
Debugging Techniques for C Programs

CS3411 Debugging 2

Debugging Basics

• Will focus on the gcc/gdb combination.
• Will also talk about the ddd gui for gdb (lots of value added to

gdb).
• First, debugging in the abstract:

– Program state is a snapshot of all variables, PC, etc.
– A statement in your program transforms one program state

into another.
– You should be able (at some level) to express what you

expect the state of your program to be after every statement.
– Often state predicates on program state; i.e., “if control is

here, I expect the following to be true.”
• Map into a toy example.

CS3411 Debugging 3

Small Example: ave.c
#include <stdio.h>

intsum=0, val, num=0;
double ave;

main()
{

while (scanf("%d\n",&val) != EOF) {
sum += val;
num++;

}

if (num > 0) {
ave = sum/num;

printf("Averageis %f\n", ave);
}
}

sum should be 0 and num
should be 0.

sum should be the total of
the num input values and
there is no more input.

sum should be the total of
the num input values
processed.

ave should be the floating
point mean of the num input
data values.

CS3411 Debugging 4

Small Example: ave.c
% a.out

1

Average is 1.000000

% a.out

1

2

3

Average is 2.000000

% a.out

1

2

3

4

Average is 2.000000

Experienced programmer can probably “eyeball debug” the
program from this output

CS3411 Debugging 5

Using gdb
• Make sure to compile source with the -g switch asserted.
• In our case, gcc-g ave.c
• Breakpoint: line in source code at which debugger will pause

execution. At breakpoint, can examine values of relevant
components of program state. break command sets a
breakpoint; clear removes the breakpoint.

• Diagnostic printf()crude, but effective way of getting a snapshot
of program state at a given point.

• Once paused at a breakpoint, use gdb print, or display to show
variable or expression values. displaywill automatically print
values when execution halts at breakpoint.

• From a breakpoint, may step or next to single step the program.
step stops after next source line is executed. nextsimilar, but
executes functions without stopping.

CS3411 Debugging 6

Using gdb
• May find out where execution is, in terms of function call chain,

with the where command; also shows function argument values.
• Apply some of this in context of bogus averaging program.
• To make things easier, put the problematic data set in a file

named data.

% a.out < data
Average is 2.000000

CS3411 Debugging 7

Using gdb (ave.c)
% gdb a.out

GNU gdb 6.1

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public

License, and you are welcome to change it and/or distribute

copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty”

for details.

This GDB was configured as "i586-suse-linux"...Using host

libthread_dblibrary "/lib/tls/libthread_db.so.1".

(gdb)

CS3411 Debugging 8

Using gdb (ave.c)
(gdb) l
1 #include <stdio.h>
2
3 intsum=0, val, num=0;
4 double ave;
5
6 main()
7 {
8 while (scanf("%d\n",&val) != EOF) {
9 sum += val;
10 num++;
(gdb) l
11 }
12 if (num > 0) {
13 ave = sum/num;
14 printf("Averageis %f\n", ave);
15 }
16 }
17
(gdb)

Interesting point: top of main loop.

Another interesting point: just
before ave is computed.

CS3411 Debugging 9

Using gdb (ave.c)
(gdb) break 8
Breakpoint 1 at 0x80483dc: file ave.c, line 8.
(gdb) break 13
Breakpoint 2 at 0x8048414: file ave.c, line 13.
(gdb) display num
(gdb) display val
(gdb) display sum
(gdb) r < data
Starting program: /home/jmayo/courses.d …
Breakpoint 1, main () at ave.c:8
8 while (scanf("%d\n",&val) != EOF) {
3: sum = 0
2: val= 0
1: num = 0
(gdb) c
Continuing.

Breakpoint 1, main () at ave.c:8
8 while (scanf("%d\n",&val) != EOF) {
3: sum = 1
2: val= 1
1: num = 1

CS3411 Debugging 10

Using gdb (ave.c)
(gdb) c
Continuing.

Breakpoint 1, main () at ave.c:8
8 while (scanf("%d\n",&val) != EOF) {
3: sum = 3
2: val= 2
1: num = 2
(gdb) c
Continuing.

Breakpoint 1, main () at ave.c:8
8 while (scanf("%d\n",&val) != EOF) {
3: sum = 6
2: val= 3
1: num = 3

CS3411 Debugging 11

Using gdb (ave.c)
(gdb) c

Continuing.

Breakpoint 1, main () at ave.c:8

8 while (scanf("%d\n",&val) != EOF) {

3: sum = 10

2: val= 4

1: num = 4

(gdb) c

Continuing.

Breakpoint 2, main () at ave.c:13

13 ave = sum/num;

3: sum = 10

2: val= 4

1: num = 4

CS3411 Debugging 12

Using gdb (ave.c)
(gdb) n

14 printf("Average is %f\n", ave);

3: sum = 10

2: val= 4

1: num = 4

(gdb) p ave

$1 = 2

(gdb) p (double)sum/(double)num

$2 = 2.5

(gdb) c

Continuing.

Average is 2.000000

Program exited with code 024.

(gdb) q

%

Everything fine until ave is
computed. Integer division the
problem.

Evaluate expression inside
gdb to validate our reasoning.

CS3411 Debugging 13

A GUI for gdb: ddd
• The ddd program is just a GUI front-end for gdb.
• Value added three main ways:

– Can mouse left on source line, then mouse left on Break at()
to set a breakpoint. Or mouse right on a source line and set
a breakpoint in the menu that pops up.

– Can mouse left on variable, then mouse left on Print()or
Display() to examine data values. Or get value displayed at
bottom of ddd window by ``mouse hovering'' over a variable
name.

– Displayed values graphically displayed. Click on a pointer
value, graphically display thing pointed to. Visualize complex
linked data structures.

• Play with inorder tree traversal program.

CS3411 Debugging 14

Using ddd (inorder.c)
Introduce a pointer-related bug into the program by modifying
the inorder() function:

.

void inorder(r)

structnode *r;

{

inorder(r->left);

printf("%c",r->data);

inorder(r->right);

}

Formerly:
if (r != NILNODE) {

inorder(r->left);

printf("%c",r->data);

inorder(r->right);

}

CS3411 Debugging 15

Quickie Post Mortem Debugging (inorder.c)
% a.out

Segmentation fault (core dumped)

% gdb a.out core

GNU gdb 6.1

.

Core was generated by ̀./a.out core'.

Program terminated with signal 11, Segmentation fault.

.

Reading symbols from /lib/tls/libc.so.6...done.

Loaded symbols for /lib/tls/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

#0 0x080484d5 in inorder(r=0x0) at buggy_inorder.c:38

38 inorder(r->left);

(gdb)

Function in which segfaulted.

Arguments to function.

Line of source where segfaulted.

CS3411 Debugging 16

Quickie Post Mortem Debugging (inorder.c)
(gdb) where

#0 0x080484d5 in inorder(r=0x0) at buggy_inorder.c:38

#1 0x080484dd in inorder(r=0x804a008) at buggy_inorder.c:38

#2 0x080484dd in inorder(r=0x804a028) at buggy_inorder.c:38

#3 0x080484dd in inorder(r=0x804a048) at buggy_inorder.c:38

#4 0x080484dd in inorder(r=0x804a068) at buggy_inorder.c:38

#5 0x08048479 in main () at buggy_inorder.c:21

The above listing walks back the call chain as it was at the moment
of the segfault.

Clear that we dereferenced a null pointer in a call to inorder()at
a leaf node of the binary tree.

CS3411 Debugging 17

CS3411 Debugging 18

CS3411 Debugging 19

CS3411 Debugging 20

Debugging Tips

• Examine the most recent change
• Debug it now, not later
• Read before typing
• Make the bug reproducible
• Display output to localize your search
• Write a log file
• Use tools
• Keep records

	Debugging Techniques for C Programs
	Debugging Basics
	Small Example: ave.c
	Small Example: ave.c
	Using gdb
	Using gdb
	Using gdb (ave.c)
	Using gdb (ave.c)
	Using gdb (ave.c)
	Using gdb (ave.c)
	Using gdb (ave.c)
	Using gdb (ave.c)
	A GUI for gdb: ddd
	Using ddd (inorder.c)
	Quickie Post Mortem Debugging (inorder.c)
	Quickie Post Mortem Debugging (inorder.c)
	Debugging Tips

