Name ___

Circle the correct answers, each question is worth 20 points. (Bonus of 20 if all 6 are correct).

1. A liquid solution at $T = 300 \, K$ containing 25 mole % A, 40 mole % B and 35 mole % C was determined to have activity coefficients $\gamma_A = 1.1$, $\gamma_B = 0.7$ and $\gamma_C = 1.2$. Then the molar Gibbs energy change of mixing at this condition is given by

 a) $\Delta_{\text{mix}\,g} = (-0.055)RT$

 b) $\Delta_{\text{mix}\,g} = (-1.08)RT$

 c) $\Delta_{\text{mix}\,g} = (-1.14)RT$

 d) None of the above

2. A binary liquid mixture of A and B containing 0.3 mole fraction of A is in equilibrium with a gas mixture of A and B containing 0.25 mole fraction of A. At a system pressure of 1 bar and temperature $T = 280 \, K$, the liquid fugacity of pure components are $f^\text{liq}_A = 1.2 \, \text{bar}$ and $f^\text{liq}_B = 0.8$, while the vapor phase behaves as an ideal gas. Then the activity coefficient of B is approximately

 a) $\gamma_B = 0.69$

 b) $\gamma_B = 1.00$

 c) $\gamma_B = 1.34$

 d) None of the above

3. For a liquid mixture containing components a and b at temperature $T = 320 \, K$, the liquid fugacity of pure a was found to be $f^\text{liq}_a = 0.9 \, \text{bar}$ and Henry’s law constant for a was found to be $\mathcal{H}_a = 20 \, \text{bar}$. Using the Van Laar model for g^E, we have the following models for activity coefficients

 $RT \ln \gamma_a = A \left(\frac{Bx_b}{Ax_a + Bx_b}\right)^2$ and $RT \ln \gamma_b = B \left(\frac{Ax_a}{Ax_a + Bx_b}\right)^2$

Then the parameter $A/(RT)$ is then approximately given by

 a) $A/(RT) = 0.862$

 b) $A/(RT) = 1.24$

 c) $A/(RT) = 3.10$

 d) Insufficient data available

 e) None of the above
4. Plots of $\ln(\gamma)$ and/or $\ln(\gamma^M)$ for binary liquid mixture of A and B are shown in Figure 1.

![Figure 1. Ln of Activity Coefficients.](image)

The two plots shown are based (referenced) on
a) Lewis-Randall model for A and Henry’s model for B
b) Lewis-Randall model for B and Henry’s model for A
c) Lewis-Randall model for A and Lewis-Randall model for B
d) Henry’s model for A and Henry’s model for B
e) None of the above

5. The partial molar volume of A at $T = 400 \, K$ and $P = 15 \, bar$, in a mixture of A and B, was found to be

$$\bar{V}_A = \frac{RT}{P} + (k_1 y_A + k_2 y_B + k_3)RT$$

where $k_1 = -0.02 \, bar^{-1}$, $k_2 = -0.004 \, bar^{-1}$ and $k_3 = -0.009 \, bar^{-1}$. Then the fugacity coefficient of A at $y_A = 0.5$ is approximately given by

a) $\hat{\phi}_A = 0.591$
b) $\hat{\phi}_A = 0.730$
c) $\hat{\phi}_A = 0.867$
d) None of the above

6. The excess Gibbs energy for a mixture of 10 moles of A and 20 moles of B at $T = 420K$ is given by $G^E = -20 \, kJ$. The excess enthalpy for the mixture at the same conditions is given by $H^E = -10 \, kJ$. Then the excess molar entropy for the mixture is approximately given by

a) $s^E = 0.23 \frac{J}{mol \cdot K}$
b) $s^E = 0.79 \frac{J}{mol \cdot K}$
c) $s^E = 1.05 \frac{J}{mol \cdot K}$
d) None of the above