
1

Short Tutorial on Matlab
(©2004 by Tomas Co)

Part 7. The Control Toolbox. Basics for SISO LTI systems

1. Building models for linear time-invariant systems

There are three types of models which can easily be transformed to each other:
a) state space
b) transfer function
c) zero-pole-gain

Example 1: Creating a State Space Model

Given the set of linear differential equations:

vhhq

vhh
dt

dh

vhh
dt

dh

2

1
2

4

232

21

21
2

21
1

+−=

−−=

++−=

where the states are h1 and h2, the input is v and the output is q.

This can be rewritten in matrix form as:

() ()

() 




=−=







−

=





−

−
=

==





=

+=

+=

2

1
;21

1

2
;

14

32

;;
2

1

DC

BA

yux

where,

DuCxy

BuAxx

qv
h

h

dt

d

So in Matlab command window, we first input matrices A, B, C and D:

>> A=[-2,3;4,-1];
>> B=[2;-1];
>> C=[1,-2];
>> D=[1/2];

2

Then to create a state space object, use the ss command:

>> ht_model = ss(A,B,C,D);

this creates the object ht_model. You can see this in your workspace, as shown
in Figure 1.

Figure 1.

To see what is inside this object, just like any variable, simply type the object
name:

>> ht_model

a =
 x1 x2
 x1 -2 3
 x2 4 -1

b =
 u1
 x1 2
 x2 -1

c =
 x1 x2
 y1 1 -2

d =
 u1
 y1 0.5

Continuous-time model.

3

Example 2: Creating Transfer Function and Zero-Pole-Gain Models

Suppose we are given transfer functions written in two forms:

()()
()()()422

31
7

423

12
2

+++
++=

++
+=

sss

ss
H

ss

s
G

The numerator and denominator in G is expanded out and the numbers appearing
are the coefficients. On the other hand, in H, the numerator and denominators
have been factored out and it includes a multiplier gain (7 in this case). Note,
however that the roots have the opposite signs of the numbers shown, e.g. the
roots of the numerators are: -1 and -3.

We use the tf command to build a model for G,

>> G=tf([2,1],[3,2,4])

Transfer function:
 2 s + 1

3 s^2 + 2 s + 4

For H, we use the zpk command:

>> H=zpk([-1,-3],[-2,-2,-4],7)

Zero/pole/gain:
7 (s+1) (s+3)

(s+2)^2 (s+4)

2. Converting information between different models

There are two ways of converting one group of information to another group of
information. In table 2, the various commands are summarized

4

Table 1.

Command
Function

Converting
From

Converting
To

Input
Arguments

Output
Arguments

ss2tf
transfer
function

[num,den]

ss2zp

state
space zero pole

gain

[A,B,C,D]
[z,p,k]

tf2ss
state
space

[A,B,C,D]

tf2zp

transfer
function zero pole

gain

[num.den]
[z,p,k]

zp2ss state
space

[A,B,C,D]

zp2tf

zero pole
gain transfer

function

[z,p,k]
[num,den]

Example 3. Using state space information to build a transfer function object

Using the matrices entered earlier from example 1, we use the function ss2tf to
obtain the coefficients of the numerator and denominator needed to create F, a
transfer function object.

>> [num,den]=ss2tf(A,B,C,D);
>> F=tf(num,den);
>> F

Transfer function:
0.5 s^2 + 5.5 s - 18

 s^2 + 3 s - 10

On the other hand, if one just wishes to convert one object to another type of object then
the commands tf, ss, zpk will automatically convert them to the target type.

5

Example 4. Automatic conversion

Using the state space object, ht_model , we can immediately convert this to a
transfer function, say F2,

>> F2= tf(ht_model)

Transfer function:
0.5 s^2 + 5.5 s - 18

 s^2 + 3 s - 10

which is the same as F in example 3.

3. Including delays into the control objects

To include delay to a transfer function, we include two more arguments in the tf

command. For example, let)()(2 sFesQ s−= , with F given in example 3,

>> Q=tf (num,den,'Inputdelay',2);
>> Q

Transfer function:
 0.5 s^2 + 5.5 s - 18
exp(-2*s) * --------------------
 s^2 + 3 s - 10

Alternatively, you can set/change the properties by using the set command:

>> set(Q,'Inputdelay',0.5)
>> Q

Transfer function:
 0.5 s^2 + 5.5 s - 18
exp(-0.5*s) * --------------------
 s^2 + 3 s - 10

6

4. Combining different objects

The various control objects can be connected in series, parallel or negative feedback.
This is summarized in Table 2.

Table 2.

Command
Function Combination

series(G1,G2) G1 G2

parallel(G1,G2)

G1

G2

+

+

feedback(G1,G2)

G1

G2

+

-

Example 5. Combination of transfer functions.

>> G1=tf([1],[10,1])

Transfer function:
 1

10 s + 1

>> G2=tf([1 2],[2 3 2])

Transfer function:
 s + 2

2 s^2 + 3 s + 2

>> G3=series(G1,G2)

Transfer function:
 s + 2

20 s^3 + 32 s^2 + 23 s + 2

Alternatively, the Matlab control toolbox offers the basic arithmetic operations of control
objects, namely addition, multiplication and inversion, as summarized in Table 3.

7

Table 3.

Operation Example

addition G3=G1+G2

muliplication G3=G1*G2

inversion G3=inv(G1)

Example 6. Operation of transfer functions.

a) multiplication and series combination are equivalent: (G1 and G2 are transfer
function objects given in example 5)

>> G3=series(G1,G2)

Transfer function:
 s + 2

20 s^3 + 32 s^2 + 23 s + 2

>> G3=G1*G2

Transfer function:
 s + 2

20 s^3 + 32 s^2 + 23 s + 2

b) direct calculation of the negative feedback:

>> G4=G1*inv(1+G1*G2)

Transfer function:
 20 s^3 + 32 s^2 + 23 s + 2

200 s^4 + 340 s^3 + 272 s^2 + 64 s + 4

Actually, the result is not the minimal representation. To see this, change the
transfer function object to the zero-pole-gain object, and you can observe that
there is a zero-pole cancellation of (s+0.1) was not performed. The
feedback(G1,G2) function statement actually reduces the orders
automatically (see below).

8

>> G4=zpk(G4)

Zero/pole/gain:
 0.1 (s+0.1) (s^2 + 1.5s + 1)

(s+0.2244) (s+0.1) (s^2 + 1.376s + 0.8913)

>> G3=zpk(feedback(G1,G2))

Zero/pole/gain:
 0.1 (s^2 + 1.5s + 1)

(s+0.2244) (s^2 + 1.376s + 0.8913)

6. Obtaining plots and responses

Having created the object, figures of different plots and responses can be obtained by
using the functions given in Table 4.

Table 4.

Function Description
nyquist(G1) Nyquist plot
bode(G1) Bode plot
nichols(G1) Nichols plot

[gm,pm,wcg,wcp]=margin(G1) gm=Gain margin
Pm=Phase margin

step(G1) Step response
impulse(G1) Impulse response

Example 6. Nyquist and Bode Plots.

>> G2=zpk([-10],[-0.01],1)

Zero/pole/gain:
 (s+10)

(s+0.01)

For Nyquist plot,

>> nyquist(G2)
>> axis equal

For Bode plot,

>> bode(G2)

9

Figure 2.

Figure 3.

10

Obtaining a step process,

>> PROCESS=tf([1],[1 4 4 2])

Transfer function:
 1

s^3 + 4 s^2 + 4 s + 2

>> step(PROCESS)

The plot is shown in Figure 4.

Figure 4.

7. Obtaining other information from control objects

Sometimes, information stored in the objects are needed, e.g. the poles and zeros of
the transfer function. A short summary of commands is listed in Table 5, where G is a
control object (please note the use of curly brackets instead of parenthesis):

Table 5.

Control Object Type Function Statement Results

zero-pole-gain ans = G.p{1} ans = vector of poles of G

zero-pole-gain ans = G.z{1} ans = vector of zeros of G

zero-pole-gain ans = G.k{1} ans = gain of G

transfer function ans = G.num{1}
ans = vector of numerator
 coefficients

transfer function ans = G.den{1}
ans = vector of denominator
 coefficients

state space ans = G.a
ans = matrix A in state
 space formulation

11

