of course, the most important ad-
vantage of using ray tracing is for students to create flashy
images fast, which, in turn, inspire them to do more in ray
tracing.

There are many ray tracers available such as Radiance [5]
and POV-Ray [10]. While the former offers more than the
latter, we choose the latter mainly because its input is easier
for students to learn. In the following, all student work and
examples are traced with POV-ray.

CAMERA, LIGHTS, OBJECTS, AND COLOR

The first unit covers the most fundamental topics in ray
tracing: camera, basic lighting, simple objects and color.
They are discussed to the depth that is sufficient for students
to do their first warm-up exercise, usually in the second week.
In our experience, students are eager to do their first exercise
to satisfy their curiosity, and usually they run much faster than
the pace of the lecture.

We start with an overview of ray tracing. The camera is the
first and the most important element. It is usually not very dif-
ficult to learn because almost everyone played with an actual
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camera. What makes the camera topic a little more difficult is
that, unlike a real camera, a ray tracer requires a user to pre-
cisely specify position, orientation, angle of view and a look at
point. These information are normally not explicitly required
in real world. Some beginners frequently generate blank or
clipped images because the characteristics of a camera are not
specified properly. This unit also covers simple objects such
as blocks, disks, planes, spheres, cylinders, cones, and tori.
Light sources are always point lights, and a color always has
four components: red, green, blue, and a transparency level.
Textures are not covered. Figure 1(a) shows a student work
using simple shapes and simple light sources, and (b) goes
one step further to include textures and reflection.

(a) (b)

FIGURE 1

MORE LIGHTS

To prepare students for the next stage, we briefly cover
other types of light sources such asspotlightandarea light.
In addition to the position and direction, a spotlight has three
more parameters. The first is the angle of the light cone with
respect to the direction vector. Within the light cone, the in-
tensity of a spotlight does not vary. The second is the fall-off
angle. The intensity of the spotlight diminishes to zero from
the light cone to the fall-off angle. The third is tightness that
describes how the intensity diminishes from the light cone to
the fall-off cone. Figure 2(a) shows the effect of a number
of combined cone angle, fall-off angle and tightness. With
spotlights, we can demonstrate color mix of light sources. In
Figure 2(b), three spotlights in color red, green and blue gen-
erate three colored circular areas and the color mixing effect
is clearly seen.

(a) (b)

FIGURE 2

Shadows in a ray traced image is very sharp (Figure 3(a)).
Some ray tracers usearea light to simulate soft shadows. An

area light is simply a collection of� � � point light sources
organized in a� � � array. In this way, each object will
have multiple shadows, one from each light element in an
area light. Figure 3(b) is the result of a� � � area light
source. To make area lights even more attractive, ray trac-
ers may use anadaptiveway to more accurately determine
how much light can reach a point. Figure 3(c) is the result of
applying adaptive computation to the result in (b). However,
even with an adaptive method, overlapping shadows are still
there, although they are finer. To address this problem, each
light ray may be randomly deviated a little from its original
direction, and the effect of overlapping shadows is alleviated
(Figure 3(d)).

(a) (b)

(c) (d)

FIGURE 3

CONSTRUCTIVE SOLID GEOMETRY

Constructive solid geometry, or CSG for short, is a com-
monly used technique in computer graphics and engineering
design. CSG considers an object as a set that includes its inte-
rior and boundary (i.e., the surface of the object). Commonly
seen CSG primitives include blocks, spheres, cylinders, cones
and tori. Boolean operators (i.e., set union, intersection and
difference) are used to construct new objects from CSG prim-
itives. The construction is, naturally, not unique. Suppose we
want to construct a latch-like object as shown in Figure 4(d).
We first take two blocks and one cylinder (a), scale them to
proper size (b), make the blocks perpendicular to each other,
use aset unionto obtain a L shape, move the scaled cylin-
der to the middle of the horizontal block (c), and uses aset
differenceto obtain the desired result (d).

Figure 5 has a different construction. It starts with two dif-
ferently scaled blocks (a), say�� and��, moves�� to a
proper position (b), and uses aset differenceto take out the
�� component from�� to obtain the L shape. The remaining
steps are identical to those in Figure 4.

The beauty of CSG construction is that the complete con-
struction process can be written as an expression. For exam-

0-7803-7444-4/02/$17.00 c�2002 IEEE November 6 - 9, 2002 Boston, MA
32nd ASEE/IEEE Frontiers in Education Conference

S4G-8



Session S4G

(a) (b)

(c) (d)

FIGURE 4

(a) (b)

FIGURE 5

ple, the second construction’s CSG expression is

latch� �scale���� trans(scale����� � trans(scale����

where� and� are the box and cylinder in some standard
form. Figure 6 shows the corresponding expression tree,
where� and� indicate scaling and translation.
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FIGURE 6

We must point out that Boolean operators may produce
lower dimensional artifacts. Figure 7(a) shows two boxes that
share a common face, and Figure 7(b) is the result of a set
intersection, which could not happen in reality. Therefore,
theregularizedBoolean Operators are introduced to overcome
this problem so that the result is always a three-dimensional
object. Unfortunately, due to the complexity of regularized
Boolean operators, they are rarely implemented. Students
must be aware of this fact and employ a number of techniques
to deal with it. For example, when specifying��� or���,
object� should be larger than necessary (Figure 5(b)).

(a) (b)

FIGURE 7

The CSG exercise is a challenging one. We gave students
a scene with one object, three walls, and three spotlights each
of which projects a shadow of the given object on a wall. Stu-
dents are required to use Boolean operators to sculpture the
object so that its shadows on the walls are pre-defined let-
ters. Figure 8 shows two student work. The left one shows
CSE (computer science education or computational science
and engineering) and the right one shows DES (data encryp-
tion standard).

(a) (b)

FIGURE 8

SURFACE MATERIALS AND TEXTURE

An illumination model that expresses the factors determin-
ing a surface’s color at a point includes at least three coeffi-
cients:ambient, diffuseandspecular. A user can specify the
value, in the range of 0 and 1, for each coefficient. Some ray
tracers also support the Phong illumination model and include
a specular-reflection exponent. It is easy to place a number
of spheres in the scene with different combinations of am-
bient, diffuse and specular values, and vividly visualize the
actual effect. For example, a high ambient value washes out
shadows on a surface. In addition, student can also experi-
ment with the Phong model using various specular-reflection
exponents. In this way, they will be able to pick up the fun-
damentals quickly. It is faster than performing the same ex-
periments with programming because the former is easier and
more “photorealistic.”

The next set of coefficients includesreflection, refraction
and theindex of refractionor IOR for short. This is the first
place where students can generate images that are not possi-
ble with a popular API. With reflection and refraction, they
can build mirrors and lenses. In Figure 9(a), two lenses (con-
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structed with CSG) are far away from the six spheres. Since
the right lens having a larger IOR, we can see all six spheres.
Because the distance between the lens and the spheres is large,
the images seen through the lenses are reversed. If we move
the lenses closer to the spheres, the effect of a magnifier is
clearly seen in Figure 9(b).

(a) (b)

FIGURE 9

We also discuss a drawback of ray tracing using reflec-
tion. Since rays are traced in a recursive way ([3] and [8]),
completely tracing a scene with many reflective surfaces may
cause the recursion going into an infinite depth. Hence, a ray
tracer must stop at certain recursion level. In other word, re-
flection beyond this level will not be seen in the image. The
scene in Figure 10 has three mirrors surrounding an object.
Figure 10(a) is traced with recursion level 1. We only see one
level of reflection, and the reflection from the mirror behind
the object is not shown. Figure 10(b), (c) and (d) show levels
2, 5 and 20. As the recursion level increases, the traced image
becomes more realistic. Unfortunately, tracing a scene with
many reflective surfaces with high recursion level is very time
consuming.

(a) Level 1 (b) Level 2

(c) Level 5 (d) Level 20

FIGURE 10

Then, we proceed to the discussion of textures. The bit-
map type texture is easy to understand and use. Many ray
tracers provide basic non-bit-map textures and permit a user
to design a color pattern that can be modified by random trans-

formations. Once a texture is created, it is mapped onto the
surface. In this unit, we covered marble, granite, wood, and
other interesting textures. We also mentioned how a user can
“stir” a color map (i.e., color stripes) into a very interesting
texture. For example, Figure 11(a) shows a semi-transparent
screen created with this technique, and Figure 11(b) is an im-
age using the chrome metal and other marble type textures.

(a) (b)

FIGURE 11

The exercise for this unit consists of the use ofall non-
degenerate quadric surfaces and textures. Students must place
all quadric surfaces, with textures, into a scene. Figure 12(a)
shows the use of all five quadric surfaces and textures such as
stone, sand, wave, sky and cloud, while Figure 12(b) shows
another fine design.

(a) (b)

FIGURE 12

PARAMETRIC SURFACES AND

TESSELLATION

Parametric surfaces are the most commonly used type of
surfaces. A graphics API such as OpenGL may be a better
tool for handling parametric surfaces because these local il-
lumination model based APIs render triangles efficiently. We
include this topic because we want our students to compare
the results obtained from local illumination models. Paramet-
ric, Bézier, B-spline and NURBS curves and surfaces are cov-
ered in class using a toolDesignMentor ([11], [12] and [13]).
To learn how an API displays a parametric surface, we must
cover surface tessellation. Since surface tessellation is such
an extensive and complex topic and may be too difficult for
juniors to digest, instead of providing a complete theory, we
discuss a naive algorithm and indicate the existence of other
powerful algorithms.
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This algorithm is very simple. The� and 	 directions
of the domain��
 	� � ��
 �� � ��
 �� is divided by�� �
�, ��, � � �, �� � � and 	� � �, 	�, � � �, 	� � �.
Then, the rectangle defined by vertices�� �
 	��, �����
 	��,
�����
 	���� and���
 	���� is further divided into two trian-
gles, say triangle���
 	��, �����
 	�� and �����
 	���� and
triangle���
 	��, �����
 	���� and���
 	����. If the surface
equation is���
 	�, the first approximation triangle is defined
by ����
 	��, ������
 	�� and������
 	����, and the second
is defined by����
 	��,������
 	���� and����
 	����. These
triangles can be rendered with an API’s Gouraud shading al-
gorithm. If the API has Phong shading, the normal vector at
each vertex can also be computed.

While this algorithm is simple, it is good enough for many
surfaces. Moreover, students can vary the values of� and�
to strike a balance between details and efficiency. Normally,
we gave students the parametric equations of a well-known
surface in differential geometry and/or in application, and ask
them to perform the following:
� Write a program using the available API to display the sur-
face and study its geometry. In this stage, students must deter-
mine the values of� and�, divide the domain, compute the
triangles, and render them.
� The triangles are saved to a file in a proper format.
� Use these triangles along with other objects to design a
scene. The grading criteria are not only the correctness of
the surface, but also the scene design.

This exercise turns out to be quite challenging due to the
unknown geometry of the surface. However, students always
manage to get the surface right and use it in their scene. Fig-
ure 13 shows two examples: Enneper and Kuen surfaces.
These images demonstrate that students are capable of gen-
erating very creative scenes with dull mathematical surfaces.
This is exactly what we anticipate from ray tracing exercises.

(a) Enneper Surface (b) Kuen Surface

FIGURE 13

ALGEBRAIC SURFACES

Algebraic surfaces is the last topic of our ray tracing com-
ponent. Unlike parametric surfaces, no programming APIs
can handle algebraic surfaces well. Because programming
APIs render triangles and/or quadrilaterals, an algebraic sur-
face, a surface defined by a polynomial of form��
 �
 �� � �,
must be tessellated into triangles. While there are algorithms

available, none of them can handle singularities well. Singu-
larities of an algebraic surface are the self-intersection points,
lines and curves where the partial derivatives are zero. Known
algorithms perform well if a surface is singularity free; other-
wise, they may generate a polyhedron that is topologically dif-
ferent from the given surface. Currently, ray tracing is the only
viable and easy way of coping with singularities, although it
is not very efficient. Algebraic surfaces have one more ad-
vantage: they can be used with constructive solid geometry,
because an algebraic surface has a natural way to define its
interior (i.e., ��
 �
 �� � �), boundary (i.e., ��
 �
 �� � �)
and exterior (i.e., ��
 �
 �� � �).

We also cover applications of algebraic surfaces. We pick
two important topics:blendingandoffsetting. A surface�
blends surfaces� and� along curves on� and� on� if
surface� is tangent to� and� along curves and�. This
is very useful insmoothingsharp corners of an object. Fig-
ure 14(a) uses a Dupin cyclide to blend two cones, and (b),
another student work, shows the use of a hyperboloid of one
sheet as a blending surface for two ellipsoids. Surface� is
an offset surfaceof a surface� if the signed distance from
� to � along any normal vector of� is a constant. Blend-
ing and offset surfaces are usually algebraic even though the
given surface(s) may be parametric, and are frequently used
in geometric design.

(a) (b)

FIGURE 14

The exercise given to students is similar to that of the para-
metric surface case. Students are provided with an implicit
equation��
 �
 �� � � and some clipping information. They
are asked to study the shape of the surface. Once the geom-
etry of the surface is understood, use the surface to design a
scene. Normally, the surface equation also contains an extra
parameter. By varying this parameter, a family of algebraic
surfaces is generated. Thus, students are required to explore
the shapes in the family and use various shapes in their scenes.
Figure 15(a) shows a number of Barth’s surface, and (b) shows
the use of a number of Kummer’s surface from a family to
make a rose. Both are very creative and imaginative.

EVALUATION

Our course is evaluated with a pre-test, a post-test, and an
attitudinal survey. Since ray tracing isnota major topic in this
course, and is used for introducing the basics of graphics and
to do design/modeling problems, the anonymous attitudinal
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(a) Barth’s Surface (b) Kummer’s Surface

FIGURE 15

survey only asks one question: in the scale from 1 (strongly
disliked) to 5 (really liked), do you like the ray tracing soft-
ware (i.e., POV-Ray)? The following table summarizes the
survey results. More than 80% of our students do like the ray
tracing software. There are always one or two “outliers” who
dislike it very much: “[I] hated [POV-Ray] with a passion.”
For those who like the software, they rated it highly. One stu-
dent even checked a “6” and indicated: “[I] really really like
it.”

Responses 1 2 3 4 5 Avg Var
2000 1 2 0 6 6 3.9 1.3

7% 13% 0% 40% 40%
2001 0 1 0 8 7 4.3 0.6

0% 6% 0% 50% 44%

Responses to this question only answer one part of the
equation. In order to ensure ray tracing can help students
understand graphics and modeling/design, we select the top
20% work of each exercise and post them on a Raytrac-
ing Hall of Fame page. In this way, students will be
able to learn more from what other students did in pre-
vious years. We have shown some of the best student
work in this paper. Others can be found on theIntro-
duction to Computing with Geometry course page at
http://www.csl.mtu.edu/cs3621/www/Home.html.
We found that the quality of student work increases every year.
This shows that they do learn a lot and use what they learn in
the image creation process. Here are some typical comments
from attitudinal surveys: “POV-Ray assignments let us have
a lot creativity,” and “[I like] the use of POV-Ray to generate
realistic objects.” As mentioned earlier, ray tracing only con-
sumes less than 5% of all lecture hours, and is used for teach-
ing the fundamentals. The rest of the course is for curves,
surfaces and their applications. Thus, intensive programming
is required. For those who like ray tracing more than program-
ming, here is a typical “suggestion”: “Easier programs. More
POV-Ray!”

WORK IN PROGRESS

We believe that an introduction to computer graphics course
should be a balanced one that includes both local and global
illumination models. The programming approach covers lo-

cal illumination models and animation efficiently.Graph-
icsMentor [2] is a tool that can help an instructor to go
through almost all fundamentals related to local illumination
models easily and quickly before asking students to program.
However, we should not abandon global illumination mod-
els. While ray tracing provides an easy and nice way for stu-
dents to learn global illumination, it only tells one side of the
story. We need to do more in order to create a well-balanced
course. Currently,GraphicsMentor is able to output a scene
to POV-Ray so that students can compare the differences be-
tween the result obtained with a programming API and the
result generated with ray tracing. Another important global
illumination theory is radiosity ([1] and [9]), which is usually
skipped in an introduction course. We believe that this is a
topic that should be discussed to certain depth. Therefore, we
plan to add a radiosity subsystem that will accept the output of
GraphicsMentor and render the scene with various radiosity
algorithms. Note that radiosity is available in some ray trac-
ers such as Radiance and POV-Ray. However, we would like
to have an independent pedagogical system that can help stu-
dents visualize the computation activities and understand the
algorithms.

The newly developed photon mapping technique [4] may
help bridge the gap between ray tracing and radiosity. Photon
mapping algorithms shoot photons into the scene from a light
source. The photons carry color and other information from
objects to objects as they hit until their energy diminishes to
zero. These information are stored in a photon map, which is
then combined with a ray traced result. With photon mapping,
we can generate color bleeding and caustics. Color bleeding
is a trademark of radiosity and caustics cannot be easily and
efficiently produced by both ray tracing and radiosity. We
plan to add photon mapping toGraphicsMentor. Once these
capabilities become available, we will have a very powerful
tool for teaching all important and modern topics easily.

CONCLUSIONS

We have presented our approach of using ray tracing to
teach many fundamental concepts and design/modeling tech-
niques in a junior level elective courseIntroduction to Com-
puting with Geometry. The major contribution of our work
is the evidence showing that the combination of ray tracing
and programming can take the advantage of both approaches
to produce a very productive and interesting course and to
provide students with a robust environment for creativity and
artistic expression development. The interested readers may
find more about our work, software availability, and future an-
nouncement at the following site:

http://www.cs.mtu.edu/˜shene/NSF-2
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