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ABSTRACT
This paper presents our attempt in designing intuitive and
interesting materials for teaching NURBS in an undergrad-
uate course with the help of our tool DesignMentor. This
approach does not require tedious mathematics and is based
on learning-by-doing and visualization. Our approach was
classroom tested and used world-wide in the last seven years.

Categories and Subject Descriptors
I.3.5 [Computational Geometry and Object Model-
ing]: Curve, surface, solid, and object representations; K.3.2
[Computers and Education]: Computer science educa-
tion

General Terms
B-Splines, NURBS

Keywords
B-Splines, NURBS, curves and surfaces

1. INTRODUCTION
B-splines and NURBS (i.e., Non-Uniform Rational B-

Splines) were rarely mentioned in a typical graphics course
a decade ago. Recently, as the consumer market was flooded
with high quality graphics systems that all support NURBS
(e.g., 3D Studio Max, Lightwave 3D, Maya and trueSpace)
and even after many books on B-splines and NURBS have
been published, graphics textbooks and courses still do not
cover these topics well [4]. Many textbooks choose a math-
ematical approach that often blurs the origin and intuitive
meaning of NURBS. Textbooks using the programming ap-
proach rarely provide students with sufficient information
for how to draw and use NURBS and do not supply an
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environment for students to visualize important properties
and algorithms and to practice curve and surface design. To
help students learn geometric processing skills that are vital
to graphics, visualization and geometric design, we created
a junior-level elective course Introduction to Comput-
ing with Geometry [2] and developed a pedagogical tool
DesignMentor Version 2 or DM2.

This paper presents our materials and experience in teach-
ing NURBS in an undergraduate course. Our experience in
presenting B-splines was published in [1]. In the follow-
ing, Section 2 provides a motivation indicating why NURBS
are necessary, Section 3 reveals the hidden concept in the
definition of NURBS (i.e., a NURBS curve is the projec-
tion of a higher dimensional B-spline curve), Section 4 uses
NURBSvis, a component of DM2, to help students visualize
this projection concept, Section 5 presents two important
properties of NURBS based on projection, and Section 6
discusses the unique NURBS shape modification operation
achieved by changing weights. Then, we show how to rep-
resent conic sections in general and circles in particular in
Section 7 and an application in cross-sectional design in Sec-
tion 8. Finally, Section 9 has our conclusions.

2. MOTIVATION
We always start our discussion with a challenge: asking

students to draw a circle using a B-spline curve. This is im-
possible and serves as a very good motivation for subsequent
discussions. Figure 1 shows four B-spline curves of degree
2, 3, 5 and 7 defined by 8 control points. Even with degree
7, the B-spline curve still does not look like a circle. Hence,
we need to find a method that can create circles easily, and
this is the merit of discussing and using NURBS.

(a)degree 2 (b)degree 3 (c)degree 5 (d)degree 7

Figure 1: B-splines Can Not Represent Circles

Many students were surprised by the fact that the pow-
erful B-splines cannot be used to represent circles. Indeed
the unit circle can be represented in a different form, x =
2t/(1 + t2) and y = (1 − t2)/(1 + t2), which is a result
discussed in calculus. However, this parametric form is ra-
tional (i.e., the quotient of two polynomials) rather than
polynomial. The subsequent discussion is mainly for finding
a rational form and investigating its properties.



3. FROM BSPLINE TO NURBS
A B-spline curve requires three elements: (1) a set of n+1

control points Pi (0 ≤ i ≤ n), (2) a knot vector U of m + 1
knots 0 = u0 ≤ u1 ≤ u2 · · · ≤ um−1 ≤ um = 1, and (3) a
degree p satisfying m = n + p + 1. Its equation is:

C(u) =

n∑

i=0

Ni,p(u)Pi

where Ni,p(u) is the i-th B-spline basis function of degree p
and is defined recursively as follows [1]:

Ni,0(u) =





1 if u ∈ [ui, ui+1)

0 otherwise

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u)+

ui+p+1 − u

ui+p+1 − ui+p
Ni+1,p−1(u)

A NURBS curve adds a weight wi ≥ 0 to control point Pi

and has an equation of

C(u) =
1∑n

i=0 Ni,p(u)wi

n∑

i=0

Ni,p(u)wiPi

=

n∑

i=0

Ri,p(u)Pi

where Ri,p(u) = Ni,p(u)wi/
∑n

j=0 Nj,p(u)wj, 0 ≤ i ≤ n,

are NURBS basis functions. Since all Ri,p(u)’s are rational
functions, NURBS curves are rational.

It is obvious that a NURBS curve becomes a B-Spline
curve if all weights are set to 1, and the former can be
considered as an extension of the latter. But, the ques-
tion is: what is the rationale behind the NURBS definition
and the use of weights. The key is the homogeneous co-
ordinate system. Consider a control point Pi = (xi, yi, zi)
with weight wi ≥ 0. Since Pi has a homogeneous coordinate
Ph

i = (xi, yi, zi, 1) and since multiplying a non-zero value to
the homogeneous coordinates of a point does not change its
position, wiP

h
i = (wixi, wiyi, wizi, wi) is the same point as

Pi. If we consider wiP
h
i as a 4D point (because it has four

coordinate values) and use the same knots and degree p, we
have a 4D B-spline curve Cw(u) of degree p as follows:

Cw(u) =

n∑

i=0

Ni,p(u)
[
wiP

h
i

]

The above equation can be expanded:

Cw(u) = (

n∑

i=0

Ni,p(u)wixi,

n∑

i=0

Ni,p(u)wiyi,

n∑

i=0

Ni,p(u)wizi,
n∑

i=0

Ni,p(u)wi )

Let us reinterpret this 4D point as a point in 3D homoge-
neous space. Its Euclidean equivalent is obtained by dividing
the first three coordinate values by the fourth (i.e., project-
ing a 4D point to the hyperplane w = 1). In 3D Euclidean
space, this curve has the following equation:

C(u) =
1∑n

i=0 Ni,p(u)wi

n∑

i=0

Ni,p(u)wiPi

This is exactly the definition of a NURBS curve!

Thus, a NURBS curve is obtained by lifting 3D control
points to 4D using weights, constructing a 4D B-spline curve,
and projecting it back to 3D with a central projection (Fig-
ure 2). Note that both curves use the same knots and degree,
and the weight of each control point serves as the fourth co-
ordinate that “homogenizes” the 3D point to a 4D one.

3D control points with weights

4D homogeneous coordinates 4D B-spline curve

3D NURBS curve

Figure 2: The “Lifting” and “Projection” Concept

4. NURBS VISUALIZATION
To help students understand and visualize the “lifting”

and “projection” concepts, a visualization system NURBSvis
is included in DM2 distribution. NURBSvis is a stand-alone
system and can be used without DM2’s support. However,
since it is difficult to display 4D objects, NURBSvis lifts a set
of 2D control points to 3D, constructs a 3D B-spline curve,
and projects it back to a 2D NURBS curve.

NURBSvis has two windows: the 2D NURBS Curve
window and the 3D B-Spline Projection window. A user
creates a NURBS curve in the 2D NURBS Curve win-
dow with right-clicks to add control points (Figure 3(a)).
Initially, each control point has weight 1 and the curve is
a B-spline. A user selects a control point with a left-click
and uses left-drag to change its position. The vertical slide
is for curve tracing. The lower-right corner has two buttons
to zoom in and out the 3D B-Spline Projection window,
and a button to turn on and off the display of the grid in
the 2D NURBS Curve window.

(a) (b)

Figure 3: Windows of NURBSvis

The 3D B-Spline Projection window shows the rela-
tion between 3D B-spline curve and 2D NURBS curve (Fig-
ure 3(b)). Since initially the created curve is a B-spline, it
is identical to the projection NURBS curve in the w = 1
plane. This window supports trackball type rotation for a
user to see the relation clearly and easily.

The weight of a selected control point can be changed
using the slide in the lower-left corner of the 2D NURBS
Curve window, and the new weight is shown above the
slide. If the weight of a control point is not 1, the curve
becomes a NURBS curve. As the weight changes, the 3D B-
Spline Projection window shows the corresponding point
(xw,yw,w) moving into space. The space curve in red is a
3D B-spline, and its projection 2D NURBS curve in w = 1 is
in blue. There are lines connecting control points in w = 1



and their corresponding 3D points, and there is also a line
between C(u) (i.e., the point on the NURBS curve) and
Cw(u) (i.e., the point on the 3D B-spline curve).

De Boor’s algorithm is one of the most important algo-
rithms in B-splines study [1]. It takes a u ∈ [0, 1] and com-
putes the corresponding point on a B-spline curve. Since
C(u) is the projection of Cw(u), an application of de Boor’s
algorithm to the 4D B-spline yields Cw(u), and the pro-
jection of all computation steps to w = 1 gives de Boor’s
algorithm for the NURBS curve. Figure 4 shows this com-
putation and the de Boor net. In this way, a user will be
able to visualize the relationship between the B-spline ver-
sion and the NURBS version of de Boor’s algorithm. We
found that this “proof-without-words” approach is quite ef-
fective in explaining the de Boor’s algorithm for NURBS.
Knot insertion and curve subdivision for NURBS can also
be discussed the same way.

(a) (b)

Figure 4: De Boor’s Algorithm

5. NURBS IMPORTANT PROPERTIES
After students have acquired background in projection,

additional important properties are discussed. In fact, as
long as a B-spline property is not metric related, it also holds
for NURBS because a central projection, which is affine,
changes metric measure but preserves the relative relation
(e.g., ordering and cross-ratio). Two properties that are
important to both B-splines and NURBS are discussed: the
strong convex hull property and local modification property.
The strong convex hull property of a B-spline curve of degree
p states that the curve segment on [ui, ui+1), lies in the
convex hull defined by p + 1 control points Pi−p, . . . , Pi.
This property provides an efficient way of locating a curve
segment and guarantees that a selected curve segment or the
whole B-spline curve lies in a predictable region. Because
the 4D “lifted” B-spline curve satisfies the strong convex hull
property and because central projections preserve convexity,
the 3D NURBS curve also satisfies this property.

The local modification property states that the B-spline
basis function Ni,p(u) is non-zero on [ui, ui+p+1). Since
Ni,p(u) is the coefficient of Pi, if Pi changes, Ni,p(u)Pi

also changes. Since Ni,p(u) is non-zero on [ui, ui+p+1), the
change of Ni,p(u)Pi only affects the segment on [ui, ui+p+1)
and does not affect curve segments elsewhere. With this
property, we know that changing the position of a con-
trol point only affects a portion of a B-spline curve and
the modification is local. Thus, modifying control point Pi

of a NURBS curve C(u) causes the “lifted” control point
wiP

h
i to change, which, in turn, changes the shape of Cw(u)

on [ui, ui+p+1). Since this curve segment projects to the
NURBS curve segment of C(u) on [ui, ui+p+1), the local
modification property holds for NURBS curves.

Figure 5 shows a NURBS curve of degree 4 defined by con-
trol points P0, . . . , P15. If P10 is moved from its top posi-
tion to its new position near the bottom, only the curve seg-
ment on [u10, u15), shown in light color, is changed. Curve
segments at both ends are not affected.

Figure 5: Modifying a Control Point

6. MODIFYING WEIGHTS
In addition to control points, knots and degree, a NURBS

curve has weights, one for each control point, and providing
one more degree of freedom for shape design. In fact, this
simple extension makes NURBS curves more powerful than
B-splines. Therefore, the impact of modifying the weight of
a selected control point is a must-know property.

Suppose weight wk of control point Pk is to be modified.
If wk = 0, the term wiPk disappears from the equation of
the curve, and control point Pk has no contribution to the
shape of the curve. What if wk increases from 0 to infinity?
Dividing the curve equation by wk yields:

C(u) =
1

(
∑n

i=0,i6=k(wi/wk)Ni,p(u)) + Nk,p(u)
×







n∑

i=0,i6=k

wi

wk
Ni,p(u)Pi


 + Nk,p(u)Pk




Clearly, as wk approaches infinity, wi/wk approaches zero
and the equation has a limit Pk . Hence, as wk approaches
infinity, the curve is “pulled” toward control point Pk and
eventually passes through it. On the other hand, as wk re-
duces to zero, the contribution of Pk also reduces and the
curve is “pushed” away from Pk. Eventually, when wk re-
duces to zero, control point Pk has no contribution to the
shape of the curve. But, which curve segment will be af-
fected by this “pulling” and “pushing”? It can easily be
analyzed with the projection concept. From the local modi-
fication property of B-splines, modifying wk changes wkP

h
k ,

which, in turn, changes the curve segment of the 4D B-spline
curve on [uk, uk+p+1). Thus, only the portion of the NURBS
curve on [uk, uk+p+1) changes.

With DM2, a user may select a control point and change
its weight. As the weight changes, the affected curve seg-
ment of the NURBS curve moves toward or away from the
selected control point. Figure 6 shows a NURBS curve with
control point P5 selected. The curve segment opposite to
P5 is flat when w5 = 0 because P5 has no contribution.
As w5 increases, the flat portion moves closer to P5. Fig-
ure 6 shows the curve segments corresponding to w5 being
0, 0.1, 0.5, 1, 2, 4 and 10. When w5 = 10, the curve is very
close to P5. Moreover, DM2 allows a weight to be negative
so that a user can see the impact of a negative weight. In
general, when the negative weight is sufficiently small, the



strong convex hull property fails. In other word, a portion
of the affected curve segment will be outside of the convex
hull defined by corresponding control points.

Figure 6: Modifying Weights

7. CONIC SECTIONS AND CIRCLES
We next answer the most basic question: how are conic

sections and circles represented. All conic sections are de-
gree 2 curves and can be represented by NURBS curves
of degree 2. Thus, we need three control points P0, P1

and P2. Some simple calculations show that the weights
of P0 and P2 can be set to 1, and only P1 needs a weight
w. Under this condition, the B-spline basis functions are
N0,2(u) = (1 − u)2, N1,2(u) = 2u(1 − u) and N2,2(u) = u2,
and the NURBS curve of degree 2 has an equation as follows:

C(u) =
1

(1 − u)2 + 2u(1 − u)w + u2
×

[
(1 − u)2P0 + 2u(1 − u)wP1 + u2P2

]

If we place the midpoint M of P0P1 at the coordinate
origin, and P0 and P1 on opposite sides of the x-axis, then
P0 = −P2 (Figure 7(a)). Since C(0.5) = w

1+w
P1 from

the above equation, we learn that the curve C(u) intersects
MP1 at X = C(0.5) and MX/MP1 = w/(1+w). If w = 1,
the curve is a Bézier curve that represents a parabola and
X is the mid-point of MP1 (i.e., X = 1

2
P1). A result from

projective geometry implies that the NURBS curve is an el-
lipse if w/(1 + w) < 0.5 (i.e., w < 1), and a hyperbola if
w/(1+w) > 0.5 (i.e., w > 1). Consequently, with a NURBS
curve of degree 2, one can set the weights of P0 and P2 to
1 and use the weight of P1 to define an ellipse, parabola, or
hyperbola curve segment.

(a) (b)

Figure 7: Conics and Circles

How about circles? We learn from geometry P0P1 =
P2P1 (Figure 7(b)). What remains is to compute the weight
w for P1. More precisely, we need to compute the ratio

MX/MP1 = w/(1 + w). Let the angle at P1 be 2θ, and
the center and radius of the circle that is tangent to P0P1

and P2P1 at P0 and P2 be O and r. From 4MOP0,
we have OM = r sin(θ) and MX = OX − OM = r −
OM = r(1 − sin(θ)). Since tan(π − θ) = MP1/MP0 from
4MP0P1 and MP0 = r cos(θ) from 4MOP0, we have
MP1 = MP0 × tan(π − θ) = r cos2(θ)/ sin(θ). Hence,
MX/MP1 = sin(θ)/(1 + sin(θ)) = w/(1 + w) and w =
sin(θ). If the angle at P1 is 2θ = π/3 = 60◦, we have
w = sin(π/6) = 1

2
and X is located at 1/3 of the dis-

tance from M to P1. If the angle at P1 is π/2 = 90◦,
then w = sin(π/4) =

√
2/2. Figure 8(a) shows a DM2 ex-

ample. The angle at P1 is π/2 and w =
√

2/2 ≈ 0.7071.
A user may use the slide near the bottom in the Coords
Window (Figure 8(b)) to modify the weight of the selected
control points. The parabola with w = 1 is also shown.

(a) (b)

Figure 8: A Circular Arc

Several circular arcs can be strung together to form a
NURBS representation of a circle. Figure 9(a) shows the
inscribed circle of an equilateral triangle. It is defined by 7
control points P0, . . . , P6 = P0 (n = 6). Except for P1,
P3 and P5 that have weight 1

2
, all other control points have

weights 1. This NURBS curve of degree 2 has knots 0, 0,
0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1. A circle can also be inscribed
in a square. The circle has four circular arcs as shown in
Figure 9(b). This NURBS circle of degree 2 is defined by 9
control points P0, . . . , P8 = P0 (n = 8). The weights of P1,
P3, P5 and P7 are

√
2/2 and the weights of the remaining

are 1. This curve has knots 0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4,
3/4, 1, 1, 1. See [1, 3] for the details.

Figure 9: Complete Circles

When DM2 is asked to generate a circle, a small window
appears (Figure 10(a)) for a user to choose the equilateral
triangle version or square version and use the slide to set a
radius. The desired circle with center at the origin is shown
on-the-fly as the radius changes (Figure 10(b)).

8. CROSSSECTIONAL DESIGN
Why are circles necessary? There are two reasons: (1)

a circle is the simplest curve and (2) circles are used fre-



(a) (b)

Figure 10: DM2 Circle Generation

quently (e.g., in generating surfaces of revolution). DM2
supports a special surface design technique for generating
commonly used surfaces, the cross-sectional design [5]. In
cross-sectional design, a user specifies a profile curve and a
trajectory curve so that the former will follow the latter to
sweep out a surface. The result, in most cases, is a NURBS
surface although both curves are in general B-splines.

Suppose we wish to design a vase shape. The first step is
to design a B-spline profile curve as shown in Figure 11(a).
Because this is a surface of revolution, the trajectory curve
is a circle. DM2 generates this trajectory circle automati-
cally. Once this circle, represented as a NURBS curve, is
in hand, the revolving process involves the determination of
all control points based on the circle representation. Fig-
ure 11(b) shows the wireframe version of generated vase in
which the circles and their control points are clearly show,
and Figure 11(c) shows the rendered result.

(a) (b) (c)

Figure 11: A Surface of Revolution

Circles may also be used as profile curves. A user may
select a number of circles with various size (Figure 12(a))
for the cross-sectional system module of DM2 to compute a
NURBS surface that contains all of them (Figure 12(b)). A
surface that “interpolates” a set of curves is referred to as a
skinned surface. Details are given in [5].

(a) (b)

Figure 12: A Skinned Surface

9. CONCLUSIONS
We have presented our approach of teaching the funda-

mentals of NURBS to undergraduate students in an elec-
tive course Introduction to Computing Geometry. In
this course, we spend two weeks on B-splines followed by
one week on NURBS. Student reactions in the past seven
years have been very positive. Students especially like De-
signMentor because it helps them understand the concepts
and visualize the algorithms. In a breadth-first course, one
may survey important concepts and use DM2 and NURBSvis
to demonstrate the inner-working of important algorithms
and to practice curve and surface design skills. Prelimi-
nary course evaluation results using pre- and post- tests
and attitude survey were published in [1, 2]. The success
and effectiveness of our materials and DesignMentor are also
justified by the number of adaptations. There are many uni-
versities world-wide using our materials. A partial list in-
cludes MIT, Ohio State, Technische Fachhochschule Berlin,
University of Alaska, University of Alberta, University of
Manchester, University of Melbourne, University of Paris-
South and Verona University. There are more than 2,500
downloads from our site and many universities have their
own regional download servers. Moreover, the more than
44,000 visitors to our tutorial site, most from off campus,
also demonstrated the usefulness of our materials.

Since the use of NURBS has become a basic design tool
in virtually all graphics systems and is widely used in many
interdisciplinary areas, it is the time for computer science
educators to seriously consider incorporating this impor-
tant topic into a typical curriculum. We hope this paper
may serve as a starting point. We are finalizing DM2 for
public release and are continually developing DesignMen-
tor to support more features. Interested readers may find
more about our work, web-based textbook, user guides, De-
signMentor and other tools, and future announcement at
www.cs.mtu.edu/~shene/NSF-2.
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