1. Tanks in Series.

For a liquid flowing through a continuously stirred tank under perfect level control, the model is given by

\[\frac{dT}{dt} = \frac{F}{V}(T_{in} - T) \]

If one decides instead to flow it through two tanks in series whose volume is half the size of \(V \), the model is given by

\[\frac{dT_1}{dt} = \frac{F}{(V/2)}(T_{in} - T_1) \]
\[\frac{dT}{dt} = \frac{F}{(V/2)}(T_1 - T) \]

where \(T_1 \) is the temperature coming out of the first and entering the second tank.

We could continue this division for \(n \) tanks in which the volume of each tank becomes \(V/n \), and the model is given by

\[\frac{dT_1}{dt} = \frac{F}{(V/n)}(T_{in} - T_1) \]
\[\vdots \]
\[\frac{dT_{n-1}}{dt} = \frac{F}{(V/n)}(T_{n-2} - T_{n-1}) \]
\[\frac{dT}{dt} = \frac{F}{(V/n)}(T_{n-1} - T) \]

Let all the temperatures be in deviation variable form, and thus we can let all the initial conditions be zero.

Using Simulink, create a Model window that contains the cases for \(n=1 \) to \(n=5 \). Use \(V=10 \), \(F=1 \). Simulate the system responding to a step change in \(T_{in} \) as follows:

\[T_{in} = \begin{cases}
0 & \text{if } t \leq 1 \\
1 & \text{if } t > 1
\end{cases} \]
A sample window is shown in Figure 1 for the cases n=1 and n=2.

![Figure 1](image)

Plot all the temperature responses in one plot and discuss what happens when the number of tanks is increased.

2. **Optimization of Tuning Parameters.**

 (Note: for an tutorial including example files in using Matlab and Simulink, go to the link: http://www.chem.mtu.edu/~tbco/cm416/OptTune_2k4.zip)

 a) Use the model of System B obtained from Project 4, part 2, to get $G_p(s)$, the transfer function of the process.

 b) Next, construct the Simulink model that implements the feedback control system shown in Figure 2, where $G_c(s)$ is a PI Controller.

 ![Figure 2](image)

 c) Using the Matlab function, *fminsearch*, find the values of proportional gain, k_c, and integral time, τ_I, that minimizes the IAE (integrated absolute error).

 d) Now go back to the java simulator through the link:

 http://www.chem.mtu.edu/~tbco/cm416/newpidb.html

 and implement the values found from part c) for a PI controller. Compare the result with that using Ziegler-Nichols tuning.
3. **Ultimate gain and ultimate period from Transfer Functions.**

 a) Suppose the process transfer function is given by

 \[G_p = \frac{s + 1.5}{s^4 + 5s^3 + 9s^2 + 7s + 2} \]

 Use a proportional control, \(G_c = K_c \), in the feedback system given in Figure 2. Using the Routh-Hurwitz method, determine the ultimate gain and the ultimate period.

 b) Using Simulink, simulate the process in Figure 2 and verify that the value predicted in part a) will indeed be the ultimate gain and ultimate period.

4. **Control of Drug Delivery.**

 Do the problems given in M12.3, page 694 of your book (background is given in M12.2). Use Simulink to simulate your feedback process and use a PI controller. (Note: you can either use the Transfer function block or the State Space block for your process.)

5. **Nonminimum Phase Dynamics (additional exercise: not required for submission)**

 Using Simulink, try to reproduce Figure 3-11, on page 109. (You can modify the script given in pages 13-15 of the Matlab Tutorial: Simulink Basics, http://www.chem.ntu.edu/~tbco/cm416/MatlabTutorialPart3.pdf)