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Abstract

This paper presents a new method for evaluating boolean set operations between
Binary Space Partition (BSP) trees. Our algorithm has many desirable features
including both numerical robustness and O(n) output sensitive time complexity,
while simultaneously admitting a straightforward implementation. To achieve these
properties, we present two key algorithmic improvements. The first is a method for
eliminating null regions within a BSP tree using linear programming. This replaces
previous techniques based on polygon cutting and tree splitting. The second is an
improved method for compressing BSP trees based on a similar approach within
binary decision diagrams. The performance of the new method is analyzed both
theoretically and experimentally. Given the importance of boolean set operations,
our algorithms can be directly applied to many problems in graphics, CAD and
computational geometry.
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1 Introduction

Boolean operations are important in a wide variety of computer aided geo-
metric design problems, including range searching, collision detection, motion

? Expanded version of a poster presented at SIGGRAPH 2007 (San Diego, CA.
August 2007)
∗ Corresponding author.

Email addresses: mikolalysenko@gmail.com (Mikola Lysenko),
rmdsouza@mtu.edu (Roshan D’Souza), shene@mtu.edu (Ching-Kuan Shene).

Preprint submitted to Computer Aided Design 31 October 2008



planning and visibility. Yet despite their ubiquity, simple algorithms for evalu-
ating boolean operators are largely unknown. Current approaches are dogged
by poor performance, numerical instability and labyrinthine complexity, which
forces programmers to resort to expensive commercial packages. In this paper,
we give a simple method for computing boolean set operations using Binary
Space Partition (BSP) trees. A key improvement within this algorithm is the
use of a linear programming feasibility test which removes the need to perform
difficult tree partitioning and polygon cutting used in current BSP tree merg-
ing methods[1]. Compared to existing BSP tree algorithms, our new approach
is substantially simpler, more efficient and robust. We also derive a method for
reducing the amount of memory consumed by a labeled leaf BSP tree using a
collapsing scheme derived from binary decision diagrams[2].

2 Previous Work

Rossignac gives a good overview of current solid modeling techniques and ap-
plications[3]. For this paper, we briefly summarize two general approaches to
evaluating boolean operations: Boundary Representations (BREPs) and Con-
structive Solid Geometry (CSG). BREP methods directly operate on meshes
and easily interface with standard file formats and display systems. Laidlaw et
al.[4] gave the first BREP algorithm for boolean operations, which Hubbard[5]
later improved for triangulated meshes. Recently, Smith and Dodgson gave a
BREP intersection algorithm with provable conditions for topological robust-
ness[6]. For NURBs surfaces, Krishnan and Manocha discovered an optimal
output sensitive algorithm[7]. Though BREP methods are the most popular
category of boolean algorithms, they require complex case-by-case analysis and
are difficult to implement. Achieving reasonable robustness and performance
requires the use of multiple supporting data structures. Our algorithm elimi-
nates these dependencies by exploiting the implicit spatial indexing within a
BSP tree. Like Krishnan and Manocha, we use linear programming to narrow
intersection searches, however we go one step further in that the same prun-
ing operation is used throughout the entire BSP tree, thereby reducing the
number of special cases.

CSG methods are dual to BREPs in that they represent objects using their
interior instead of their boundary[8,9]. Under a sufficiently broad interpreta-
tion, this includes voxels, implicit surfaces and spatial indexing trees. CSG
defers evaluation of the boolean expression until the last possible moment,
such as the time of ray intersection. A similar effect can be achieved with
polygon rasterization and z-buffer clipping, though performance scales badly
with expression size[10,11]. Recently, Rossignac et al. used modern graphics
processing units to dramatically improve the performance of this approach
through the use of B-Lists[12]. Common in many BREP and CSG schemes is
the use of spatial indexing data structures for accelerating various geometric
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queries. Samet and Tamminen first made this connection explicit by using
quad-trees to compute boolean operations directly[13]. Along the same line of
thought, Thibault and Naylor introduced an incremental BSP tree construc-
tion to compute boolean operations between arbitrary polyhedra[14], which
they later improved using tree merging[1]. Though BSP tree merging is con-
ceptually straightforward, it requires a difficult tree partitioning subroutine
to remove null trees. Tree partitioning implicitly uses both null-object detec-
tion[15] and active zones[16]. Our algorithm eliminates tree partitioning by
making null-object detection explicit.

As both formats have their advantages, it is often necessary to convert be-
tween CSG and BREP formulations. For implicit surfaces and voxels, many
techniques are known[17–19]. In their original paper on BSP tree merging,
Naylor et al. used a dual representation scheme by indexing the polygons
within the BSP tree itself and incrementally clipping the boundary while merg-
ing[1]. Vanecek gives a more thorough development of this approach, calling
the scheme a BREP-index[20]. Comba and Naylor further improved on this
result using the topological BSP (t-BSP) tree formulation, which allows for
regularized operations and consistent topology[21]. The opposite conversion
from BREP to CSG is most relevant for the construction of spatial indexing
data structures, and in general it is much more difficult. In the specific case of
BSP trees, BREP to CSG conversion is known as BSP construction. Ogayar
et al. observe that while querying BSP trees is extremely fast, construction
time and memory costs are major problems[22]. Tóth gives a current survey
of results on BSP tree construction[23]. Paoluzzi et al. recently proposed a
novel method for reducing the cost of BSP tree construction and related op-
erations using progressive construction[24]. Our algorithm is both orthogonal
and complementary to these aforementioned techniques, as we only consider
the specific problem of merging BSP trees.

3 Binary Space Partition Trees

BSP trees come in several distinct varieties: node storing[25], leaf-storing[26]
and solid[14]. Fuchs et al. first introduced node storing BSP trees to induce a
back-to-front ordering on polygons for visible surface determination[25]. Leaf-
storing BSP trees generalize planar spatial indexing trees and are used to
speed up search problems such as collision detection[27], ray tracing[26] and
range finding. For this paper, we use the term BSP tree to mean a solid BSP
tree[14], which represents a polyhedral subset of <d. The leaves of the tree are
labeled as filled or empty spaces, while the nodes are formed by recursively
clipping two trees against a partition and then joining them together. As a
result, each filled leaf represents a region formed by the intersection of its
ancestors’ partitions. In this paper, we recursively define a solid BSP tree in
terms of its set-theoretic expansion[28,29,24]:
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Fig. 1. An example of a binary space partition. On the left, the quadrilateral, ABCD,
is a subset of <2. A BSP representing this set is shown in the right. The regions
represented by the filled nodes are indicated by the arcs.

Definition. A BSP tree is written as either IN, OUT or (Bh, B
+, B−), which

are defined as,

IN≡<d

OUT≡∅
(Bh, B

+, B−)≡ (B+ ∩Bh) ∪ (B− ∩BC
h )

where BC
h denotes the complement of the set Bh with respect to <d, Bh ⊂ <d,

and B+ and B− are also BSP trees. The BSP trees IN and OUT are known
as filled and empty leaves respectively. The remaining case, (Bh, B

+, B−),
is a node. Bh is called the partition of the node, and is a planar halfspace 1

An instance of a BSP tree is shown in Fig. 1. The quadrilateral on the left is
defined by the BSP tree on the right. The bounds of the polygon are formed
by the regions {A, B, C, D}. Diagrammatically, the nodes of the BSP tree
are labeled by their corresponding half space, with arrows pointing to their
subtrees. Leaves in Fig. 1 are labeled using IN for filled and OUT for empty.
In string form, the BSP tree can be written as,

(B, (D, (A, IN, OUT), OUT), (C , (D , IN, OUT), OUT)).

In set theoretic notation, this BSP tree is equivalent to:

(B ∩D ∩ A) ∪ (BC ∩ C ∩D).

Note that (B ∩D ∩A), corresponds to the left IN leaf in Fig. 1, while (BC ∩
C∩D) corresponds to the right IN leaf. The geometric interpretation of these
sets are shown by the arcs in Fig. 1 going from the leaf nodes of the BSP to

1 Note: Bh is the region {x|x · n̂ ≤ 0}, not the plane {x|x · n̂ = 0}.
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Fig. 2. The result of performing tree collapse. Once again, the quadrilateral ABCD
is represented by the BSP tree on the left, as in Fig. 1. The left BSP tree is collapsed
using Alg. 1 into the reduced tree on the right. In the compressed tree, redundant
subtrees have been replaced with pointers indicated by the dashed lines.

the corresponding regions in the quadrilateral. In general, the filled leaves of
a BSP tree form a set of disjoint regions whose union is the original set.

4 Tree Collapsing

Though it is possible to use the simple BSP tree definition given above, without
space compression, the trees may grow very large after repeated operations.
Ideally, we would like to replace BSP trees representing the same set with a
pointer along the lines of Fig. 2, as is done in binary decision diagrams[2]. In
the case of Fig. 2, the size of BSP tree is reduced from 5 nodes to 4. Given
an ordering on the partitions (such as a lexicographic sorting), it is possible
to directly compare equality by enumerating and testing each region within
the two trees, however the cost of tree collapse in this case is O(n2log(n)) on
the size the BSP tree. Rather than solve the more difficult general problem,
we propose a simpler test based on tree isomorphism. Let H = {hi|hi ⊂ <d}
be the set of partitions indexed by i ≥ 1. Define id as an indexing function on
the set of all BSP trees such that any two BSP trees, A = (Ah, A

+, A−) and
B = (Bh, B

+, B−), id[A] = id[B] if

Ah = Bh, id[A−] = id[B−] and id[A+] = id[B+]. (1)

The case where A and B are leaves is handled by reflexivity. Eqn. 1 enables us
to compress the BSP tree by replacing chunks of the tree with pointers into
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subtrees. However, Eqn. 1 is not sufficient to remove subtrees altogether. In
order to achieve this, we add an additional constraint,

id[(hi, B, B)] = id[B], (2)

where hi is a partition and B is a BSP. In [1], a condition similar to Eqn. 2
is given for reducing the size of the BSP trees which considers only the case
where B is a leaf. However, because we also consider Eqn. 1, our improved
collapsing method can collapse entire trees as well. To calculate id, we traverse
the BSP tree from the bottom up, as in [2]. To avoid multiple tests, we mark
the visited nodes using an hash map, visit. The keys in visit are BSP trees
which are assigned a hash, hash[B], consisting of a 3-tuple of integers,

hash[IN] = (0, 1, 0) (3)

hash[OUT] = (0, 2, 0) (4)

hash[(hi, B
+, B−)] = (i, id[B+], id[B−]), (5)

where hash[(hi, B
+, B−)] is the hash of the BSP node (hi, B

+, B−), with par-
tition hi indexed by i and subtrees B+ and B−. The base cases for the hash
map are determined by Eqn. 3 and Eqn. 4. Using a similar argument to [2],
hash will never result in a collision between two BSP trees which do not rep-
resent the same set. Initially, visit is empty and id is not set for any nodes.
In order to compute id, we define a counter count which is initialized to 0. As
we visit new BSP trees, we set their id to the current value of count and then
increment count. The final procedure is summarized in Alg. 1.

Algorithm 1 Collapses the BSP tree, B.
procedure collapse[B]
1: if id[B] is set then
2: return B
3: end if
4: if B = (Bh, B+, B−) then
5: B ← (Bh, collapse[B+], collapse[B−])
6: if id[B+] = id[B−] then
7: return B+

8: end if
9: end if

10: if hash[B] ∈ visit then
11: return visit[hash[B]]
12: end if
13: id[B]← count
14: count← count + 1
15: visit[hash[B]]← B
16: return B

The values of count, visit and id should be maintained between subsequent
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calls to Alg. 1. In this manner it is possible to amortize the cost of Alg. 1
during other BSP tree processing algorithms to an optimal constant O(1). If
a BSP tree has already been collapsed, then recursion terminates. Another
practical concern is finding a consistent indexing on the set of partitions. In
our implementation, we used the pointer to the partition, hi, as its index, i. To
achieve reasonable efficiency, some care must be used to recycle the references
between planes when constructing the BSP tree.

Strictly speaking, tree collapsing is not necessary for correctness. It does not
asymptotically affect the cost of merging, tree construction or element testing.
Also, if the BSP trees being merged are simultaneously performing the role of
a spatial indexing structure (as is the case with node or leaf storing BSPs), tree
collapse does not provide any benefit due to the fact that the objects contained
in each sub-tree are distinct. However, in the case of labeled leaf BSP trees,
Alg. 1 can drastically reduce the amount of memory consumed by the BSP
tree, which in turn improves overall application performance. Though our tree
collapse does not guarantee optimal compression, in practice the savings are
worthwhile. At the very minimum, the size of the BSP tree is reduced by half
due to the compression of leaf nodes. It is also worth noting that tree collapse
does not use any geometric information beyond lexicographic ordering.

5 Tree Merging

We define each of the boolean operators (ie. complement, union, intersec-
tion and subtraction) in terms of binary functions from op : {IN, OUT} ×
{IN, OUT} → {IN, OUT}. In the case of complement, AC = A⊕IN , with ⊕
being the exclusive-or operator. Given leaves A, B ∈ {IN, OUT}, we denote
the exchange of op’s arguments as opT :

A opT B = B op A. (6)

A boolean operator can be evaluated over a BSP tree using tree merging. Tree
merging recursively inserts one BSP into another until the problem is reduced
to an operation between leaf nodes. This process is illustrated in Fig. 3. In
this example, the triangle XYZ is intersected with the quadrilateral ABCD,
giving the region CDXY. Set union may be performed by switching the roles
of IN and OUT.

While this process does indeed produce correct set operations, it is not very
efficient, since the final BSP contains many unnecessary nodes. In Fig. 3, the
subtree BDAXYZ is empty and could therefore be removed from the final tree.
This can be shown by observing that the region B ∩ D ∩ A ∩ X = ∅. Using
this fact, it is possible to drastically reduce the size of the final BSP. Let T1 be
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Fig. 3. Tree merging illustrated: On the left, the BSP representing the triangle
XYZ is merged with the quadrilateral ABCD to compute their intersection. The
corresponding BSPs are shown in the trees below. The result of näıvely merging the
trees is shown on the right. Alg. 1 has not been applied to any of the trees.

the subtree YZ and T2 be the right subtree CDXYZ. Then, the BSP in Fig. 3
may be written as

(B, (D, (A, (X, T1, OUT), OUT), OUT), T2).

Converting this BSP tree into set notation and rearranging terms gives,

(B ∩D ∩ A ∩X ∩ T1) ∪ (BC ∩ T2) = (BC ∩ T2). (7)

The manipulation in Eqn. 7 factors out the empty region BDAX and T1 from
the rest of the set. Since BDAX is empty, it is possible to remove not only
that region, but also T1. To convert back into a BSP, observe that

BC ∩ T2 = (B ∩ ∅) ∪ (BC ∩ T2),

which is by definition equivalent to the simplified BSP tree (B, OUT, T2). In
this instance, the total size of the final tree was reduced by half. Detecting
empty regions, such as BDAX, requires the use of geometric information from
the partitioning sets. Fig. 4 depicts the content of BDAX visually. For the
case of planar halfspaces, the problem of detecting empty regions is precisely
linear programming feasibility testing[30,31]. Since all lower subtrees must be
bounded by BDAX, they cannot contain any points, and therefore they should
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Fig. 4. The region formed by the intersection of hyperplanes BDAX contains no
points, since the subregions B ∩D ∩A and X are disjoint.

be dropped from the BSP tree to improve efficiency. A similar observation ap-
plies to the final exterior subtree bounded by Z. Eliminating these extraneous
regions early in the merging process reduces computational cost by avoiding
unnecessary tree traversals. In the case of Fig. 3, merging could be terminated
upon reaching the subregion BDAX to avoid visiting nodes Y and Z. The
use of linear programming is the main advantage of our merge algorithm over
Naylor et al. Naylor’s algorithm uses a costly tree partitioning procedure to
cull extraneous nodes. Naylor’s tree partitioning is based on a difficult polygon
clipping test to perform vertex enumeration, which is both slow and numer-
ically unstable. Our algorithm eliminates these issues by making the test for
infeasible regions explicit with linear programming, which replaces tree par-
titioning. To test feasibility, the bounding region formed by the intersection
of all ancestor nodes’ planes must be stored during traversal. Depending on
the linear programming algorithm, intermediate results from this calculation
should be cached to ensure optimal performance.

Though linear programming is often considered expensive, in geometric com-
putations it is possible to achieve good performance by exploiting the fact
that the number of dimensions, d, is small, d ≤ 3, with respect to the num-
ber of constraints, n. For these cases, solvers such as Seidel’s algorithm[32]
are ideal. Not only is Seidel’s algorithm simple, but it has a running time in
O(d!n). There exist even faster algorithms, such as BasisLP, which runs in

O(d2n + d
√

dlog(d)log(n))[33].

To further reduce the size, we also apply a tree collapsing procedure as de-
scribed in Section 4 from the bottom up while merging. Our final merge al-
gorithm is as follows: Given two BSP trees, A and B, and a binary boolean
operator op, the objective is to compute a new BSP, S, such that S = AopB.
To solve for A op B when A and B are not leaves, we recursively insert B
into A and solve the problem over the subtrees. The basic structure of this
procedure is similar to the example in Fig. 3. To eliminate extraneous regions,
as in Fig. 4, we must keep track of the external region as we merge the two
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trees. To accomplish this, assume that S is bounded by the non-empty region,
R, formed by the intersection of its ancestors’ partitions. From this, we may
rewrite our objective S as

S = (A op B) ∩R. (8)

We use a stack to represent R while merging, exploiting the traversal order
of the insertion. We use a recursive procedure to solve Eqn. 8. The base case
occurs when A and B are both leaves, and is handled by the definition of op.
If B is a node and A is a leaf, we may swap the order of A and B using Eqn.
6. Therefore, all that remains is the case where A = (Ah, A

+, A−). Expanding
Eqn. 8 yields

(A op B) ∩R

= (((A+ ∩ Ah) ∪ (A− ∩ AC
h )) op B) ∩R,

= ((A+ op B) ∩ Ah ∩R) ∪ ((A− op B) ∩ AC
h ∩R).

To simplify, let T+, T− be BSP trees such that,

T+ = (A+ op B) ∩ (Ah ∩R),

T−= (A− op B) ∩ (AC
h ∩R),

S = T+ ∪ T−.

Since T+ and T− are partitioned by Ah, S = (Ah, T
+, T−). This summarizes

the content of the tree merging algorithm: split A into A− and A+ and re-
cursively apply op B. After this is done, recombine the subtrees across the
partition Ah. To eliminate extraneous trees, there remain two special cases
which must still be handled. If Ah ∩ R = ∅, then T+ = ∅ and S = T−.
Likewise, if AC

h ∩ R = ∅, then S = T+ using a symmetric argument. Using
this trick, we avoid visiting extraneous BSP trees as we did in our motivating
example. To test if Ah ∩ R = ∅, we can use linear programming feasibility if
our partitions are planar halfspaces.

There remains one final issue. Given a leaf B, it may occur that for any set X,
X op B = C, where C is also a leaf. Under these conditions, B dominates the
result, regardless of X. An example of this is the situation where op = ∩ and
B = OUT, so X ∩OUT = OUT for any X. In this case, there is no reason
to continue merging since the result will always be C. This can be considered
as a base case, and used to terminate recursion when

IN op B = OUT op B. (9)

Combining these ideas with Alg. 1 yields Alg. 2.
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Algorithm 2 Evaluates a binary operation, op , between two binary space
partitions, A and B within the region represented by the stack of partitions,
R.
procedure merge[A, B, op , R]
1: if R = ∅ then
2: return NULL
3: else if A and B are leaves then
4: return collapse[A op B]
5: else if A is a leaf or heuristic swap[A,B] then
6: swap[A, B]
7: op← opT

8: end if
9: if IN op B = OUT op B then

10: return collapse[IN op B]
11: end if
12: push[Ah, R]
13: T+ ← merge[A+, B, op,R]
14: pop[R]
15: push[AC

h , R]
16: T− ← merge[A−, B, op,R]
17: pop[R]
18: if T+ = NULL then
19: return T−

20: else if T− = NULL then
21: return T+

22: end if
23: return collapse[(Ah, T+, T−)]

Linear programming is used to handle extraneous subtree elimination in Line
1. This single test replaces the entire splitting procedure in Naylor’s algorithm
along with its polygon clipping. Since R is an intersection of planar half-spaces,
testing whether R = ∅ is equivalent to linear programming feasibility. When a
tree is marked as empty, this is propagated upward by the NULL result, which
is used to prune the resulting tree in Lines 18-22. Because Ah partitions <d,
it is impossible for both T+ and T− to be NULL, so NULLs are propagated
no more than one level up.

In Line 3, the base case where A and B are leaves is handled. For the sake
of simplicity, the algorithm always inserts B into A. Because we change the
order of the BSP trees in Line 6, we must exchange the order of operands in
op. This is done by transposing op in Line 7 according to Eqn. 6. The choice
of which tree to insert into is arbitrary, and determined by the helper function
heuristic swap. One practical strategy is to always merge into the shortest
tree in an attempt to reach the termination condition early. Doing so tends to
decrease the size of the final tree, which improves performance, though such a
strategy may miss possible early out opportunities. The other base case occurs
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in Line 9 which handles the termination condition described in Eqn. 9.

The recursion in Alg. 2 occurs in Lines 13 and 16. The node A is split into A−

and A+, and the Alg. 2 is invoked on both. In order to add the partitions Ah

and AC
h to R, we push them onto the stack in Lines 12 and 15 before calling

merge. After merge completes, Ah and AC
h are popped off the stack in Lines

14 and 17. Finally, we use tree collapsing to save memory in Lines 4, 10 and
23.

It should also be noted that due to the linear programming test used in Line
1, Alg. 2 also solves the non-convex linear programming problem over the set
AopB. This is due to the fact that feasibility testing for linear programming is
as hard as solving the linear programming problem. This feature is not unique
to our algorithm, as Naylor’s merge algorithm can be modified to solve linear
programming as well. Because Naylor’s tree partitioning traverses every vertex
of each convex leaf cell, evaluating the objective function incurs an overhead
of no more than O(d) per vertex, where d is the dimension of the space <d.
Taking the maximum of all values over the vertices is an additional O(1) per
vertex and solves the problem with no added cost. However, unlike Naylor’s
algorithm, our method uses linear programming instead of polygon splitting
to avoid traversing every vertex of each node inside the BSP tree. Moreover,
our linear programming method admits a straightforward generalization to
higher dimensional spaces, unlike polygon clipping.

6 Tree Merging Time Complexity

Proving useful time complexity bounds for BSP tree algorithms is difficult.
As an illustrative example, consider a set which divides <2 into n horizontal
bars. Intersecting this set with another set consisting of n vertical bars gives a
checkerboard BSP of n2 boxes. As a consequence, our BSP merging procedure
must run in at least Ω(n2) worst case. On the opposite extreme, suppose
the horizontal BSP has an additional 2n nodes placed such that they are
disjoint from the vertical bars. Intersecting this new BSP gives the same result
as before and runs in the same time. Yet, the exponential size of the input
dominates the quadratic size of the result, giving the mistaken impression that
the algorithm may run in O(1).

This suggests reformulating the problem in terms of an output sensitive com-
plexity measure. Though output sensitive complexity gives no information
about Alg. 2’s performance relative to non-BSP methods, it does give a di-
rect comparison to Naylor’s tree merging algorithm, which was previously the
fastest known method for solving boolean set operations between BSP trees.
This comparison is valid because both methods generate identical uncollapsed
BSP trees, given that they use the same insertion heuristic.
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Consider the BSP tree produced by merging two BSP trees without using Alg.
1 to collapse the result. Let n be the number of nodes within this BSP tree,
and let h be its height. Alg. 2 must run in at least Ω(n), since it constructs this
result incrementally. After this BSP tree is constructed, adding tree collapse
has no effect on the running time of Alg. 2, since it visits every node in the
tree no more than once.

Alg. 2 is called no more than twice as often as the size of the final tree. This
is because in Lines 13 and 16, it is impossible for both T+ and T− to be
NULL due to the fact that any partition of a non-empty region, R, must
contain at least one non-empty subregion. In this case, since there are only
two components to the partition, either T+ or T− must be a BSP. Therefore,
the total number of calls of merge is also in Θ(n).

The depth of recursive merge calls never exceeds the height of the uncollapsed
BSP, so the number of constraints in the enclosing region, |R|, must be within
O(h). Therefore, the amount of time consumed by Line 1 is in O(LP (h, d)),
where LP (k, d) is the cost of solving the linear programming feasibility prob-
lem with k constraints in d dimensions. Combining these facts, the total time
for executing Alg. 2 is in O(nLP (h, d)).

In the best case, h ∈ Ω(log(n)), giving a running time in O(nLP (log(n), d)),
although h may be as large as n giving a worst case time of O(nLP (n, d)).
Empirical evidence suggests that the first value is more accurate for rela-
tively balanced BSP trees. Using a linear time LP algorithm, the total cost
becomes O(nh). Incremental linear programming algorithms further improve
this bound by using the fact that each successive bound is added one-at-a-time
as they are pushed onto the stack. In this case, the cost for testing linear pro-
gramming feasibility is reduced to a constant, and so the algorithm runs in an
optimal O(n) time, indicating that the linear programming test is completely
amortized by the cost of BSP traversal.

In Naylor’s algorithm, feasibility is solved through polytope clipping. For each
partition, they project an enormous polytope onto it and then clip it against
R. Doing this requires h cuts, and each cut requires d flops times the num-
ber of vertices in the polygon. Since the number of vertices is in this poly-
gon is approximately bounded by O(hb

d−1
2
c)[34], the total time for evaluating

feasibility is within O(dh1+b d−1
2
c). This places the running time for Naylor’s

algorithm within O(ndh1+b d−1
2
c), which is slower than O(nLP (h, d)) given a

suitable choice of LP (h, d). From a geometric perspective, Naylor’s polytope
clipping is isomorphic to linear programming via näıve vertex enumeration.
By recasting the problem in terms of linear programming, we directly check
for null regions while visiting the minimal number of vertices.
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7 Tree Merging Robustness

Numerical robustness is important in all computations involving real num-
bers. This is especially the case within geometric problems, which rely on the
consistency of calculations in order to produce correct results. Many schemes
have been proposed to deal with these standard problems, such as introducing
random perturbations to avoid degenerate cases or using exact arithmetic to
prevent truncation[35].

In Alg. 1 and Alg. 2, the only numerical operation is the linear programming
feasibility test, R = ∅, on Line 1 of Alg. 2. Therefore, the robustness of Alg. 2
is determined by the robustness of the linear programming method. Because
there exist methods for solving linear programming exactly using finite pre-
cision rational arithmetic[36,37], one could validly claim that Alg. 2 is also
exact. While these exact algorithms are asymptotically no slower than their
floating point counter-parts for a fixed precision, in practice their overhead
is substantial. Therefore, for interactive applications it may be desirable to
sacrifice exactness for the sake of performance.

To understand the impact of robustness on our algorithm, we consider the
consequences of getting an incorrect result from the linear programming feasi-
bility test. There are only two possible ways the linear programming feasibility
test can fail,

1. R is incorrectly marked as feasible.

2. R is incorrectly marked as infeasible.

Case 1 is not particularly harmful – the final BSP will be somewhat larger and
merging will be slowed down accordingly, but the set represented by the final
BSP tree will remain unchanged. Case 2 is pathological – removing non-empty
nodes changes the represented set. While improved accuracy will reduce both
sorts of errors, it is possible to reduce the number of errors in case 2, at the
expense of creating more errors in case 1 with little change in the underlying
arithmetic. We do this by offsetting each plane along the normal by an arbi-
trary epsilon value. More general strategies, such as randomly perturbing the
normals of the planes to avoid degeneracies, are also used to improve results
with low overhead. Taken together, these constitute a far simpler and faster
method for evaluating robust CSG operations.

Compared to Naylor et al.’s algorithm, this represents a substantial improve-
ment in robustness. In their work, the vertices of each polygon were evaluated
eagerly at the time of clipping, which leads to a rapid loss of precision and
inconsistent results from tree splitting. To solve this issue, they proposed using
an epsilon term in each vertex test to add some slack to the computation. To-
day, exact methods for polygon-plane clipping are known[38], which solve this
problem by storing the d-tuple of planes associated with each vertex instead
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Table 1
A table of size reductions due to Alg. 1. The size of the uncollapsed tree is listed
in the second column, while the collapsed tree is given in the third. The amount
of memory which was reduced is shown in the fourth column, with larger values
indicating more savings.

Example No Collapse Collapsed % Reduced

Sphere (Unbalanced) 2000 2000 0.0 %

Sphere (Balanced) 10035 9695 3.4 %

Mushroom 1189 1095 6.0 %

Pig 8045 7422 7.6 %

Beethoven 18367 16579 9.6 %

Bunny 128780 120750 6.2 %

Bunny ∩ Knot 46195 32887 28.8 %

Pig ∪ Mushroom 11907 8242 30.8 %

(Pig ∪ Mushroom) ∩ Beethoven 22064 11504 47.8 %

Table 2
Performance benchmarks of Alg. 2 vs. Naylor et al.’s merge. Times do not include
BSP construction or surface clipping. All sizes are given in terms of uncollapsed
BSP trees. In each benchmark the algorithms were run 100 times, and the average
execution time was recorded. All measurements were taken on an AMD Athlon 64
3500+ processor with 1GB of RAM.

Benchmark Result Size Result Height Naylor Time (s) Alg. 2 Time (s)

Horizontal Planes ∩ Vertical Planes 6561 160 0.56 s 0.02 s

Beethoven ∩ Sphere (Unbalanced) 16393 175 5.80 s 0.67 s

Beethoven ∩ Sphere (Balanced) 34269 51 1.33 s 0.50 s

Pig ∪ Mushroom 26051 61 1.00 s 0.12 s

Bunny ∩ Knot 119883 52 15.79 s 0.83 s

Beethoven ∩ Goblet 21159 44 1.54 s 0.12 s

of the evaluated d-tuple of floats. Likewise, a similar technique is applicable in
vertex-based linear programming schemes such as Seidel’s algorithm. However,
linear programming still maintains an advantage in that even the non-exact
solution can be made arbitrarily robust with a direct performance trade off.
Because of the traversal pattern of Naylor et al.’s algorithm, it is not easy to
realize analogous behavior in handling degeneracies.

8 Results

In our implementation, boundaries were maintained by incrementally clipping
each surface against the other BSP tree as in Naylor et al.[1]. For BREP to
BSP conversion we used the standard method of selecting a partition, then
recursively clipping polygons[14]. For choosing a partition, we tested two dif-
ferent heuristics. In our first heuristic, we chose planes from the polygons which
split the minimum number of facets. This heuristic tends to favor small trees,
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Fig. 5. Some shapes produced by Alg. 2. From left to right: Bunny ∩ Knot, Pig ∪
Mushroom, Beethoven ∩ Goblet, (Armadillo ∪ Beethoven) ∩ Knot

but they are usually not very balanced. Our second heuristic favored balanced
trees by introducing a few levels of randomly chosen partitions that cut the
polygon set in half. Once the number of polygons was below a fixed thresh-
old, we switched to the first heuristic to finish construction. Even though our
second heuristic outperformed the first in every example, we have listed the
first in our benchmarks for discussion purposes.

To evaluate the performance of Alg. 1, we tested it on several different shapes
using both of our heuristics. The results of the compression are shown in Tab.
1. A convex polyhedron with a completely unbalanced BSP tree is the worst
case for Alg. 1 because the initial tree is already optimally compressed. For
more typical BSP trees, the average savings given by Alg. 1 are on the order
of 3-5%. These values are somewhat low because we don’t identify any sym-
metries in the initial polygonal data. If we labeled all coplanar partitions with
the same index, it might be possible to increase this percentage by a nominal
amount. The real benefit of Alg. 1 is apparent when used in conjunction with
Alg. 2, where Alg. 1 removes on average about 25% more nodes than the worst
case. Repeatedly applying Alg. 2 leads to even greater savings, as shown in
Tab. 1.

We benchmarked Alg. 2 against Naylor’s algorithm, currently the best known
method for merging labeled leaf BSP trees. To simplify the benchmark, we only
used offsetting and perturbation for robustness. The results of our benchmark
are shown in Tab. 2. While timing, we only measured the cost of merge and
collapse. Surface clipping, BSP construction and display were not counted.
Some of the shapes produced during our test are shown in Fig. 8. One of the
most pathological cases for Naylor’s algorithm is the case where a number
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of horizontal bars are intersected against a number of vertical bars. In this
particular instance our algorithm is over 95% faster, due to the advantages
of our linear programming technique. Since the difference in performance be-
tween Alg. 2 and [1] are proportional to the height of the resulting BSP tree,
larger and deeper trees exhibit a greater benefit from our approach compared
to smaller balanced trees, a fact which is reflected in the data. An interesting
example of this are the two different Beethoven ∩ Sphere benchmarks, which
illustrate the speed up due to linear programming. In the balanced case, our
algorithm does not achieve as large a speedup due to the fact that the result-
ing BSP contains a large number of short trees which quickly terminate. It is
also worth noting that for finely tessellated objects, Naylor et al.’s algorithm
is prone to failure due to degenerate polygons and numerical instability, which
our linear programming method handles robustly.

9 Conclusion

In this paper, we gave an efficient, original method for compressing the size
of a BSP tree using a simple bottom-up tree traversal. Additionally, we found
a simple, fast and general algorithm for evaluating polyhedral set operations.
With an appropriate linear programming algorithm, this technique can be used
to evaluate CSG expressions on meshes. Altogether, these contributions gener-
alize and extend a number of fundamental mechanisms in spatial indexing tree
structures, and are applicable to a wide range of problems in computational
geometry and computer graphics.

Although Alg. 2 is efficient, the times presented in Tab. 2 can be improved
with better BSP construction heuristics. Neither of our tree building strate-
gies create many opportunities for rejecting non-intersecting objects, and thus
they require many additional tree insertions per boolean operator. A better
constructed BSP tree would focus on constructing bounds around objects in
order to provide early-out opportunities to quickly terminate traversal. This
would in turn reduce the size of the resulting BSP tree and improve perfor-
mance. Though optimal construction algorithms are known for some limited
cases, the general problem remains unresolved. Likewise, recovering a BREP
from a BSP tree is also complicated, though easier than the inverse prob-
lem. Our surface clipping method is acceptable for a benchmark, but in a real
world application a better method would be necessary. Nonetheless, these is-
sues are not unique to Alg. 2, as all existing BSP tree algorithms must deal
with them in some way or another, and it should not diminish the importance
of our contribution. These issues may prove to be interesting topics for future
research.
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