
Chapter 8. Association Analysis: Multiple Marker Methods

The association methods we discussed till now are single marker methods. It is likely that
multiple markers contain more genetic information. The multiple marker methods are either
considering multiple tightly linked markers in one candidate gene or considering multiple
markers in different genes.

When we perform candidate gene studies, several tightly linked markers are usually typed
within a candidate genes. There is strong evidence that several mutations within a single gene
can interact to create a super allele that has a large effect on the observed phenotype (Schaid
et al. 2002). Some examples in humans include a gene that influences intestinal lactase
activity (Hollox et al. 2001); a gene responsible for human lipoprotein lipase (Clark et al.
1998); the HPC2/ELAC2 gene, which increases the risk for prostate cancer (Tavtigian et al.
2001); and a gene that influences actions of catecholamines, which influence bronchodilation
and hence, asthma (Drysdale 2000). The biologic explanation for these haplotype effects is
that several mutations in a gene cause several amino acid changes in the ultimate protein
product, and the joint effect of these amino acid changes can have a much larger influence
on the function of the protein product than any single amino acid change. This emphasizes
the importance of examining candidate genes by SNP haplotype.

The methods by considering different markers in different genes are motivated by gene-
gene interaction. As an example of gene-gene interaction, let’s consider two biallelic markers.
Table 8.1 gives the penetrances of two-locus genotypes and the penetrances of marginal one-
locus genotypes for each of the markers. From the table, we can see that the genotypes
aaBB, AaBb, and AAbb are high risk genotypes by considering the two loci jointly, however,
we can see nothing by examining each one of the two markers.

Table 8.1 The penetrances of the two-locus genotypes and marginal genotypes (the frequency
of each of the four alleles is 0.5)

AA Aa aa Marginal
BB 0 0 0.2 0.05
Bb 0 0.1 0 0.05
bb 0.2 0 0 0.05
Marginal 0.05 0.05 0.05

Because complex traits presumably arise frommultiple interacting genes located through-
out the genome, it would be appropriate to search for and to analyze sets of marker loci in
different genes jointly rather than to test each marker in isolation.

§ 8.1 Methods for Candidate Genes Based on Unrelated Individuals

8.1.1 Likelihood Ratio Test for Qualitative trait

Assume that we have sampled n1 cases and n2 controls (n = n1 + n2). Each sampled
individual has genotype at m tightly linked markers within a candidate gene. Once the
haplotype frequencies are estimated with the EM algorithm they can be compared between
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affected cases and normal controls by use of a likelihood ratio statistic ( Fallin, D. 2000,
Fallin, et al. 2001, Fallin D. and Schork, N.,2000).

HLR = 2(logLcases + logLcontrols − logLpooled),

which has an asymptotic χ2 distribution with degrees of freedom equal to the number of
haplotypes compatible with the sample minus one. Assume that there are H possible haplo-
types denoted by h1, . . . , hH . Let p = (p1, . . . , pH) and q = (q1, . . . , qh) denote the haplotype
frequencies in cases and controls. The null hypothesis of no association is H0 : p = q. Let
Ni, Mi, and Ki denote the number of haplotype hi in cases, controls, and pooled sample,
respectively, where Ni, Mi, and Ki need to be estimated from cases, controls, and pooled
sample, respectively. The log-likelihood under null is given by

l(p) =
HX
i=1

Ki log pi

and the maximum log-likelihood is given by logLpooled = maxH0 l(p) =
PH

i=1Ki log(p̂i) =PH
i=1 2np̂i log(p̂i), where p̂i =

Ki

2n
is the MLE of pi usually by EM algorithm. The maximum

of log-likelihood under whole parameter space logLcases + logLcontrols can be obtained in
similar way.

This estimation-based likelihood ratio test is sensitive to any departure from the equality
of the haplotype frequencies in cases and controls, including the possibility that more than
one haplotype is associated with the disease (Fallin, D., 2000, Fallin, et al., 2001). For sparse
data, empirical p-values may be more reliable than these based on the asymptotic distrib-
ution. The empirical p-values can be obtained through reshuffling the case/control status
among the individuals and recalculating the haplotype frequencies and the corresponding
log-likelihoods. The main disadvantage of this test is that the number of haplotypes with
estimated frequencies different from zero tends to be large, which increases the number of
degrees of freedom, thereby limiting the power of the test. This may happen even when link-
age disequilibrium exists among markers, so the actual number of haplotypes is not large.
Furthermore, this test does not provide a way of making inference on individual haplotypes
and is also not easy to generalize to deal with quantitative traits.

8.1.2. Haplotype Trend Regression (Zaykin et al. 2002)

This test is applicable to both qualitative trait and quantitative trait. Consider a sample
of n unrelated individuals where each individual has genotypes at several SNPs on a candidate
gene. Let H + 1 be the number of possible haplotypes formed by the typed SNPs, and
h1, . . . , hH+1 denote all haplotypes. Let yi and gi denote the trait value and multi-marker
genotype of individual i, respectively. For qualitative trait, yi = 1 if the ith individual
is diseased; otherwise yi = 0. We code the genotype gi through the haplotypes that are
compatible with gi and denote the numerical code of gi byXi = (xi1, . . . , xiH)

T . If haplotypic
phases are available or in case of no ambiguity,

xij =

⎧⎨⎩2 if gi is homozygote for haplotype hj1 if gi is heterozygous and include haplotype hj
0 otherwise.

.
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We can use a linear model

yi = α0 + α1xi1 + · · ·+ αHxiH + �i, (8.1)

for a quantitative trait, and a logistic linear model

log
pi

1− pi
= α0 + α1xi1 + · · ·+ αHxiH (8.2)

for a qualitative trait, where pi = Pr(yi = 1|gi).
If the phases are unknown and can not be unambiguous reconstructed, haplotype fre-

quencies are estimated via the EM algorithm. In this case, gi must be heterozygous and we
define the genotype score xij as the posterior probability that individual i has haplotype hj
given its genotype gi, and xij can be written as

xij = p(hj|gi) = δij
Pr(hjh

com
j )P

k Pr(hkjh
com
kj )

where
P

k is over all the compatible pairs of haplotypes hkjh
com
kj that are compatible with

gi.where �i is a random error. The null hypothesis is H0 : α1 = · · · = αH = 0.

For a qualitative trait, we can use LRT or score test (same as that given in section 6.4.3).
For quantitative trait, the F statistic can be used to test the null hypothesis, where

F =
SSR/H

SSE/(n−H − 1) ,

SSR =
Pn

i=1(ŷi − y)2 and SSE =
Pn

i=1(ŷi − yi)
2. If yi follows a normal distribution, then

F has a F distribution with degrees of freedom (H,n−H − 1). The normal assumption as
well as the asymptotic distribution for qualitative trait may be not appropriate due to the
large number of haplotypes. Using permutation procedure to get the empirical p-value is an
alternative.

8.1.3 Generalized T 2 test

Recently Xiong et al. (2002) proposed the generalized T 2 statistic for case-control associ-
ation studies of complex traits that simultaneously utilizes multiple biallelic (SNP) markers.
This statistic is a corollary to that originally developed for multivariate analysis and is known
in this context as two-sample Hotelling’s T 2 statistic, see for example Anderson (1984). Con-
sider a case-control with n1 cases and n2 controls. Suppose that m biallelic markers (e.g.
SNPs) have been typed in the sample of cases and controls. The jth marker has alleles Bj

and bj, respectively. The genotype of the jth marker for the ith individual from cases is
coded by the indicator variable

Xij =

⎧⎨⎩ 1, if the genotype is BjBj

0, if the genotype is Bjbj
−1, if the genotype is bjbj

.
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Similarly defined an indicator variable, Yij, for an individual from controls. Let

Xi=(Xi1, . . . , Xim)
T , Yi = (Yi1, . . . , Yim)

T ;

X̄j =
1

n1

n1X
i=1

Xij , Ȳj =
1

n2

n2X
i=1

Yij;

X̄ =(X̄1, . . . , X̄m)
T , Ȳ = (Ȳ1, . . . , Ȳm)

T ,

where X̄ and Ȳ are the mean vectors for cases and controls, respectively.

The pooled-sample variance-covariance matrix of the indicator variables for the marker
genotypes is

S =
1

n1 + n2 − 2

"
n1X
i=1

(Xi − X̄)(Xi − X̄)T +
n2X
i=1

(Yi − Ȳ )(Yi − Ȳ )T

#
.

The two-sample Hotelling’s T 2 statistics is then defined as

T 2 =
n1n2

n1 + n2
(X̄ − Ȳ )TS−1(X̄ − Ȳ ).

Under the null hypothesis of no linkage disequilibrium between any marker in the set and
a disease locus, the covariance matrix of the indicator variables for the marker genotypes
of the cases,

P
1 = Cov(Xi, Xi), and the covariance matrix of indicator variables for the

controls,
P

2 = Cov(Yi, Yi), are equal. Hence, when the sample size is large enough, under
the null hypothesis, T 2 is asymptotically distributed as a χ2 distribution with m degrees of
freedom (Anderson 1984). Note that m is the rank of matrix S. When S is not of full rank,
one uses its generalized inverse.

8.1.4. Similarity based Method

The basic idea behind the similarity-based methods is that the haplotypes with disease
mutation are the descendents of one or few haplotypes, and thus have larger similarity around
disease mutation.

Consider a case-control design with n cases and m controls. Suppose that k biallelic
markers (e.g. SNPs) have been typed in the sample of cases and controls. For two haplotypes
h1 = (h11, . . . , h1k) and h2 = (h21, . . . , h2k), where hij denotes the allele of haplotype i at jth
marker, there are many way to define the similarity of the two haplotypes. We summarize
some of the definitions in the literature.

1. Counting Similarity (CS): number of markers at which the two haplotypes have the
same allele, that is, AS =

Pk
i=1 I(h1i = h2i), I(·) is a indicator function.

2. Length Similarity (LS): The the length spanned by the longest continuous interval of
matching alleles.
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3. Local Length Similarity (LLS): For marker l(l = 1, . . . ,m), LLS is the length spanned
by the longest continuous interval of matching alleles around marker l.

The case of known phases

In this case, we know the two haplotypes of each of the individuals. Suppose there are
totally H haplotypes h1, . . . , hH , and there are ni and mi haplotype hi in the cases and in
the controls, respectively. We denote the 2n and 2m haplotypes in cases and in controls by
hca1 , . . . , h

ca
2n and hco1 , . . . , h

co
2m, respectively. Let D denote the average similarity for all pairs

of haplotypes in cases minus the average similarity for all pairs of haplotypes in controls,
that is,

D=
1

4n2

2nX
i=1

2nX
j=1

S(hcai , h
ca
j )−

1

4m2

2mX
i=1

2mX
j=1

S(hcoi , h
co
j )

=
1

4n2

HX
i=1

HX
j=1

ninjS(hi, hj)−
1

4m2

HX
i=1

HX
j=1

mimjS(hi, hj)

=
HX
i=1

HX
j=1

[p̂ip̂j − q̂iq̂j]S(hi, hj),

where p̂i = ni
2n
and q̂i =

mi

2n
are the MLE of pi, qi, frequencies of haplotype hi in cases and in

controls, respectively. If we use S to denote the H×H matrix of the similarities with (i, j)th
element S(hi, hj). Let p̂ = (p̂1, . . . , p̂H)

T and q̂ = (q̂1, . . . , q̂H). Then D = p̂TSp̂ − q̂TSq̂.
Tzeng et al. (2003) have calculated V ar(D) = V (p, q) which is a complicated function of
S, p and q (see Appendix B of Tzeng et al. (2003).). Under null p = q, E(D) = 0 and
p̂(0) = q̂(0) = ni+mi

4n
, Then

T =
Dp

V (p̂(0), q̂(0))
(8.1)

asymptotically has standard normal distribution.

If we use the LLS, the statistic T has relation with the location of the marker. For each
of the marker l, we have a statistic T (l), we can use statistic

T = max
1≤l≤k

T (l)

as statistic to test the association between the chromosome region and the trait.

The case of unknown phases

For the CS, we do not estimate haplotypes, we can use the similarity of the genotypes.
For two genotypes g1 = (g11, . . . , g1m) and g2 = (g21, . . . , g2m), where gij = 0, 1, or 2 as usual,
the AS of the two genotypes is

Pm
i=1 |g1i − g2i|.

For other similarity measures, we first need to estimate the haplotype frequencies in cases,
controls, and the pooled sample. Denote the frequencies of haplotype hi in cases, controls,
and pooled sample by p̂i, q̂i, and p̂

(0)
i , respectively.
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The statistic is still given by (8.1). However, since there are addition uncertainty intro-
duced by using EM to estimate haplotype frequencies, the standard normal distribution will
not a very good approximation to the distribution. In this case, we may use permutation
procedure to evaluate the p-value of the test.
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