Answer 5 items for full 100 points. The 6th correct answer will be considered a 20 point bonus.

1. For a real gas that obeys a virial equation given by: \(\left(\frac{P_v}{RT} \right) = 1 + Bv + Cv^2 + Dv^3 \), then
 a. \(\left(\frac{\partial P}{\partial T} \right)_v = \frac{p}{T} \)
 b. \(\left(\frac{\partial P}{\partial T} \right)_v = \frac{T}{P} \)
 c. \(\left(\frac{\partial P}{\partial T} \right)_v = \frac{R}{v} \)
 d. \(\left(\frac{\partial P}{\partial T} \right)_v = R(1 + Bv + Cv^2 + Dv^3) \)
 e. None of the above

2. Which of the following is an equality?
 a. \(\left(\frac{\partial P}{\partial T} \right)_p \left(\frac{\partial P}{\partial v} \right)_T \left(\frac{\partial T}{\partial P} \right)_v = -1 \)
 b. \(\left(\frac{\partial P}{\partial v} \right)_T \left(\frac{\partial T}{\partial P} \right)_v = \left(\frac{\partial T}{\partial P} \right)_p \)
 c. \(\left(\frac{\partial P}{\partial v} \right)_T = - \left(\frac{\partial T}{\partial P} \right)_v \left(\frac{\partial T}{\partial v} \right)_p \)
 d. \(1 + \left(\frac{\partial P}{\partial v} \right)_T \left(\frac{\partial v}{\partial T} \right)_S \left(\frac{\partial T}{\partial P} \right)_v = 0 \)
 e. None of the above

3. For a real gas, the partial derivative \(\left(\frac{\partial h}{\partial v} \right)_s \) is given by
 a. \(\left(\frac{\partial h}{\partial v} \right)_s = \frac{\beta c_p}{k c_v} v \)
 b. \(\left(\frac{\partial h}{\partial v} \right)_s = -v \frac{c_p}{c_v} \left(\frac{\partial P}{\partial T} \right)_v \left(\frac{\partial T}{\partial P} \right)_p \)
 c. \(\left(\frac{\partial h}{\partial v} \right)_s = -T \frac{c_p}{c_v} \left(\frac{\partial P}{\partial T} \right)_v \left(\frac{\partial T}{\partial P} \right)_p \)
 d. \(\left(\frac{\partial h}{\partial v} \right)_s = \frac{\beta c_p}{k c_v} T \)
 e. None of the above
4. Let a and g be the Helmholtz and Gibbs energy, respectively, then
 a. $\left(\frac{\partial(g-a)}{\partial P} \right)_v = T$
 b. $\left(\frac{\partial(g-a)}{\partial P} \right)_v = P$
 c. $\left(\frac{\partial(g-a)}{\partial P} \right)_v = v$
 d. $\left(\frac{\partial(g-a)}{\partial P} \right)_v = 0$
 e. None of the above

5. Let $\omega = \left(\frac{\partial v}{\partial P} \right)_T / \left(\frac{\partial v}{\partial T} \right)_p$ be ratio of isothermal compressibility to the thermal expansion coefficient. Then, for a gas obeying the Van der Waals’ equation

 $$P = \frac{RT}{\nu - b} - \frac{a}{\nu^2}$$

 a. $\omega = \left(\frac{\partial T}{\partial P} \right)_v$
 b. $\omega = \frac{b - \nu}{R}$
 c. $\omega = a \frac{R}{\nu^2}$
 d. $\omega = -1$
 e. None of the above

6. Consider a steam power plant undergoing an ideal Rankine cycle and producing a net power of 5 MW, then the rate of heat removal in the condenser, Q_c, corresponding to a Rankine cycle efficiency of 10% is closest to

 a. $Q_c = 15 \text{ MW}$
 b. $Q_c = 25 \text{ MW}$
 c. $Q_c = 35 \text{ MW}$
 d. $Q_c = 45 \text{ MW}$
 e. $Q_c = 55 \text{ MW}$