
A Communication Library to Support Concurrent Programming
Courses∗

Steve Carr, Changpeng Fang, Tim Jozwowski, Jean Mayo and Ching-Kuang Shene
Department of Computer Science
Michigan Technological University

Houghton, MI 49931
Email: {carr, cfang, trjozwow, jmayo, shene}@mtu.edu

Abstract

A number of communication libraries have been writ-
ten to support concurrent programming. For a variety
of reasons, these libraries generally are not well-suited
for use in undergraduate courses. We have written a
communication library uniquely tailored to an academic
environment. The library provides two levels of commu-
nication abstraction (topology and channel) and sup-
ports communication among threads, processes on the
same machine, and processes on different machines, via
a unified interface. The routines facilitate controlled
message loss along channels and can be integrated with
an existing graphical tool that supports visualization
of the communication that occurs. An editor has been
developed for automatic code generation for arbitrary
topologies via a graphical interface. All these tools run
over Solaris, Linux, and Windows.

1 Motivation

Concurrent programming is increasingly fundamental to
undergraduate Computer Science education [1]. Corre-
spondingly, courses dedicated to, or containing a com-
ponent in, this area are moving ever earlier into the un-
dergraduate curriculum. Yet this remains a very chal-
lenging subject to teach. Aside from the difficulty of
the material, available tools generally are not tailored
to an academic environment.

In our experience, a significant hurdle to student under-
standing, especially among lower-level students, is the
∗This work supported in part by the National Science

Foundation under grants DUE-9752244 and DUE-9952509.
The fourth author was also supported by National Science
Foundation CAREER award CCR-9984862.

complexity and diversity of communication interfaces.
Students likely learn separate interfaces for synchro-
nized communication among threads (lightweight pro-
cesses), processes (heavyweight processes) on the same
machine, and processes on different machines. Another
difficulty faced in teaching networked communication
in particular is the introduction of message loss in some
controlled fashion.

In order to address these issues, we have developed a
library to support communication among threads, pro-
cesses on the same machine, or processes on different
machines, via a unified interface. These routines imple-
ment an abstraction of the primary overarching char-
acteristics of IPC (interprocess communication). They
facilitate the study of concurrent application design and
can serve as a starting point for study of the implemen-
tation of IPC within a particular paradigm, threads,
processes on the same machine, or processes on different
machines. The library abstracts the passing of messages
at two levels: topology (the highest level) and channel.
Additionally, the routines provide a mechanism for in-
troducing message loss in a controlled fashion. These
routines can be integrated into an existing visualization
system that depicts the communication that takes place.
A topology editor has been developed that facilitates
automated generation of code for arbitrary topologies
using a graphical interface. The routines, visualization
system, and topology editor run over Solaris, Linux, and
Windows.

2 Related Work

Arnow developed the XDP message passing library for
teaching distributed programming [2]. The goals of this
library were more narrow than our goals in developing
the tools described in this paper. The XDP library ab-
stracts away some of the complexity of the BSD socket
interface, in order to reduce the course time required to
cover a network programming interface while requiring
that students still address fundamental problems such
as buffering, race conditions, synchronization, and relia-
bility. The library does not attempt to provide multiple



levels of abstraction, controlled message loss, or inte-
grated visualization support.

Other, commercially used message passing libraries are
available, e.g. PVM and MPI. MPI is perhaps the
most widely used, and structuring our message passing
library around the MPI interface (adding support for
visualization and maintenance of vector time over the
MPI primitives) was considered. However, at the time
our development began, publicly available implementa-
tions of MPI, like XDP, required that the same code
be executed for each process comprising an application.
This made it unsuitable for distributed or threaded ap-
plication development. Additionally, we did not want
to make installation and maintenance of MPI or PVM
a requirement for the use of our system.

McDonald and Kazemi have extended the PVM and
MPI message passing environment to support virtual
process topologies [10]. Several core functions have also
been developed to enable a parallel program to request
use of a standard process topology, to spawn and in-
stantiate all tasks participating in a topology, and to
specify transmission, reception, and synchronization in
terms of logical communication patterns, eliminating,
for example, the need for students to compute process
identifiers. They also provide a graphical interface for
specifying, verifying, and viewing topologies. Hence,
their tools are similar to what is achieved by our topol-
ogy classes and editor. Our tools additionally provide
controlled message loss and execution visualization.

3 Communication Library

Communication is abstracted at two levels: channel and
topology. The two abstractions are described, in turn,
below.

Channel The goal of the channel classes is to provide
an abstraction of communication that ties closely to
that encountered in the literature. Three channel types
have been implemented. The first class is a synchronous
one-to-one channel. Along this channel, both send and
receive are blocking [5]. Addressing in this class, as in
all the classes, among threads is by PThreads thread
identifier1 and among processes is by integer identifier.
Process identifiers are either assigned implicitly when
application processes are started by a control process,
described later, or can be assigned explicitly by the
user when a channel is created. No attempt is made
to prevent deadlock caused by application communica-
tion patterns, and the routines will block indefinitely.
Message loss cannot be introduced artificially into syn-
chronous channels.

1Pthreads refers to thread implementations that adhere
to the POSIX standard P1003.1c.

char msg[]="False pearls before real swine";
channel1 = new AsynOnetoOneChannel(1,

myID,dropSome(rand()));
channel1.send((void *)msg,sizeof(msg));

(a) Sender

char msg[MSGLEN];
channel0 = new AsynOnetoOneChannel(0,myID,0.5);
channel0.recv((void *)msg,sizeof(msg));

(b) Receiver

Figure 1: Message Transmission along Asynchronous
Channel

The second class implements an asynchronous one-to-
one channel. Along these channels, sends are non-
blocking; two receive primitives are provided, one block-
ing and one non-blocking [5]. Message loss can be intro-
duced along any asynchronous one-to-one channel be-
tween processes. The loss can be specified either as a
value between zero and one or via an integer function,
with a single integer input, at the time the channel is
created. When the loss is specified as a value between
zero and one, messages will be dropped, immediately
prior to the point at which they would be sent along
a totally reliable channel, by the communication layer
according to a uniform distribution. When loss is speci-
fied as a function, the function is evaluated at this same
point immediately prior to the send operation. If the
return value from the user-supplied function is greater
than or equal to one, the message is sent, otherwise
the message is dropped. (Hence, the loss function is
directional.) Figure 1 depicts code that creates a chan-
nel between the processes with identifiers zero and one;
process zero then sends a message to process one. Mes-
sages sent by process zero are dropped according to the
function dropSome() (which is assumed to be defined
elsewhere). Half the messages sent by process one (to
process zero) are dropped according to a uniform dis-
tribution.

Implementation of this code using a BSD socket inter-
face would require approximately twice as many calls
as the two (constructor and send) required here. This
estimate neglects the additional, non-trivial, complex-
ity required to support process addressing via integer
identifier and to drop messages in a controlled fashion.

The final class is a many-to-many channel, and is cur-
rently available only for threads. This class essentially
implements a bounded buffer.

Each class has a method that allows a channel to be
queried for data available to read. The return has a



theGrid = new Grid(ROWS,COLS,myID);

if ((myID % COLS) != 3)
theGrid.send(RIGHT,(void *)&myID,sizeof(myID));

if ((myID % COLS) != 0)
theGrid.send(LEFT,(void *)&myID,sizeof(myID));

if (myID >= COLS)
theGrid.send(UP,(void *)&myID,sizeof(myID));

if (myID < (ROWS-1)*COLS)
theGrid.send(DOWN,(void *)&myID,sizeof(myID));

Figure 2: Exchange of ID Among Grid Neighbors

value of one when data is available, but has no effect on
the channel itself. If no message is available, the return
value is zero.

Vector time is maintained within user applications. Vec-
tor time is used to determine the happened-before re-
lation [8] among events that occur within a distributed
computation [9]. Users can query, and increment the lo-
cal component of, the current local vector time within
an application.

Topology One-to-one channels can be joined into
topologies. The primary function of the topology class
is to facilitate creation of multiple channels via instan-
tiation of a single class. Several standard topologies,
derived from the topology class, are also provided in-
cluding: fully-connected, star, linear array, ring, grid,
and torus. Message sends and receives are restricted
to directly connected nodes within the topology. For
example, the center node of a star network is the only
node able to send to, and receive from, outer nodes;
outer nodes can only send to, and receive from, the
center node. Topologies are built with reliable asyn-
chronous channels. Figure 2 depicts exchange of iden-
tifiers among all neighbors in a grid topology. Note
that macros RIGHT,LEFT,UP,DOWN are defined within
our system. Similar macros are defined as appropriate
to a given topology.

Within the topology class, and each standard topol-
ogy, the methods Send(), Receive(), Broadcast(),
Scatter(), Gather(), and Reduce() are provided.
The Send (Receive) routine sends (receives) a mes-
sage to (from) a specified process. Broadcast effects
a broadcast, to all processes, of a specified message
from a specified source process. Scatter partitions an
input block of data, from a specified source process,
into a number of pieces equal to the number of pro-
cesses and sends a unique piece to each of the applica-
tion processes. Gather complements Scatter and col-
lects data from application processes to the process with
a specified identifier. A Reduce method collects data

Figure 3: History Window

from each application process and stores the result in
a specified location. The user specified function is then
run to reduce the collected data. Scatter, Gather,
and Reduce currently operate on one-dimensional ar-
rays (consecutive storage). Support for operations on
some non-consecutive storage in two-dimensional arrays
(e.g., submatrix) is under development.

Implementation Applications comprised of multiple
processes are spawned via a central control process.
Specification of the user programs and the machines on
which they should execute takes place either via the
command line or from user-specified configuration files.
The control process also spawns the visualization pro-
cess, when requested. Visualization data is passed along
TCP channels between the user processes and the visu-
alization process. When channels (or topologies) are
used, a TCP connection between the user processes is
created to effect a channel. Hence, the control process is
not involved in communications between user processes.

4 Topology Editor

A topology editor has been created to facilitate rapid
development of complex topologies via a graphical inter-
face. The editor allows creation of connections among
single nodes or among topologies. The editor output
is a file containing specification of a class derived from
the topology class. (The derived class name can op-
tionally be specified by the user.) The interface for this
class is equivalent to that for the topology class. This
file can be included by the user in her code to easily
create the constructed topology. The derived class sup-
ports broadcast, scatter, gather, and reduce functions
for each custom topology.

5 Visualization

A visualization system has been developed for visualiz-
ing synchronization among the threads of an executing
application [3]. This system has been extended to de-
pict the communication that occurs among threads or
among processes. This visualization is linked to use of



the channel class, and hence is available when the chan-
nel, topology, and specific topology classes are used.

A History Graph window (see figure 3) depicts the sends
and receives that occur within each process or thread,
and connects corresponding send and receive operations
between threads or processes. Clicking on any channel
in this window opens the Channel window. This win-
dow displays all recent activity along this channel, in-
cluding channel type, messages in the channel, messages
received since the window was opened, and current sta-
tus, either Sending Message or Receive Message.

6 Experience

The channel classes closely follow the abstractions of
communication found in the literature and they are eas-
ily incorporated into existing assignments. Their use
provides the additional advantage of allowing students
to visualize the communication that takes place.

with1 = new SynOneToOneChannel(1,0);

msg.done = 0;

do {
msg.value = max(mySet);

sentValue=msg.value

with1.send((void *)msg,sizeof(msg));

remove(mySet,msg.value);

with1.recv((void *)msg,sizeof(msg));

add(mySet,msg.value);

} while (sentValue > msg.value);

msg.done=1;

with1.send((void *)msg,sizeof(msg));

(a) Solution for Process Zero
with0 = new SynOneToOneChannel(0,1);

do {
with0.recv((void *)msg,sizeof(msg));

if (msg.done == 0){
add(mySet,msg.value);

msg.value = min(mySet);

with0.send((void *)msg,sizeof(msg));

remove(mySet,msg.value);

} while (msg.done==0);

(b) Solution for Process One

Figure 4: Set Partition

We present a sequence of exercises that result from
our experience with teaching network programming over
the past several years in an upper-level undergraduate
course. These exercises were recently developed to serve
as the first set of network programming exercises. Ini-
tially, our first network programming assignment was
more complex. We typically required an application
that contained multiple clients and a server for all client
types, similar to that described in [4]. While they re-
port large-scale success, we have found that, while many
students are able to complete the assignment, a signif-
icant number of students have difficulty. We hope that
completion of these exercises will lead to greater success

in the more complex client server exercise.

This set of exercises was designed to demonstrate three
fundamental aspects of concurrent application design:
(1) the use of synchronous versus asynchronous com-
munication, (2) deterministic versus non-deterministic
communication, and (3) the use of a client-server ar-
chitecture versus a fully distributed one. The basis of
the exercises is Soundararajan’s CSP [7] implementa-
tion [11] of a set partitioning problem [6]. The problem
is to partition a set of integers into two sets according
to the element values. Each process (heavyweight or
lightweight) initially has half of the set. One process
P0 will end up with the lower half of the elements and
the other process P1 ends up with the upper half of the
elements.

The first exercise requires that the problem be solved
using synchronous message passing. P0 sends the max-
imum value max(S0) from its set S0 to P1 and removes
max(S0) from S0. P0 then waits to receive the minimum
value min(S1) from the set S1 of P1. This continues un-
til P0 receives a value that is greater than or equal to
the one it sent.

Upon receiving a value from P0, P1 adds the received
value to S1. P1 then sends min(S1) to P0 and removes
min(S1) from its set. This continues until P0 notifies P1

that the set is partitioned. A solution is given in figure
4. This exercise illustrates development of a simple ap-
plication protocol. (P0 and P1 must agree on the format
of messages, and agree on a sentinel message that lets
P1 know that no further messages will be sent.) It also
serves to familiarize students with the (synchronous)
message passing interface.

Figure 5: Simultaneous Synchronous Sends - History
Window

The second exercise requires a solution similar to that
for exercise one, with the exception that, at each step,
P0 and P1 send their maximum and minimum values,
respectively, simultaneously. When P0 (P1) receives a
value less than (greater than) the one it sent out, the
sent value is removed from its set and the received value
is added. When P0 (P1) receives a value greater than
(less than) the one it sent out, the partition is complete
and no set modifications are made. We do not specify



the use of a particular channel class. Development of a
solution requires that students come to the realization
that only asynchronous message passing facilitates si-
multaneous execution of a send by both P0 and P1. If
synchronous communication is chosen by the student,
the problem quickly presents itself within the visualiza-
tion system, as depicted in figure 5.

The final exercise of this sequence incorporates N pro-
cesses with portions of the set and requires a central-
ized solution. Students use a supplied non-deterministic
receive function (or can create this function for them-
selves) that listens for data on any incoming channel.
A server collects a set of integers from all clients, com-
putes the set partition, and returns the resulting sets to
the clients.

7 Conclusions and Future Work

We have developed a message passing library that pro-
vides two levels of abstraction, channel and topology,
for the communication that occurs among processes
and threads. Tightly integrated visualization support
is available, as is support for controlled message loss. A
topology editor allows development of custom topolo-
gies via a graphical interface. We anticipate that these
communication classes and associated tools will support
the instruction of concurrent programming by reducing
the overhead associated with learning message passing
interfaces, by providing a uniform interface for commu-
nication both among threads and among processes, and
by providing integrated visualization support without
the need for instrumenting user programs.

These message passing classes are part of a larger sys-
tem that provides a class library for threads, thread
synchronization, and message passing. The system
currently also has support for visualizing the synchro-
nization of threads and the message passing that oc-
curs among threads and processes. We are currently
adding support for synchronization of processes (bar-
rier and mutual exclusion), implementing well-known
parallel and distributed algorithms, adding support for
distributed arrays, and adding additional visualization
support specifically for parallel and distributed pro-
gramming. We believe the tools can be used at any
level in which students have the programming sophisti-
cation and background sufficient to cover concurrency.
We have taught thread and network programming in a
course populated predominantly by sophomores and ju-
niors. The system has not been used at a lower level.
Comprehensive, detailed information on our work is
available at http://www.cs.mtu.edu/~shene/NSF-3/
index.html.

References

[1] ACM. Computing Curricula 2001 (Steelman Draft,
August 1, 2001). http://www.acm.org/sigs/
sigcse/cc2001/steelman/, 2001.

[2] Arnow, D. M. A simple library for teaching
a distributed programming module. In Twenty-
Sixth SIGCSE Technical Symposium on Computer
Science Education (Nashville, Tennessee, Mar.2-4
1995), pp. 82–86.

[3] Bedy, M., Carr, S., Huang, X., and Shene, C.-K.
A visualization system for multithreaded program-
ming. In Proceedings of the 31st Annual SIGCSE
Technical Symposium on Computer Science Educa-
tion (Austin, TX, March 2000), pp. 1–5.

[4] Bryant, R. E., and O’Hallaron, D. R. Introducing
computer systems from a programmer’s perspec-
tive. In Proceeding of the Thirty-second SIGCSE
Technical Symposium on Computer Sciense Edu-
cation (SIGCSE-01) (New York, Feb.21–25 2001),
pp. 90–94.

[5] Coulouris, G., Dollimore, J., and Kindberg, T. Dis-
tributed Systems Concepts and Design, third ed.
Addison-Wesley, 2001.

[6] Dijkstra, E. W. A correctness proof for networks of
communicating sequential processes - a small exer-
cise. EWD-607, 1977.

[7] Hoare, C. Communicating sequential processes.
Commun. ACM 21, 8 (1978), 666–677.

[8] Lamport, L. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM
21, 7 (1978), 558–565.

[9] Mattern, F. Virtual time and global states of dis-
tributed systems. In Parallel and Distributed Algo-
rithms: Proceedings of the International Workshop
on Parallel and Distributed Algorithms, M. C. et.
al., Ed. Elsevier Science Publishers B. V., 1989,
pp. 215–226.

[10] McDonald, C., and Kazemi, K. Teaching paral-
lel algorithms with process topologies. In Thirty-
first SIGCSE Technical Symposium on Computer
Science Education (Austin, Texas, Mar.7-12 2000),
pp. 70–74.

[11] Soundararajan, N. Axiomatic semantics of com-
municating sequential processes. ACM Transac-
tions on Programming Languages and Systems 6, 4
(1984), 647–662.


