1. (25 pts) The following equations describe the concentration and temperature changes in a reactor:

\[
\frac{dC}{dt} = \alpha (C_{in} - C) - k \exp\left(\frac{\beta}{T}\right)C^2
\]

\[
\frac{dT}{dt} = \alpha (T_{in} - T) + \gamma \exp\left(\frac{\beta}{T}\right)C^2
\]

Using the following set of parameters:

\(\alpha \)	2
\(\beta \)	-0.02
\(k \)	1.5
\(\gamma \)	500

Linearize both equations with respect to \(C, C_{in}, T, T_{in} \) at the following operating point:

\(C \)	0.616
\(T \)	295
\(C_{in} \)	0.9
\(T_{in} \)	200

2. (15 pts) Suppose the pressure in a tank is described by the following equation:

\[
\frac{d^2P}{dt^2} + 4 \frac{dP}{dt} = \mu (1.2 - P)
\]

Find the range of values for \(\mu \) so that the process will be underdamped.

3. (25 pts) Obtain the characteristic equation for the process described by the following equations:

\[
2 \frac{dT}{dt} + 3P = -2(T + 0.5P) + e^{-t}
\]

\[
2P - 3 \frac{dP}{dt} = -4(T + 0.5P) - 2e^{-2t}
\]
4. (25 pts) A process is described by the following equations:

\[
\frac{dx}{dt} = z
\]

\[
\frac{dz}{dt} = -kx - mz + \eta
\]

\[x(0) = 10\]

\[z(0) = 0\]

Determine the values of \(k \), \(m \) and \(\eta \) that would yield the process response shown in Figure 1.

![Figure 1](image)

5. (10 pts) Determine the range of values of \(k \) that would stabilize the following process:

\[(k - 2) \frac{dT}{dt} + 3T = k(T - 2.5) \]

6. (Bonus: 5 pts) For a first order process given by,

\[10 \frac{dq}{dt} + 5q = 50 \]

what is the value of \(q \) at \(t=2 \) if \(q(0)=0 \)?