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Abstract

This paper describes the authors’ approach of introducing
important concepts and algorithms of B-splines to junior
computer science students with the help of a pedagogical
tool DesignMentor. This approach is non-mathematical and
intuitive, and has been used and refined in the past six years.
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1 Introduction

After 30 years of intensive development, B-splines have be-
come standard tools in computer graphics, geometric mod-
eling, computer-aided design, and many other interdiscipli-
nary areas [1, 4, 5]. While Foley et al [2] may not be the
first computer graphics textbook to include a significant por-
tion dedicated to splines, many recently published textbooks
cover B-splines [6]. However, teaching and learning B-splines
is a very challenging and demanding task to both instructors
and students because of the involved mathematics. In the
past six years, we developed an elective course Introduc-
tion to Computing Geometry for introducing the skills
of handling geometric problems to our junior students [3].
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Due to its importance, B-splines is a major topic. We use
a non-mathematical and intuitive approach with the help of
a pedagogical tool DesignMentor which is used to minimize
the need of lengthy and tedious mathematical discussion.
DesignMentor supports Bézier, rational Bézier, B-spline and
NURBS curves and surfaces, and cross-sectional surface de-
sign [7, 8, 9], and is used world-wide at many universities in
various courses. It provides an environment for students to
visualize and verify important properties and algorithms.

Due to the use of DesignMentor, the coverage of B-splines
is more extensive than the coverage in many undergradu-
ate level textbooks. Our course is taught in a computer-
equipped classroom. The B-splines unit takes six hours lec-
tures. There are six steps in this unit. We start with a mo-
tivation telling students the reason for using B-splines, fol-
lowed by the definition and exploration of some important
properties such as the local modification property. Then,
we continue with three extremely important topics: knot
insertion, de Boor’s algorithm, and curve subdivision. If
time permits, we also discuss degree elevation. Knot inser-
tion, curve subdivision and degree elevation are useful in
cross-sectional surface design and curve and surface interpo-
lation and approximation. This paper describes the content
of these six steps and the way of using DesignMentor in a
classroom setting that reduces the need of involved mathe-
matics by using a learning-by-doing, intuitive approach.

2 Step One: Motivation

Bézier curves are covered extensively before reaching the B-
splines unit. As a motivation, we start with a disadvantage
of Bézier curves, namely: the shape of a Bézier curve changes
globally when a control point is modified. To overcome this
problem, we need a curve whose shape only changes locally
when a control point is modified. One solution is to connect
a number of Bézier curves together and force them to act as
a single one. Hopefully, any change made to a control point
would only affect some neighboring curve segments. Since
this composite curve is defined on a domain (e.g., [0,1]),
the domain is also divided into sub-intervals, each of which
becomes the domain of a Bézier curve segment (Figure 1(a)).
The composite curve is a B-spline curve, and the division
points in [0,1] are its knots. A different subdivision yields a
different B-spline curve.

How can we “blend” the Bézier curve segments together and
find a new set of control points that defines the composite
curve? This is the question we need to answer in the B-
splines unit. Figure 1(b) shows the control points of three
Bézier curves and the control points of the B-spline curve.



(a) (b)

Figure 1: Knots of a B-spline Curve

We show the students this example and indicate that the
answer is in the discussion of curve subdivision (Section 7).

3 Step Two: The Basics

To “blend” a number of Bézier curves into a single one, we
use B-spline blending or basis functions. Given a degree p,
a knot sequence 0 = u0 ≤ u1 ≤ · · · ≤ um = 1, and a
value u ∈ [0, 1], the i-th B-spline basis function of degree p,
Ni,p(u), is defined recursively:

Ni,0(u) =

{
1 if u ∈ [ui, ui+1)

0 otherwise

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u)

Each Ni,p(u) is computed from two B-spline basis functions
of degree p−1, each of which is computed from two B-spline
basis functions of degree p− 2. Hence, Ni,p(u) is recursively
built from basis functions of degree 0. Note that Ni,p(u) ≥ 0
for all i, and the sum of all Ni,p(u)’s is 1. Therefore, the basis
functions at u “partition” the unit interval [0,1]. This is the
well-known partition of unity property.

Two fundamentally important properties are discussed in
class. Given u ∈ [0, 1], one can find a [uk, uk+1) that con-
tains u. Nk,0(u) is non-zero on [uk, uk+1) from the first for-
mula, and Nk,1(u) and Nk−1,1(u) are non-zero because both
use Nk,0(u). Similarly, Nk,2(u), Nk−1,2(u) and Nk−2,2(u)
are non-zero because they use Nk,1(u) and Nk−1,1(u). Re-
peating this argument, we have there are at most p + 1
non-zero basis functions of degree p on [uk, uk+1):
Nk−p,p(u), Nk−p+1,p(u), · · ·, Nk,p(u). On the other hand,
since Nk,p(u) uses Nk,p−1(u) and Nk+1,p−1(u), the for-
mer uses Nk,p−2(u) and Nk+1,p−2(u), and the latter uses
Nk+1,p−2(u) and Nk+2,p−2(u). Hence, Nk,p(u) uses Nk,0(u),
Nk+1,0(u), . . ., Nk+p,0(u). Since Nj,0(u) is non-zero on
[uj , uj+1) for all j, Nk,p(u) is non-zero on [uk, uk+p+1).
We never emphasize the mathematical derivation in class. In
fact, students have no difficulty in understanding the mean-
ing and discussion of these two fundamental facts.

4 Step Three: Exploring the Basics

The next step is to explore the basics and justify the claim
of “localization.” Figure 2 shows screen-shots of DesignMen-
tor’s Partition of Unity Window. The curves are B-spline ba-
sis functions of degree 5, the middle vertical line marks the
current value of u, and small triangles below the horizontal
axis indicate knot positions. Students can display all basis
functions (Figure 2(a)), a selected one (Figure 2(b)), or all

non-zero basis functions on [uk, uk+1) that contains the cur-
rent value of u. All zero basis functions on [uk, uk+1) are
shown in light color. The partition of unity at u is shown
by the right-most vertical bar of the window. Moreover,
when the value of u moves passing uk+1 from [uk, uk+1) to
[uk+1, uk+2), students can see one non-zero basis function is
replaced by another. Hence, they can easily verify the two
important properties discussed earlier.

(a)

(b)

(c)

Figure 2: Various B-spline Basis Functions

The B-spline curve C(u) of degree p defined by n+1 control
points P0, P1, . . ., Pn is:

C(u) =

n∑

i=0

Ni,p(u)Pi

where m+1 is the number of knots and n = m+p+1. Hence,
C(u) is the weighted sum of the defining control points. Sup-
pose we change the position of control point Pi. The change
made to Pi alters the term Ni,p(u)Pi only. Since Ni,p(u) is
zero outside of [ui, ui+p+1), the effect of changing Ni,p(u)Pi

does not propagate outside of [ui, ui+p+1). Hence, if Pi is
modified, the curve segment on [ui, ui+p+1) changes and the
segments on [0, ui) and [ui+p+1, 1] do not. This justifies the
claim that the modification made to a control point is local-
ized. This is referred to as the local modification property.

DesignMentor helps visualize the local modification property
vividly. Figure 3 shows two B-spline curves of degree 5 de-
fined by 16 control points (i.e., n = 15). The original curve
is in dark color with control point P9 marked by a rectan-
gle. If P9 is moved to a new location marked by a circle,
the new curve is shown in light color. It is clear that only
a portion of the original curve changes and the beginning
and ending curve segments are the same. In fact, a simple
calculation can reveal more. Suppose Pi is moved to Pi +v.
The new curve is D(u) = “other terms”+Ni,p(u)(Pi +v) =
[“other terms” + Ni,p(u)Pi] + Ni,p(u)v = C(u) + Ni,p(u)v.
Thus, the new curve is the sum of the original and a “shift”
Ni,p(u)v. Since Ni,p(u) is non-zero on [ui, ui+p+1), the orig-
inal curve segment on [ui, ui+p+1) is shifted in the direction
of v as shown in Figure 3.



Figure 3: The Impact of Changing a Control Point

How about knots? They only appear implicitly in the def-
inition of a B-spline curve. Normally, all knots are equally
spaced, and changing the position of a knot may produce
an unpredictable change to the shape of the curve. If the
first p + 1 knots are set to 0 and the last p + 1 knots are
set to 1, where p is the degree of a B-spline curve, the re-
sulting curve is tangent to both ends of the control polygon
(Figure 4). This produces a clamped curve and is commonly
used. Otherwise, the curve may not be tangent to the con-
trol polygon and we have an open curve. By replicating
some knots and/or control points, we can force the curve to
become closed.

(a) Clamped (b) Open (c) Closed

Figure 4: Three Types of Knots

5 Step Four: Knot Insertion

After exploring the basics and other concepts, we move for-
ward and discuss knot insertion, a fundamentally important
concept. Knot insertion means adding one more knot into
the knot sequence without changing the shape of the curve.
We do not derive the knot insertion algorithm because it is a
tedious and perhaps not an enlightening process. Instead, we
convert the computation algorithm to a visualization. Sup-
pose t ∈ (0, 1) is to be inserted. The knot insertion algorithm
has the following steps: (1) find a [uk, uk+1) that contains t,
(2) retrieve the p+1 control points Pk−p, Pk−p+1, . . ., Pk−1,

Pk, (3) find new points Qk−p+1 ∈ Pk−pPk−p+1, Qk−p+2 ∈
Pk−p+1Pk−p+2, . . ., Qk ∈ Pk−1Pk, and (4) replace the orig-
inal control points Pk−p+1, . . ., Pk−1 by Qk−p+1, Qk−p+2,
. . ., Qk−1, Qk (Figure 5), and the original knot sequence
with 0 = u0 ≤ · · ·uk ≤ t < uk+1 ≤ · · · ≤ um = 1. Now, we
have m + 2 knots and n + 2 control points, and the identity
(m + 1) = (n + 1) + p + 1 still holds. In this way, the corner

at Pk−j is cut by Qk−jQk−j+1.

For k − p + 1 ≤ i ≤ k, Qi is computed as Qi = (1− ai)Pi +
aiPi+1, where ai = (t − ui)/(ui+p − ui). Instead of proving
this formula, we teach our students how to interpret it in

Figure 5: Knot Insertion via Corner Cutting

a visual way. We ask them to stack the following intervals
together: [uk, uk+p), [uk−1, uk+p−1), . . ., [uk−p+1, uk+1) as
in Figure 6. The vertical line at t intersects each interval at
a point. The distance from this point to its left end ui is
t−ui, and the length of this interval is ui+p −ui. Therefore,
ai is the ratio of the position of t in [ui, ui+p). In our six-year
experience, almost all students in our class can quickly recall
and use this relation to insert a knot. A simple modification
to this procedure will insert a knot multiple times.

uk
uk + 1 uk + 2

uk + puk + p − 1uk − 1
uk−p+1 uk−p+2

t

ak

ak − 1

ak−p+2

ak−p+1

Figure 6: Computing Qj ’s

When the Knot Insertion Window is activated, DesignMentor
displays all control points and the new ones as if u has been
inserted. In Figure 7(a), the new control points are marked
with squares and the old ones that will be removed by corner
cutting are marked with circles. The diagram for computing
the ai’s is shown in Figure 7(b). The value of u can be
changed and the display is updated on-the-fly. Students can
do, re-do and reset multiple knot insertion operations. In
this way, they will learn knot insertion without any difficulty.

(a) (b)

Figure 7: Knot Insertion Window

6 Step Five: De Boor’s Algorithm

While it is possible to compute C(u) for a given u with the
recurrence relation discussed in Section 3, this is not rec-
ommended because it is tedious and not robust. With knot
insertion, we can discuss de Boor’s algorithm for computing
C(u) in a geometric way. De Boor’s algorithm states that



for a given u, inserting it as a new knot p times yields
C(u). More precisely, after the p-th insertion, one control
point remains which is C(u). In class, we ask students to
activate the display of de Boor’s algorithm. DesignMentor
displays all intermediate control polygons computed in the
process of multiple knot insertion (i.e., the de Boor net) as
shown in Figure 8(a). As the value of u is dragged for tracing
the curve, the de Boor net is updated on-the-fly.

(a) (b)

(c) (d)

Figure 8: De Boor’s Algorithm

To help students understand this multiple insertion process,
DesignMentor has a Stepwise Computation Window. A click
on the Step button shows the next level of knot insertion.
Figure 8(c) and (d) show the second insertion and its actual
computation, respectively. After performing the necessary
number of insertions to yield a single point, the computation
process has a triangular shape similar to that of de Castel-
jau’s algorithm (Figure 8(b)).

7 Step Six: Curve Subdivision

The next application of knot insertion is curve subdivision.
In a design process, one part of a curve may have the desired
shape. Thus, this curve may be divided into two so that we
can ignore the “good” segment and work on the other. Note
that subdividing a B-spline curve cannot change its shape
and each segment is a new B-spline curve defined by a set
of new control points and knot sequence. Curve subdivision
is easy. An application of de Boor’s algorithm at u yields a
de Boor net. Then, starting with P0 and moving toward Pn

on the de Boor control net, select each encountered control
point until C(u) is reached. These control points define the
first curve segment. Then, starting with C(u) and selecting
each encountered control points yields the second curve seg-
ment. The knot sequence of the first (resp., second) curve
consists of all knots from u0 = 0 to u (resp., from u to
um = 1) with u duplicated p + 1 times.

DesignMentor’s Subdivision Window displays a de Boor net as
shown in Figure 9(a) with the original and the two new sets
of control points, the “selection path” marked in different

colors. A student can drag the value of u and divide the
curve into two as shown in Figure 9(b).

(a) (b)

Figure 9: Curve Subdivision

With curve subdivision, we can finally reveal the link be-
tween B-spline and Bézier curves as discussed in Section 2.
If a given B-spline curve is divided at its knots, each curve
segment is tangent to the left and right ends of its control
polygon and there is no internal knot. Hence, each segment
is a Bézier curve, and the relationship between the control
points of the B-spline and those of the Bézier curve segment
is established by curve subdivision! Figure 10 has a B-spline
curve of degree 5 defined by 7 control points (i.e., n = 6) and
knot sequence 0, 0, 0, 0, 0, 0, 0.5, 1, 1, 1, 1, 1, 1. Since this is a
clamped curve, the first and last knots are repeated p+1 = 6
times. The only internal knot is 0.5. If the curve is divided
at u = 0.5 as shown in the figure, we have two new control
polygons each of which defines a B-spline curve. However,
since these two B-spline curves have no internal knots, they
are actually Bézier curves.

Figure 10: Dividing a B-spline into Bézier Segments

8 Assignments

In addition to several hand-calculation problems such as
computing Ni,p(u) for a given u, inserting a knot multiple
times, and performing curve subdivision, the B-spline curve
unit includes a programming assignment. Students are given
a scaled-down environment of DesignMentor and are asked
to (1) read in the control points, knots and degree, (2) dis-
play the B-spline curve using OpenGL (actually with one
OpenGL function call), and (3) trace the curve using de
Boor’s algorithm. The programming skill for this assign-
ment is important, because it is required for implementing
de Boor’s algorithm for B-spline surfaces and interpolation
and approximation.

9 Findings

Contrary to the belief that B-splines are too difficult to be
taught at undergraduate level, our six-year experience shows
that virtually all students did the programming assignment



correctly except for occasional minor programming errors.
We believe that this success is due to the use of a non-
mathematical and intuitive approach and the learning-by-
doing style supported by DesignMentor.

This course is evaluated with pre- and post- tests and an
attitudinal survey. Of the 22 questions in the pre- and post-
tests, two are directly related to the B-splines unit. One asks
students to comment on their skill in B-spline curves and
the other on B-spline surfaces. The scale is from 1 (none)
to 5 (excellent). The means and standard deviations of the
answers to these two questions in the pre-test (resp., post-
test) are 1 and 0 (resp., 4 and 1), respectively. The means
(resp., standard deviations) of the differences between pre-
and post- tests are 2.57 and 2.43 (resp., 1.18 and 1.24), re-
spectively. Therefore, students enter this course virtually
have no knowledge in B-splines, and, at the end, they have
a quite solid gain. We also ask if students like the B-splines
topic in an anonymous attitudinal survey. The mean and
standard deviation of B-spline curve (resp., surface) are 4.13
and 0.96 (resp., 4.27 and 0.44), respectively. This shows that
students really like this seemingly “difficult” topic. This pat-
tern occurs in all pre- and post- tests and attitudinal surveys
of the past six years. Therefore, we can safely conclude that
the fundamentals of B-splines are not difficult to teach if we
handle it properly with the help of DesignMentor.

10 Conclusions

We have presented our way of introducing the fundamentals
of B-splines to junior students. Since the use of B-splines
has become a basic design tool in many graphics systems
(e.g., trueSpace, LightWave 3D, 3D Studio and Maya) and is
widely used in many interdisciplinary areas, it is the time for
computer science educators to seriously consider the way of
incorporating this important topic into a typical curriculum.
We hope this paper may serve as a starting point. We are
continually developing DesignMentor to support more fea-
tures. Interested readers may find more about our work, our
web-based textbook, user guides, DesignMentor and other
tools, and future announcements, at the following site:

http://www.cs.mtu.edu/~shene/NSF-2
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