
Channels, Visualization, and Topology Editor∗

Steve Carr, Ping Chen, Timothy R. Jozwowski, Jean Mayo and Ching-Kuang Shene
†

Department of Computer Science
Michigan Technological University

Houghton, MI 49931–1295
Email: {carr,pichen,trjozwow,jmayo,shene}@mtu.edu

ABSTRACT
This paper presents our effort in designing pedagogical tools
for teaching message passing using channels. These tools
include a class library that supports channels, a visualiza-
tion system that helps students see the execution behav-
ior of threads and message passing, and a topology editor
that provides an environment for students to design network
topologies. Moreover, since we have made sure the unifor-
mity of the channel definition across the thread, parallel and
distributed environments, porting a threaded program to a
parallel/distributed environment is easy.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.4.1 [Operating Systems]: Process Management;
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education

General Terms
Design

Keywords
threads, channels, visualization

1. INTRODUCTION
Message passing was first used in Brinch Hansen’s RC

4000 operating system in 1969 [7], and formalized by Hoare
into the concept of a channel in 1978 [9]. Since then, mes-
sage passing has become an indispensable tool in interpro-
cess communication and operating system design. Many op-
erating systems support message passing in various forms,

∗This work was supported by the National Science Foun-
dation under grants DUE-9752244 and DUE-9952509. The
fourth author is also supported by an NSF CAREER grant
CCR-9984682.†Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
ITiCSE’02, June 24-26, 2002, Aarhus, Denmark.
Copyright 2002 ACM 1-58113-499-1/02/0006 ...$5.00.

and some languages (e.g., Java) include message passing as a
language feature. In operating systems textbooks, message
passing is a standard topic in the discussion of synchroniza-
tion primitives. This paper discusses our effort in teaching
message passing with channels in a junior level introduc-
tion to operating systems course using two tools Thread-
Mentor and mtuTopology. ThreadMentor is designed to help
students visualize the execution behavior of threads and
synchronization primitives (e.g., mutex locks, semaphores,
monitors, barriers, reader-writer locks, and channels), while
mtuTopology provides students with an environment to de-
sign connection topologies (intra-nets) and then connect a
number of topologies into a network (inter-net). Because of
the uniformity of the channel definition in our class libraries,
a message passing program using channels can be ported to
the thread, parallel and distributed environments with min-
imal effort. mtuTopology is independent of the underlying
environment and can be used in concurrent programming
and related courses.

2. WHAT IS A CHANNEL?
ThreadMentor employs a more general approach to chan-

nels than Hoare’s original definition. A channel is a bi-
directional communication link for threads to send messages
to or receive messages from another thread. The capacity
of a channel is the buffer size. If the capacity is zero, no
message can be waiting in a channel. Therefore, a sender
must wait until a receiver retrieves the message, and the two
involved are synchronized for a message transfer to occur.
Channels with zero capacity are usually referred to as syn-
chronous channels (i.e., blocking send and blocking receive),
and the synchronization is a rendezvous. A telephone line
is a good example as the connection must be established
before any conversation can take place.
If the capacity is non-zero, messages may wait in the

buffer. A sender (resp., receiver) waits if the buffer is full
(resp., empty), and the channel is asynchronous. In a thread
environment, an asynchronous channel is simply a bounded-
buffer. A telephone with an answering machine is an exam-
ple. As long as the recording tape has space, a caller (i.e.,
sender) can call and leave a message. ThreadMentor does
not support unbounded capacity channels.

3. THREADMENTOR SUPPORT
ThreadMentor consists of a class library [8] that supports

thread management and all commonly used synchronization
primitives, a user-level kernel mtuThread that supports non-

preemptive multithreaded programming [3], and a visual-
ization system [4] that helps students see the execution be-
havior of threads and synchronization primitives (Figure 1).
The visualization system runs as a separate process to mini-
mize possible interferences to the running threads. The class
library and the visualization system communicate with each
other with a message queue.

Solaris Pthread Win32 mtuThread

Synchronization Primitives

Synchronous/Asynchronous Channels

User Programs

Visualization

Figure 1: ThreadMentor Architecture

ThreadMentor supports synchronous and asynchronous chan-
nels. Class SynOneToOneChannel (resp., AsynOneToOneChannel)
defines a one-to-one synchronous (resp., asynchronous) chan-
nel, and class ManyToManyChannel defines a many-to-many
channel. A many-to-many channel is always asynchronous,
and multiple senders and receivers can send messages to
and receive messages from the same channel. Senders and
receivers use Send() and Receive() methods to send and
receive messages, respectively.

4. EXAMPLES AND ASSIGNMENTS
The concept of channels is covered at the end of the discus-

sion of synchronization primitives in an operating systems
course. A number of examples (e.g., exchange sort and sort-
ing network) are discussed in class. One of our favorites is
the sieve method. Each prime number found so far is rep-
resented by a thread SieveThread that is an instance of the
Thread class in which method ThreadFunc() contains the
executable code (Figure 2). These SieveThreads are cre-
ated dynamically and chained to the end of a linear array.
Each thread creates a synchronous channel in its construc-
tor, and keeps retrieving a number from this channel. If the
received number is the STOP message, this thread exits the
loop. If the received number is a multiple of the number this
thread has, the received number is ignored and this thread
retrieves the next number from the channel. There are two
cases to consider if the received number is not a multiple of
the number this thread has. If this thread is not the last
in the thread chain, this thread passes the received num-
ber to the next one. Otherwise, this thread creates a new
thread, appends it to the end, and sends the number to this
newly created thread. The new thread “memorizes” the first
number it receives and starts the loop.
There are two programming assignments for students to

practice asynchronous and synchronous channels. The workcrew
model was used for the asynchronous communication assign-
ment. A master thread assigns work to workcrew threads
through a channel. Workcrew threads retrieve the assigned
work from this channel and report the results to the master
through a second channel. This process continues until the
master thread has gathered all necessary information. The
partition step of the quicksort fits into this scheme very well.
The systolic matrix multiplication was used as a syn-

chronous communication assignment. Recently, we follow
Brinch Hansen’s RC 4000 and Mach’s approach of using
message passing for operating system design. A synchronous
channel is built between a simulated operating system com-
ponent (e.g., disk head scheduling or page replacement al-

SieveThread::SieveThread(int prime) // constructor
{

next = NULL; // next sieve thread
this->prime = prime; // save the prime
channel = new SynOneToOneChannel(/* name here */);
cout << " prime number: " << prime << endl;

}

void SieveThread::ThreadFunc() // thread body
{

Thread::ThreadFunc();
int number;
Thread_t self = GetID();

while (true) { // get a message
channel->Receive(&number, sizeof(int));
if (number == STOP) // is it a STOP?

break; // yes, bail out
if (number % prime != 0) { // a composite?

if (next != NULL) // have a successor?
next->channel->Send(&number,sizeof(int));

else { // no succ. create one
next = new SieveThread(number);
next->Begin(); // run my succ

}
}

}
if (next != NULL) { // am I the last?

next->channel->Send(&number,sizeof(int));
next->Join(); // pass STOP and wait

}
Exit();

}

Figure 2: A sieve thread

gorithm) and user threads. A user thread uses this channel
to request system service. We used disk head scheduling
as the simulated system service [1, 2]. Threads send track
numbers to the channel as I/O requests. The disk head
scheduler monitors the channel and retrieves messages with
polling (Figure 3). Then, it serves the requests and releases
the requesting thread when the simulated operation com-
pletes. A detailed description of these assignments can be
found in [11].

process

process

process

process

channel scheduler
disk

I/O message

I/O message

Figure 3: Disk head scheduling

5. VISUALIZING CHANNELS
ThreadMentor includes a visualization subsystem for help-

ing students visualize the execution behavior of every in-
volved thread and synchronization primitive (Figure 1). See
[4] for the details. This subsystem is extended to include
channel visualization.
When a user program runs, it automatically brings up the

visualization system, which displays its Main Window. With

(a)

(b)

(c)

Figure 4: ThreadMentor Channel Visualization

the Main Window, a user can set the execution speed of a
program, step through the synchronization primitives in a
program, and click on one of the six buttons to display the
top-level information of the corresponding synchronization
primitive in a display area. Figure 4(a) shows the display
of channel name, type (i.e., synchronous or asynchronous),
and the current status (i.e., sending, receiving, and empty)
of each channel created so far.
Click on the History Window button to activate the His-

tory Window. The execution history of the running program
is shown as horizontal bars on which all events that have
occurred are “tagged” with various tags. For example, tags
CS and CR indicate a thread has sent and received a message
(Figure 4(b)). A user may click on the Channel button of
the History Window to see the sender and receiver of each
communication, which is shown with a line segment con-
necting a CS tag of a thread and a CR tag of another thread.
Moreover, a user may click on a tag to bring up a Source
Window to see the source program with the line containing
the corresponding send/receive highlighted. To learn more
about a channel, a user may click on its name shown in the
Main Window to bring up a channel window (Figure 4(c)).
This window provides a history of all activities, including
the actual messages, of a channel.
Students can trace their programs step-by-step, identify

important elements of a channel, and visualize on-going mes-
sage passing activities. Hence, this helps students recognize
the dynamic behavior of threaded programs, understand the
subject, and debug their programs.

6. A TOPOLOGY EDITOR
In parallel and distributed computing, the connections

among nodes are frequently established before computation
starts, instead of being dynamically created like the sieve
program. This means a programmer may have to build the
connection topology in her/his program. In our case (i.e.,
simulating parallel/distributed computing with threads), a
student must declare and create all channels. This is a very
tedious but simple process. To help students build the con-
nection topology so that they can concentrate on program-
ming, we developed a topology editor mtuTopology.

mtuTopology is a stand-alone program of ThreadMentor. It
provides the users with a two-level topology construction. A

user may construct several topologies, which are treated as
nodes in another topology, and use this capability to simu-
late an inter-network and a number of intra-networks. After
a topology is constructed, a user may save the topology de-
scription to a set of *.h and *.cpp files to be included into
her/his programs. Moreover, the description of the topology
is also saved for the visualization to use. Because the defini-
tions of channels are all the same in ThreadMentor and in the
parallel and distributed modules that are being developed
in our concurrent project [5], mtuTopology can be used for
threads as well as for parallel and distributed programming.

7. CREATING A TOPOLOGY
When mtuTopology starts, it shows its Topology Net Editor

Window, the rear one in Figure 5. With the buttons in the
lower-left corner, a user can create a new, delete an existing,
and edit a selected topology. Click on the New Topology

button to add a topology to the canvas of the Topology Net
Editor Window. Once this is done, a topology icon with
its ID is shown on the canvas, and, at the same time, the
default name and the ID are shown in the display area. To
edit a topology, click on one of the topology icons followed
by the Edit Topology button. See the middle window in
Figure 5. The selected (i.e., clicked) topology is highlighted.
Moreover, this brings up the Topology Editor Window. See
the front window in Figure 5.

Figure 5: mtuTopology Main Windows

A connection topology is built with nodes and links, where
nodes may be threads or processes and links are channels.
A user may use the Add Node button to add new nodes, and
Delete Objects to delete nodes and links. A node and a
link are represented by a mailbox and a line segment between
two mailboxes, respectively. To select a node (resp., link),
click on the node (resp., the small black square on the link).
The selected node and link are shown with inverted color
and thick line segment, respectively, as shown below.

LinkNode

Not Selected

Selected

A user may right-drag a node to another to create a
link, and left-drag a node to change its position. If some
nodes and links are no longer needed, select one and click
on Delete Objects to delete. More nodes and links can be
added until the topology meets the need.

mtuTopology is capable of generating linear array, ring,
star, grid, torus, and fully connected topologies. Moreover,
the grid and torus topologies can be in 3D. Click on the
Auto Make menu button to bring up a menu for selecting
a topology. Once a topology type is selected, a user sup-
plies additional input such as the width, height, and depth
of a 3D grid or 3D torus, or the number of nodes for the
other types. Then, mtuTopology constructs a topology that
meets the specification. Because grid and torus can be 2D
or 3D, mtuTopology provides the xy-, xz- and yz- views in
the upper-right corner of the Topology Editor Window. Click
on one of the three buttons to switch views. Figure 6 is a 3D
torus of width 3, height 2 and depth 2. A user may move the
nodes to create a better view as shown in the Figure 6(d).

(a) The xy-view (b) The xz-view

(c) The yz-view (d) A 3D view

Figure 6: A 3D Torus Topology

Combined with the class library, mtuTopology can create a
topology in an indefinite form for linear array, ring, star, grid
and torus topologies. More precisely, the topology editor
creates a topology of the indicated type, and allows the user
program to specify the actual dimension. Figure 7 shows a
linear array in which a node is marked with a special node
icon, indicating an indefinite form.

Figure 7: A Linear Array Topology in Indefinite
Form

The indefinite form is very useful. For example, if the
systolic matrix multiplication algorithm is used to compute
the product C = A ·B, where A and B are m× k and k×n
matrices, we need a (m + 1)× (n + 1) grid (Figure 8). The

upper-left node may be used for regulating the heartbeat
rhythm, and each of the remaining nodes of the first column
(resp., row) pumps the data of the corresponding row (resp.,
column) of matrix A (resp., B) to its neighbor. Each of the
remaining nodes in the grid receives data from its left and
top neighbors, performs some operations, and pumps the
data it receives to its right and bottom neighbors. Since
before the matrices are read in we do not know the number
of rows and columns, the indefinite form is required.

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,2 m,n

r 1

r 2

r m

c 1 c 2 c nS

Figure 8: Grid for Systolic Matrix Multiplication

Figure 9 shows a simplified example of the use of mtu-
Topology. mtuTopology generates a grid topology for the
systolic matrix multiplication algorithm as shown in Fig-
ure 8 and saves its definition in Grid.h. A user program sim-
ply includes this header file and creates the topology. Each
thread receives its position in the grid when it is created.
Then, threads use TopologySend() and TopologyReceive()

to send and receive messages.

#include "Grid.h"
GridTopology *Top; // the grid topology
Top = new GridTopology(); // in main()

WorkerThread::WorkerThread(int r, int c)
{

row = r; column = c;
}

void WorkerThread::ThreadFunc() // thread body
{

Thread::ThreadFunc();
int r, c, sum = 0;
int left, right, up, down, ID = getMyID();

left = ID-1; right = ID+1;
up = ID - GRID_SIZE; down = ID + GRID_SIZE;
for (i = 0; i < MAX_SIZE; i++) {

Top->TopologyReceive(left, &r, sizeof(int));
Top->TopologyReceive(up, &c, sizeof(int));
sum += r * c;
Top->TopologySend(right, &r, sizeof(int));
Top->TopologySend(down, &c, sizeof(int));
// other computation

}
C[row][column] = sum; // save result
Exit();

}

Figure 9: Systolic matrix multiplication

8. CONNECTING TOPOLOGIES
Two or more topologies can be connected into a topol-

ogy network. Thus, the topologies are like intra-networks,
and the topology network is an inter-network. Similar to
the topology editor, we can right-drag a topology icon on

top of the other to establish a link. In fact, the topology
net editor permits multiple connections between topologies
(Figure 10); however, a link must connect to two nodes in
two topologies. Thus, for each link, we need to select a node
from each topology to complete the connection. To do so,
select the link by clicking on the black square of that link.
A dialogue window appears in which the IDs of the two in-
volved topologies are shown (the inset window of Figure 10).
We then fill in the node ID in each topology.

Figure 10: The Topology Net Editor

After the desired topology network is created, we can save
it by clicking on the Create Topology Net button in the
lower-left corner of the Topology Net Editor Window. This
will generate a set of *.h and *.cpp files to be used with our
class libraries. In addition, we can also load a topology back
for further work. This process continues until a satisfactory
topology net is obtained.

9. CONCLUSIONS
We have presented the channel concept, its class library,

and two pedagogical tools ThreadMentor and mtuTopology
for teaching concurrency based on message passing using
threads. The concept of channels has been used in our op-
erating systems course [10, 11], and ThreadMentor and mtu-
Topology are being site tested in a number of schools. Reac-
tions from site testers and participants of our workshops [6]
were very positive and encouraging. Based on channels, we
are currently developing ConcurrentMentor for data-parallel
programming and distributed programming [5]. The inter-
ested readers may find more about our work, software avail-
ability, course materials, and future announcements at the
following site:

http://www.cs.mtu.edu/~shene/NSF-3

The URLs of the home pages of ThreadMentor and Concur-
rentMentor are

http://www.cs.mtu.edu/ThreadMentor
http://www.cs.mtu.edu/ConcurrentMentor

A tutorial of ThreadMentor is available at

http://www.cs.mtu.edu/~shene/NSF-3/e-Book/index.html

10. REFERENCES
[1] Andrews, G. R., Concurrent Programming: Principles

and Practice, Benjamin/Cummings, 1991.

[2] Andrews, G. R., Foundations of Multithreaded,
Parallel, and Distributed Programming,
Addison-Wesley, 2000.

[3] Bedy, M. J., Carr, S., Huang X. and Shene, C.-K.,
The Design and Construction of a User-Level Kernel
for Teaching Multithreaded Programming, 29th
ASEE/IEEE Frontiers in Education, Vol. II, 1999, pp.
(12b3-1)–(12b3-6).

[4] Bedy, M. J., Carr, S., Huang X. and Shene, C.-K., A
Visualization System for Multithreaded Programming,
31st SIGCSE Technical Symposium, 2000, pp. 1–5.

[5] Carr, S., Fang, C., Jozwowski, T., Mayo, J. and
Shene, C.-K., A Communication Library to Support
Concurrent Programming Courses, ACM 33rd
SIGCSE Technical Symposium, 2002, pp. 360–364.

[6] Carr, S., Mayo, J. and Shene, C.-K., Teaching
Multithreaded Programming Made Easy (workshop
abstract), The Journal of Computing in Small
Colleges, Vol. 17 (2001), No. 1 (October), pp. 156–157;
and ACM 33rd SIGCSE Technical Symposium, 2002,
p. 420.

[7] Brinch Hansen, P., RC 4000 Software:
Multiprogramming System, in Classic Operating
Systems: from Batch Processing to Distributed
Systems, edited by Per Brinch Hansen,
Springer-Verlag, 2001, pp. 237–281.

[8] Carr, S. and Shene, C.-K., A Portable Class Library
for Teaching Multithreaded Programming, ACM 5th
ITiCSE 2000 Conference, 2000, pp. 124–127.

[9] Hoare, C. A. R., Communicating Sequential Processes,
Prentice-Hall, 1984.

[10] Shene, C.-K., Multithreaded Programming in an
Introduction to Operating Systems Course, 29th
SIGCSE Technical Symposium, 1998, pp. 242–246.

[11] Shene, C.-K., Multithreaded Programming Can
Strengthen an Operating Systems Course, to appear
in Computer Science Education Journal.

