CM 3310 / Spring 2004

Instructor: Tomas Co (ChemSci 202 G, Tel 487-2144, tbc0@mtu.edu)
Office Hrs: Mon and Wed, 3-5
TA: S. Jaya Yaddanapudi,

Course Outline

I. Continuous Time Dynamics

Week 1

1. Introduction to dynamics systems and control p 1-20
2. Process modelling p. 31-50
3. Solution of Ordinary Differential Equations
 a) Analytical solutions: eigenvalues, time constants, damping coefficients

Week 2

b) Numerical solutions:
 Euler Method, Runge-Kutta Method

4. Empirical Models

Week 3

5. Linearization p. 60-66
6. PID Control (p.156-173)
 a) Concepts
 b) Analysis

Week 4

c) Performance

d) Tuning Methods p. 198-209

Week 5

Exam 1
Week 6

II. Laplace Transform Methods
1. Basics
 a) Definition and elementary transforms p.85-94
 b) Method of Partial Fractions

Week 7

2. Transfer Functions p. 95-119
3. Block Diagram Manipulations

Week 8

4. Stability and Performance
5. Routh – Hurwitz Methods p. 173-177

Week 9

Exam 2

6. Other control configurations
 a) IMC p.263-269
 b) Cascade p.313-323
 c) Feedforward/Feedback p.324-333

Week 10

III. Frequency Response Methods
1. Frequency response experiments and data p. 216-219
2. Bode and Nyquist Plots
 a) elementary transfer functions p. 219-223

Week 11

b) transfer functions in series p. 223

Week 12

4. Gain and phase margins p.231-232

Week 13

Exam 3
IV. Advanced Topics

Week 14

1. Multivariable Control/RGA p.381-408

Week 15

3. Sampled-Data/ Discrete Time Models

REVIEW

Week 16

FINALS
GRADING POLICY

Point Distribution

- Projects/Assignments: 50 pts
- Exam 1: 10 pts
- Exam 2: 10 pts
- Exam 3: 10 pts
- Finals: 20 pts

Letter Grade Equivalence:

- 100-90: A
- 89.99-80: AB
- 79.99-70: B
- 69.99-65: BC
- 64.99-60: C
- 59.99-55: CD
- 54.99-50: D
- 49.99-0: F

Additional Policies:

1. Projects may be worked on and submitted together by groups (maximum of 2 per group). All the names of the group members and their signatures are required on the front page.
2. Deadlines on the projects will be enforced strictly. (Each day late means a 10 point deduction.)
3. All projects and exams should be neatly written on one side of an 8-1/2” by 11” paper and stapled together. The name and mailbox number should appear in the upper right corner of the front page. Failure to do so will mean a maximum of 3 pt. deduction.
4. Submit your projects in BOX A (opposite 2nd Floor elevators of the Chem Sci Bldg.)