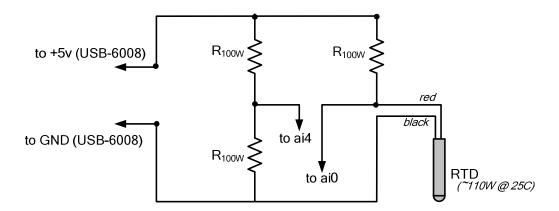
## **Experiment 2: RTD Sensor** (tbc 1/14/2012)


| ٨   | /[6   | ain | 7 | ิล   | c۱ | z | • |
|-----|-------|-----|---|------|----|---|---|
| 1.0 | /   ~ |     |   | - 71 |    | к | Ξ |

| Build an R7 | ΓD circuit to | measure t | emperature ( | to | within | + | 2°C) | ١. |
|-------------|---------------|-----------|--------------|----|--------|---|------|----|
|             |               |           |              |    |        |   |      |    |

| Name:                               | _ Date |
|-------------------------------------|--------|
|                                     |        |
| 1. RTD circuit                      |        |
| 2. Labview data acquisition program |        |
| 3. Temperature Calibration Curve    |        |
|                                     |        |

4. Temperature test \_\_\_\_\_

## 1. The RTD Circuit.



- a. The 5 volts source can be obtained from the DIGITAL side of the USB-6008 device
- b. Use  $R = 100 \Omega$  and connect only different colored wires of the RTD in the circuit. (Use a circuit breadboard to implement the circuit.)

## 2. The Labview program.

- a. Include [Express]→[Execution Control]→[While loop]. (Include everything below into the [while loop] window.)
- b. Import [Express]→[Input]→[DAQ Assistant] block. Choose [analog input]
  → [voltage] → [ai0]

Max = 0.5 volts
 Min = 0 volts
 acquisition mode = continuous

samples to read = 10
 rate = 100 Hz

c. Import [Express]→[Signal Analysis]→[Filter] block.

Infinite Impluse Filter = selected
 Type = Lowpass
 Topology = Butterworth

- Order = 3 - Cutoff Frequency (Hz) = 1

- d. Import [Express]→[Signal Manipulation]→[from Dynamic Data] block. Choose the "single scalar".
- e. Import [Express]→[Signal Manipulation]→[to Dynamic Data] block. Choose "single scalar".
- f. Import [Express]→[Arithmetic & Comparison]→[Formula].
  - Input X1, label = vFormula = v
- g. Include the following control blocks: [Waveform Chart], [Indicator].
- h. Match the wiring as shown in Figure 1.

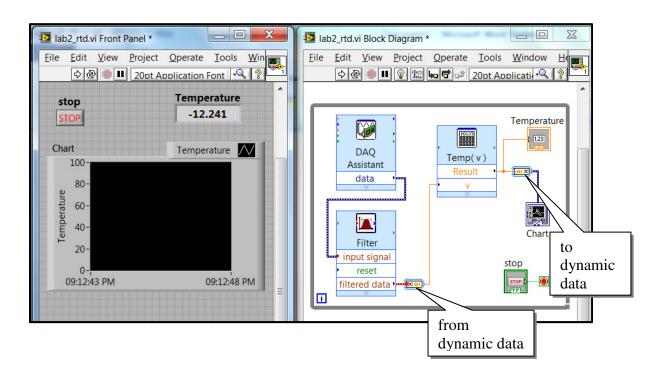



Figure 1. Labview program.

## 3. Temperature Calibration Curve.

a. Using a digital thermocouple, record the voltage readings corresponding to temperature readings at approximately 10°C intervals. (see Table 2 as example)

Table 1.

| Temperature (°C) | Voltage (volts) |
|------------------|-----------------|
| 0                |                 |
| 25               |                 |
| 50               |                 |
| 75               |                 |
| 100              |                 |

b. Obtain a curve fit  $(2^{nd}$  order polynomial fit) of temperature as a function of voltage using Excel.

| Formula: |  |  |  |
|----------|--|--|--|
|          |  |  |  |

- c. Modify the entry in the "**Formula**" block using the conversion formula obtained in step 2.
- d. Test the obtained RTD VI.