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This paper presents a new technique for clustering either object or relational data. First, the data
are represented as a matrix D of dissimilarity values. D is reordered to D∗ using a visual assessment
of cluster tendency algorithm. If the data contain clusters, they are suggested by visually apparent
dark squares arrayed along the main diagonal of an image I (D∗) of D∗. The suggested clusters in
the object set underlying the reordered relational data are found by defining an objective function
that recognizes this blocky structure in the reordered data. The objective function is optimized
when the boundaries in I (D∗) are matched by those in an aligned partition of the objects. The
objective function combines measures of contrast and edginess and is optimized by particle swarm
optimization. We prove that the set of aligned partitions is exponentially smaller than the set of
partitions that needs to be searched if clusters are sought in D. Six numerical examples are given
to illustrate various facets of the algorithm. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

Consider a set of n objects O = {o1, . . . , on}. The objects might be types of
malignant tumors, genes expressed in a microarray experiment, vintage acoustic
guitars, Cuban cigars, American motorcycles—virtually anything. We assume that
there are subsets of similar objects in O (the clusters), but that each object bears no
class label, that is, O is a set of unlabeled objects, and so, numerical representations
of O are called unlabeled data.

Numerical object data associated with O has the form X = {�x1, . . . , �xn} ⊂ Rp,
where the coordinates of �xi provide feature values (e.g., weight, length, gene regula-
tion, wrapper shape, number of strings, type of exhaust pipes, and so on) describing
object oi . The second data structure commonly used to represent the objects in
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O is numerical relational data, which consist of n2 similarities (or dissimilari-
ties) between pairs of objects in O, represented by an n × n relational matrix R =
[rij = relation(oi, oj )|1 ≤ i, j ≤ n]. We can always convert X into dissimilarity
data D = D(X), where dij = ||�xi − �xj || is any vector norm on Rp; therefore, most
relational clustering algorithms are (implicitly) applicable to object data. In some
sense, pairwise dissimilarity data represent the “most general” form of input data
for cluster analysis; the most general example being, but certainly not the most com-
mon, a suite of sensors that supply numbers that become object data. However, there
are both similarity and dissimilarity relational data sets that do not begin as object
data and, for these, we have no choice but to use a relational clustering algorithm.
We will refer to these two types of data as X and D, respectively. Good general
references on clustering in both cases include the texts (See Refs. 1–7).

Clustering in unlabeled data X or D is the assignment of labels to the objects in
O that are groups of similar items. The two necessary ingredients of all attempts to
cluster in X or D are the number of groups to seek and (a model that encapsulates)
some mathematical way to assess or assign similarity between the various objects.
To consider possible solutions for the clustering problem, let c be the integer number
of clusters. We include c = 1 and c = n so that algorithms such as the SAHN clus-
tering methods,7 which begin or end with singleton clusters c = n or the universal
cluster c = 1 are included in the general discussion.2 The crisp (that is, nonsoft) c-
partitions of X are sets of cn values {uik} that can be conveniently arrayed as a c × n

matrix U = [uik]. The set of all nondegenerate (no zero rows) c-partition matrices
for O is

Mhcn = {U ∈ Rcn|uik ∈ {0, 1} ∀i, k;
c∑

i=1

uik = 1 ∀k;
n∑

k=1

uik > 0 ∀i}, (1)

where uik is the membership of object ok in cluster i—the partition element uik =
1 if ok is labeled i and is 0 otherwise. There are three other kinds of labels—fuzzy,
probabilistic, and possibilistic—that can be associated with each object and, for each
kind, there are many clustering algorithms.3 However, this article concerns only a
subset of the type of partitions represented in (1), which we discuss in Section 4.

Here is a preview of the new method. The VAT algorithm (visual assessment of
cluster tendency8) reorders the rows and columns of any n × n scaled dissimilarity
matrix D with a modified version of Prim’s minimal spanning tree algorithm.9 We
denote (any) reordering of D as D∗. If the image I (D∗) has c dark blocks along its
main diagonal, this suggests that D contains c (as yet unfound) clusters. The size of
each block may even indicate the approximate size of the suggested cluster. Hence,
VAT images suggest both the number of and approximate members of object clusters,
but VAT does not find the clusters. That is the aim of the method developed here.
Specifically, the goal is to partition the objects underlying D and D∗ by optimizing
an objective function designed to extract aligned clusters from the dark blocks in
the image of the ordered dissimilarity matrix I (D∗).

The remainder of this article is structured thus. Section 2 gives a brief review
of visual clustering and related work. Section 3 offers a short description of the VAT
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Table I. Symbol definitions.

Symbol Definition

n No. of objects
c No. of clusters
O Object data
X Numerical object data
D n × n Dissimilarity matrix
D∗ Ordered dissimilarity matrix
I (D∗) Image of scaled D∗
U c × n Partition matrix
E CLODD objective function value
α CLODD mixing coefficient
γ CLODD spline inflection set point
�m(q) qth Particle in PSO

algorithm, which is used to reorder D. Section 4 contains the main contribution of
this work—the definition and analysis of the aligned partitioning model. Our method
seeks clusters in ordered dissimilarity data, hence its acronym—CLODD. Section 5
gives a formal statement of CLODD and describes its optimization by particle swarm
optimization (PSO).10 Section 6 contains numerical examples illustrating the new
approach. Section 7 summarizes our results and offers some ideas for interesting and
useful extensions of this work. Table I contains a list of symbols used throughout
this paper.

2. VISUAL APPROACHES TO CLUSTERING PROBLEMS

For object data, visual clustering was initially performed by inspecting scatter-
plots in p = 1, 2, and 3 dimensions. For p > 3, scatterplots cannot be made. Many
computational schemes have been devised to represent higher dimensional object
data so that it can be visualized (and hence, possibly formed into clusters from visual
representations). Interesting examples include Andrews plots,11 Chernoff faces,12

and Trees and Castles.13 There are many other approaches and Refs. 14–17 contain
informative introductions on many of these approaches.

For relational data D, scatterplots are unavailable. Tryon14 apparently presented
the first method for extracting clusters from dissimilarity data by use of a visual
approach. Here is a rough description of his method; (i) plot a graph of each row in
the data—a matrix of pairwise correlation coefficients, (ii) visually aggregate subsets
of the graphs into clusters, (iii) reorder the input data matrix D so that similar profiles
have adjacent representations in the rows and columns of the reordered data set D∗,
(iv) find the mean profile (a prototype graph representing the elements of a group)
for each cluster of correlation profiles, and (v) present the final results as a set
of clustered profile graphs with their prototypes. This procedure—almost 70 years
old—contains all the elements of the current work on visual clustering: create a
visual representation of D, reorder it to D∗, create a visual representation D∗, and,
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finally, extract clusters from D∗ using the visual evidence. Tryon did this by hand
in 1939 for a 20 × 20 data set collected at the University of California, Berkeley.
For tiny data sets, methods such as this are useful. But for the data sets we typically
encounter today, automation is essential.

In the decades subsequent to Tryon’s work, the literature has included many
visual schemes for each of the three main problems in cluster analysis: tendency,
partitioning, and validity. Using D and D∗ in various ways for any of the three
clustering problems involves two basic issues: finding D∗ (how shall we reorder
D → D∗?), and displaying D∗ (how shall we “see” the information in D∗?). The
three problems and two principles have appeared in almost every combination.

Sneath introduced the idea of visual representation of D∗ by an image in 1957.18

Sneath’s paper contains an image I (D∗) of D∗ created by handshading the pixels of a
matrix with one of eight “intensities”—reordering was done by an algorithm that had
both computer and manual components. Subsequent refinements of his idea followed
the general evolution of computers themselves. In 1963, Floodgate and Hayes19

presented a hand-rendered image similar to Sneath’s, but reordering of D was done
computationally using single linkage clustering. Apparently Ling20 was the first to
automate the creation of the image I (D∗) with an algorithm called SHADE, which
was used after application of the complete linkage hierarchical clustering scheme
and served as an alternative to visual displays of hierarchically nested clusters via
the standard dendrogram. SHADE used 15 level halftone intensities (created by
overstriking standard printed characters) to approximate a digital representation of
the lower triangular part of the reordered dissimilarity matrix. SHADE apparently
represents the first completely automated approach to finding D∗ and viewing I (D∗).

Closely related to SHADE, but presented more in the spirit of finding rather than
displaying clusters found with a relational clustering algorithm, is the “graphical
method of shading” described by Johnson and Wichern.7 They provide this informal
description: (i) arrange the pairwise distances between points in the data into several
classes of 15 or fewer, based on their magnitudes, (ii) replace all distances in
each class by a common symbol with a certain shade of gray, (iii) reorganize the
distance matrix so that items with common symbols appear in contiguous locations
along the main diagonal (darker symbols correspond to smaller distances), and (iv)
identify groups of similar items by the corresponding patches of dark shadings. A
more formal approach to this problem is the work of Tran-Luu,21 who proposed
reordering the data into an “acceptable” block form based on optimizing several
mathematical criteria of image “blockiness.” The reordered matrix is then imaged,
and the number of clusters is deduced visually by a human observer.

Software for visualizing distance data is available at the GENLAB toolbox
Web site.22 Similarity-based intensity images, formed using kernel functions, were
used in Refs. 23 and 24 to provide guidance in determining the number of clusters
(tendency assessment, in spirit of the VAT algorithm), but no useful ordering scheme
is offered there to facilitate the approach. Other representative studies include Refs.
25–29. Visual cluster validity includes the work presented in Refs. 30 and 31.

The main difference between the algorithms and methods described in this
section and CLODD is that CLODD is a completely autonomous method for de-
termining cluster tendency, extracting clusters from the image of the reordered
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dissimilarity data, and providing a cluster validity metric, as well. This leads to a
distinct advantage of CLODD; namely, that CLODD is not tied directly to any one
distance metric or reordering scheme. CLODD requires, as input, only an image of
reordered dissimilarity data, such that the clusters appear as dark blocks along the
diagonal.

3. THE VAT IMAGE

The VAT algorithm displays an image of reordered and scaled dissimilarity
data.8 Each pixel of the grayscale VAT image I (D∗) displays the scaled dissimilar-
ity value of two objects. White pixels represent high dissimilarity, whereas black
represents low dissimilarity. Each object is exactly similar with itself, which results
in zero-valued (black) diagonal elements of I (D∗). The off-diagonal elements of
I (D∗) are scaled to the range [0, 1]. A dark block along the diagonal of the I (D∗)
is a submatrix of “similarly small” dissimilarity values; hence, the dark block rep-
resents a cluster of objects that are relatively similar to each other. Thus, the cluster
tendency is shown by the number of dark blocks along the diagonal of the VAT
image. Algorithm 1 illustrates the steps of the VAT algorithm, where arg min and
arg max in Equations 2 and 3 are set-valued.

Algorithm 1 VAT Ordering Algorithm8

Input: D - dissimilarity matrix
Data: K = {1, 2, . . . , n}; I = J = ∅; P = (0, 0, . . . , 0).
Select

(i, j ) ∈ arg maxDpq.
p∈K,q∈K (2)

Set P (1) = i; I = {i}; and J = K − {i}.
for r = 2, . . . , n do

�

Select

(i, j ) ∈ arg maxDpq.
p∈I,q∈J (3)

Set P (r) = j ; Replace I ← I ∪ {j} and J ← J − {j}.
Obtain the ordered dissimilarity matrix D∗ using the ordering array P as: D∗

pq =
DP (p),P (q), for 1 ≤ p, q ≤ n.

Figure 1a is a scatterplot of n = 1000 data points in R2 drawn from a mixture
of five normal distributions. The means, mixing proportions, and number of samples
in each cluster (i.e., the cardinality ni , i = 1, 2, 3, 4, 5) are listed in Table II. The
covariance matrices are �1 = �2 = �3 = �4 = �5 = σ 2I , where I is the 2 × 2
identity matrix D by computing dij = ||�xi = �xj || with the Euclidean norm. The
c = 5 visually apparent clusters in Figure 1a are suggested by the five distinct dark
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Figure 1. Example of how VAT image suggests cluster tendency by the number of dark blocks
along diagonal

Table II. Data set X shown in scatterplot of Figure 1a.

Mean Mixing proportions ni

μ1 = (0, 0) α1 = 0.21 225
μ1 = (8, 8) α1 = 0.21 203
μ1 = (16, 0) α1 = 0.21 197
μ1 = (0, 16) α1 = 0.21 200
μ1 = (16, 16) α1 = 0.16 175

diagonal blocks in Figure 1c, which is the VAT image I (D∗) of the data after VAT
reordering of D to D∗. Comparing this to view 1b, which is the image I (D) of
the dissimilarities in input order, it is clear that reordering is essential to reveal
the structure of the underlying data. The fact was clear to Tryon14 in 1939 and to
Sneath18 in 1957, but our ability to process and display information of this kind is,
of course, quite a bit better than that which was available to those early pioneers of
visual clustering methods.

VAT in its original form was limited to approximately n = 5000, and was
O(n2). A scalable version of VAT (sVAT)32 removes the size limitation and reduces
the complexity to O(n). A rectangular version of VAT (coVAT)33 yields images like
that in Figure 1c from nonsquare relational data and is also scalable to arbitrary
sized data sets. Three questions associated with the VAT-based methods of finding
and displaying D∗ (or I (D∗) are

1. (Q1) How closely related is I (D∗) to image representations of single linkage clusters?
The fact that single linkage (SL) clusters can be realized by cutting a minimal spanning
tree (MST) in D, coupled with the fact that VAT reorders D with a modification of Prim’s
MST algorithm9 suggests that there is a close relationship. We also know that both VAT
and SL can fail: Do these failures occur in the same circumstances, and is there a property
of D that would enable us to at least be wary of failures? Consideration of these two
issues is nearly a paper unto itself and would take us far afield from our present objective;
hence, this question is taken up in Refs. 34 and 35.

2. (Q2) Can we automatically extract c, the number of clusters to look for, as suggested by
the visual evidence in I (D∗) without looking at the visual display? This problem is driven
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by a desire to capitalize on the information possessed by the VAT image without actually
having to view it. For even loadable values of n, I (D∗) becomes difficult, if not impossible
to actually display. Moreover, different viewers may have different opinions, making this
a somewhat subjective method in exactly the cases where it is most important to be correct
(i.e., cases where the clusters are not sharply delineated). Two papers provide positive
answers for this second question. The CCE36 and DBE37 algorithms extract the number
of apparent clusters from VAT images using similar image-processing approaches that
differ mainly in the details of the image processing itself. But these two methods stop
short of answering the last question.

3. (Q3) Can we automatically extract U, a crisp c-partition of O, as suggested by the visual
evidence in I (D∗)? This last question has, to our knowledge, not been answered and forms
the basis for the rest of this article. The algorithm developed in the next section answers
(Q3) and, as a bonus, provides a third approach for addressing (Q2) as well.

4. PARTITIONING OBJECTS REPRESENTED BY A BLOCK
DIAGONAL MATRIX

We assume as input a normalized (entries between 0 and 1) dissimilarity matrix
D∗—equivalently, I (D∗) — that is symmetric with diagonal elements that are zero.
The superscript (∗) indicates that D has been reordered by some algorithm to produce
a “VAT-like” image, as in Figure 1. The important property of I (D∗) is that it has,
beginning in the upper left corner, dark blocks along its diagonal. Accordingly, we
constrain our search through Mhcn for each c under consideration to those partitions
that mimic the blocky structure in I (D∗). We call these partitions, U � Mhcn, aligned
partitions. Aligned c-partitions of O have c contiguous blocks of 1s in U, ordered
to begin with the upper left corner and proceeding down and to the right. The set of
all aligned c-partitions is

M∗
hcn = {U ∈ Mhcn|u1k = 1, 1 ≤ k ≤ n1 : uik = 1, ni−1 ≤ k ≤ ni, 2 ≤ i ≤ c}. (4)

For example,

[
1 1 1 0 0
0 0 0 1 1

]
and

⎡
⎣1 0 0 0 0 0

0 1 1 1 0 0
0 0 0 0 1 1

⎤
⎦ are aligned

partitions, whereas[
0 0 0 1 0
1 1 1 0 1

]
,

[
1 0 1 0 0
0 1 0 1 1

]
, and

⎡
⎣0 0 0 0 1 1

1 0 0 0 0 0
0 1 1 1 0 0

⎤
⎦ are not.

The special nature of aligned partitions enables us to specify them in an
alternative form. Every member of M∗

hcn is isomorphic to the unique set of c

distinct integers (which are the cardinalities of the c clusters in U) that satisfy
{ni |1 ≤ ni ; 1 ≤ i ≤ c;

∑c
i=1 ni = n}, so aligned partitions are completely specified

by {n1 : . . . : nc}. For example,

U =
⎡
⎣1 1 0 0 0

0 0 1 0 0
0 0 0 1 1

⎤
⎦ = {2 : 1 : 2}. (5)
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1 1 0 0 0
0 0 1 1 1[ [

A

CBT

B

(a) Ideal I (D*) Optimal partition (c) Esq  (U)

“squareness”

(d) Eedge (U)

“edginess”h25

Figure 2. The components of CLODD objective function E(U).

The important characteristics of I (D∗) that we shall exploit for finding a U that
seems to match it are (i) the contrast between the dark blocks along the main diagonal
and the lighter off-diagonal blocks and (ii) the visually apparent edges of those dark
blocks. Our algorithm generates candidate partitions in M∗

hcn and tests their fit to
the clusters suggested by the aligned dark blocks in I (D∗). To accomplish this, we
define an objective function on M∗

hcn that computes a measure of two properties of
blocky images I (D∗)—“squareness” and “edginess”. Figure 2a shows an idealized
case of I (D∗) for c = 2 which, for illustration purposes, assumes that n = 5.

Figure 2b shows the presumably optimal aligned partition that provides the
best fit to the image in 2a. Figure 2c shows the “squareness” component of the
objective function that measures the contrast between diagonal dark blocks A and
C and the off-diagonal blocks B and BT according to the U in 2b. An intuitively
appealing measure is the difference of the average dissimilarity values between
apparent clusters (i.e., dissimilarities in [(A,B)] and [(BT,C)]) and those within
apparent clusters (i.e., dissimilarities in [(A,A)] and [(C,C)]). Let U be a candidate
partition in M∗

hcn; let {Oi : 1 ≤ i ≤ c} be the crisp c-partition of O corresponding to
U. The cardinality |Oi | = ni∀i, and we abbreviate the membership os ∈ Oi simply
as s ∈ i. With these heuristics, the “squareness” component of the objective function
for a given D∗ is

Esq(U; D∗) =

⎛
⎜⎜⎜⎜⎜⎝

c∑
i=1

∑
s∈i,t �∈i

d∗
st

c∑
i=1

(n − ni)ni

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ave. dissimilarity between dark
and non-dark regions in I (D∗)

−

⎛
⎜⎜⎜⎜⎜⎝

c∑
i=1

∑
s,t∈i,s �=t

d∗
st

c∑
i=1

(n2
i − ni)

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ave. dissimilarity within

dark regions in I (D∗)

. (6)

Good candidate partitions U should maximize Equation 6. This equation is a measure
of contrast between the on-diagonal dark blocks and the off-diagonal nondark blocks.
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The “edginess” of the dark blocks in D∗ is computed by averaging the values
of the first-order estimate of the horizontal digital gradient across each vertical
boundary imposed by a candidate U in M∗

hcn. Figure 2d shows the edges that are
considered for this part of the objective function. The symbols along the vertical
boundary separating the dark from the nondark blocks represent dissimilarity values
in the columns of D∗ adjacent to the boundary. The “edginess” value for the example
in 2d is computed by

Eedge(U) =
(∑ | © −�| + ∑ |♦ − �|

2 + 3

)
.

For the c blocks in D∗, there are (c − 1) interior vertical boundaries between dark
blocks and adjacent blocks of lighter intensities. Each vertical edge spans the right
face of an upper block and the left face of the block immediately below it. Let
U = {n1 : . . . : nc} ∈ M∗

hcn, a candidate-aligned partition. For j = 1 to c − 1, let
mj = ∑j

k=1 nk , and m0 = 1. We defined the “edginess” measure as

Eedge(U; D∗) = 1

c − 1

c−1∑
j=1

mj∑
i=mj−1

|d∗
i,mj

− d∗
i,mj +1| +

mj+1∑
i=mj +1

|d∗
i,mj

− d∗
i,mj +1|

nj + nj+1
. (7)

Good candidate partitions U should maximize Equation 7. Although this equation
looks complicated, it is merely the average horizontal gradient across vertical edges
separating dark blocks from nondark blocks in I (D∗). Good candidate partitions U
maximize both Equations 6 and 7, which allows us to add them together to produce
a composite objective function. To make the resulting sum flexible in terms of the
balance between contrast and edginess, we use the convex combination of Equations
6 and 7. Let α be the mixing coefficient, and

Eα(U; D∗) = αEsq(U; D∗) + (1 − α)Eedge(U; D∗); 0 ≤ α ≤ 1. (8)

If contextual information is unavailable to suggest that one factor, contrast or edgi-
ness, is more important than the other, one may take α = 1/2, which gives equal
weight to contrast and edginess in D∗.

The final component of the objective function controls the size of the smallest
cluster allowed in the search over M∗

hcn. We use the spline function,

s(x, a) =

⎧⎪⎪⎨
⎪⎪⎩

0 ; x ≤ 1
2

(
x
a

)2
; 1 < x ≤ a

2

1 − 2
(

a−x
a

)2
; a

2 < x < a

1 ; a ≤ x

, (9)

for this purpose. This function is a typical s-curve valued in [0, 1] with points of
inflection at a/2 and a. For U = {n1 : . . . : nc} ∈ M∗

hcn, we set the inflection points
by choosing a = γ n, 2/n < γ < 1, and then evaluate s at x = min1≤i≤c{ni}.
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D =

⎡
⎢⎢⎢⎢⎣

0 0 73 0 19 0 71 0 16
0 73 0 0 59 0 12 0 78
0 19 0 59 0 0 55 0 19
0 71 0 12 0 55 0 0 74
0 16 0 78 0 19 0 74 0

⎤
⎥⎥⎥⎥⎦

(a) Dissimilarity matrix D

D =

⎡
⎢⎢⎢⎢⎣

0 0 12 0 59 0 73 0 78
0 12 0 0 55 0 71 0 74
0 59 0 55 0 0 19 0 19
0 73 0 71 0 19 0 0 16
0 78 0 74 0 19 0 16 0

⎤
⎥⎥⎥⎥⎦

(b) VAT reordered dissimilarity matrix D*

(c) Image I (D) (d) VAT image

I (D*)

Figure 3. Dissimilarity data used in CLODD example 1.

Finally, we multiply the function in Equation 8 by

Sγ (U) = s

(
min

1≤i≤c
{ni}, γ n

)
. (10)

This scales Equation 8 in a way that enables us to damp very small clusters in
candidates partitions when none are apparent in D∗. The objective function is now
complete, so we define an optimal partition of D∗ as one that maximizes

E(U; D∗) = s

(
min

1≤i≤c
{ni}, γ n

)
· Eα(U; D∗) = Sγ (U) · Eα(U; D∗). (11)

Finally, we want to search for the best partition at various values of c, so
let C = {2, 3, . . . , cmax}. The optimization problem that the CLODD algorithm
attempts to solve is

max
U∈M∗

hcn,c∈C
{E(U; D∗)} (12)

We denote an approximate global solution of Equation 12 by Uc∗ . We need to
choose two model parameters (α, γ ), and then solve the optimization problem in
Equation 12. Before we turn to the solution of Equation 12, we give an example that
illustrates the basic ideas of this approach.

Example 1. Shown in Figures 3a and 3b are a matrix D and the image I (D) of
dissimilarities between five objects O = {o1, . . . , o5}. Figures 3c and 3d show the
VAT reordering D∗ of D, and the VAT image I (D∗) corresponding to this reordering.
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Visual inspection of I (D) does not reveal whether the objects represented by
pairwise dissimilarities in D might form clusters in O. In addition, it is easy to
see that cluster structure is suggested by the two dark blocks in the VAT image
I (D∗). The strong impression given by I (D∗) is that this is an instance for which
the ideal case is shown in Figure 2a. Thus, the aligned 2-partition of O that should
provide a best match to I (D∗) is the one shown in Figure 2b corresponding to
o = {o∗

1, o
∗
2} ∪ {o∗

3, o
∗
4, o

∗
5}. At this point, VAT has done its job. We could apply

CCE36 or DBE37 to I (D∗), and those algorithms would return the value c = 2,
telling us to look for two clusters in O. Despite this, these algorithms (VAT, CCE,
and/or DBE) still have not defined cluster partitions. To obtain the U in Figure 2b
that is suggested by I (D∗), we apply CLODD to D∗.

To see how the CLODD objective function E(U; D∗) compares candidates,
consider the aligned 2-partitions,

U = {2 : 3} =
[

1 1 0 0 0
0 0 1 1 1

]

and

V = {3 : 2} =
[

1 1 1 0 0
0 0 0 1 1

]
,

and their transformations under f and g,

f (U) = UT U =

⎡
⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

⎤
⎥⎥⎥⎦ ;

g(U) = [1] − f (U) =

⎡
⎢⎢⎢⎣

0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

⎤
⎥⎥⎥⎦ , (13)

f (V) = VT V =

⎡
⎢⎢⎢⎣

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎦ ;

g(V) = [1] − f (V) =

⎡
⎢⎢⎢⎣

0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0

⎤
⎥⎥⎥⎦ . (14)
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U 2 : 3 M∗
h25 U 3 : 2 M∗

h25

D∗ =

⎡
⎢⎢⎢⎢⎣

0 0 12 0 59 0 73 0 78
0 12 0 0 55 0 71 0 74
0 59 0 55 0 0 19 0 19
0 73 0 71 0 19 0 0 16
0 78 0 74 0 19 0 16 0

⎤
⎥⎥⎥⎥⎦

D∗ =

⎡
⎢⎢⎢⎢⎣

0 0 12 0 59 0 73 0 78
0 12 0 0 55 0 71 0 74
0 59 0 55 0 0 19 0 19
0 73 0 71 0 19 0 0 16
0 78 0 74 0 19 0 16 0

⎤
⎥⎥⎥⎥⎦

Figure 4. Boundaries imposed on D∗ by choosing U = {n1 : n2} ∈ M∗
h25.

The blocks of 1s in f (U) = UT U and f (V) = VT V show the regions in D∗
over which the CLODD calculations are made (as do g(U) and g(V)). The partition
parameters {2 : 3} and {3 : 2} set up “boundaries” in D∗ as shown in Figure 4.

For this example, Equations (6) and (7) yield,

Esq(U; D∗) = (0.59 + 0.73 + 0.78 + 0.55 + 0.71 + 0.74)/6

−(0.12 + 0.19 + 0.19 + 0.16)/4 = 0.52,

Esq(V; D∗) = (0.73 + 0.78 + 0.71 + 0.74 + 0.19 + 0.19)/6

−(0.12 + 0.59 + 0.55 + 0.1)/4 = 0.20,

Eedge(U; D∗) = [|0.12 − 0.59| + |0 − 0.55|

+|0.55 − 0| + |0.71 − 0.19| + |0.74 − 0.19|] /5

= 0.53,

Eedge(U; D∗) = [|0.59 − 0.73| + |0.55 − 0.71| + |0 − 0.19|

+|0.19 − 0| + |0.19 − 0.16|] /5

= 0.14.

In this example the smallest ni = 2 and n = 5 for both U and V, so the spline
factor in Equation 9 has the same value for any choice of γ ; without loss we take
Sγ (U) = 1. Choosing α = 0.5 in Equation 11, we arrive at the final values,

E(U; D∗) = E0.5(U; D∗) = (0.52 + 0.53)/2 = 0.53,

E(V; D∗) = E0.5(V; D∗) = (0.20 + 0.14)/2 = 0.17.
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For the two candidates U and V, our expectation is correct: E clearly favors U to V,
that is, U2∗ = U. �

The objective function E(U; D∗) is always valued in [0, 1]. E(U; D∗) = 0 if
and only if I (D∗) has only one intensity, which can occur if and only if D∗ has all
zero-valued off-diagonal elements. E(U; D∗) = 1 if and only if I (D∗) has c perfect
(i.e., zero-valued intensities) diagonal blocks with all other off-diagonal intensities
equal to 1. If the diagonal blocks in Figure 2a were pure black, then the partition
in Figure 2b would result in E(U; D∗) = 1. M∗

hcn is finite, and much smaller than
the finite set Mhcn, but how much smaller? The following proposition answers this
question.

PROPOSITION 1. The cardinality of M∗
hcn, the set of aligned c-partitions of n objects

into 2 ≤ c < n crisp subsets in Mhcn, is

|M∗
hcn| =

(
n − 1
c − 1

)
. (15)

Proof. Recall that aligned partitions can be completely specified by {n1 : . . . : nc}.
Hence, the cardinality of M∗

hcn is equal to the cardinality of {n1 : . . . : nc}, under the
constraints

ni ∈ Z; 1 ≤ ni ≤ (n − c + 1)∀i;
c∑

i=1

ni = n. (16)

Consider ni to be the number of marbles in a bag or container, where there are c

bags. You are given n marbles to put in those bags under the constraint that you must
place at least one marble in each bag and you cannot be left with any marbles. How
many different ways could you place the marbles in the bags? Solving this problem
is equivalent to proving Proposition 1.

Begin by placing one marble in each bag. There are (n − c) marbles left over.
Hence, the maximum number of marbles that could be in any one bag is (n − c + 1).
Now, choose a bag at random and add one marble to its contents. Continue until all
marbles are placed. Thus, you have c objects (bags) to choose from and you choose
(n − c) times. The order does not matter, and the objects (bags) can be chosen
more than once. Thus, this is a well-known combinatorics problem, where we are
choosing an unordered sample of size (n − c) with repetition from a population of
c elements.38 The number of combinations is the value of the binomial coefficient,(

c + (n − c) − 1
c − 1

)
=

(
n − 1
c − 1

)
, (17)

which is Equation 15. �

Remark 1. For c << n, |M∗
hcn| ≈ nc−1/(c − 1)! is a good approximation to the ex-

act value in Equation 15. The exact cardinality of Mhcn is known, |Mhcn|
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= 1
c!

∑c
j=1

(
c

j

)
(−1)c−j jn. For c << n, the last term dominates this sum, and

the approximation |Mhcn| ≈ cn/c! can be used. It is instructive to compare the size
of M∗

hcn to that of Mhcn, by the ratio

|M∗
hcn|

|Mhcn| ≈ nc−1/(c − 1)!

cn/c!
=

(
nc−1

(c − 1)!

)(
c!

cn

)
= nc−1

cn−1
, c << n. (18)

Applying this ratio for the fairly typical problem of c = 10 and n = 10, 000 yields
|M∗

hcn|/|Mhcn| ≈ 1/109963—a very small number. This shows that algorithms that
search for a crisp partition of D over M∗

hcn have a significantly smaller set of solutions
to examine. We note, however, that the size of M∗

hcn is still quite large: for c = 10
and n = 10, 000, |M∗

hcn| ≈ 1036/9! = 2.7557 × 1030. Hence, even though M∗
hcn is

relatively small, it is still far too big for exhaustive search. This leads us to methods
for approximating a solution to Equation 12, which is the topic we turn to next.

5. PARTICLE SWARM OPTIMIZATION AND THE CLODD
ALGORITHM

We stress that, in principle, any number of optimization algorithms could be
used. We use particle swarm optimization (PSO)10 because it is simple, and because
it has been shown to be relatively successful at optimizing highly modal nonlinear
objective functions. For a given c in C, each candidate U = {n1 : . . . : nc} ∈ M∗

hcn

is completely specified by the c integer indices {n1 : . . . : nc}, which in turn can be
used to specify the locations along the columns of D∗ where trial boundaries are
matched to the boundaries in D∗. The integers mj = ∑j

k=1 nk, j = 1, 2, . . . , t − 1,
are the locations of the right edges (boundaries) of the first t − 1 blocks in D∗—
the right edge of the last block is at location mn = n, which is the right edge
of the matrix or image of the matrix. Because we can recover the c integer {ni}
from the c − 1 integers {mi}, we write U = {n1 : . . . : nc} = �m ∈ M∗

hcn. The vector
�m = (m1, . . . , mt−1) ∈ Rt−1 plays a central role in CLODD.

Fix c = t . Let Uit = {ni1 : . . . : nic} ∈ M∗
htn. Construct the vector �mit = (mi1,

. . . , mi(t−1)) ∈ Rt−1. This vector of t − 1 integers has strictly increasing components,
mi1 < mi2 < · · · < mi(t−1), that specify the t − 1 locations of the interior boundaries
imposed on D∗ by Uit . The vector �mit is thought of as a particle having velocity
�vit = (vi1, . . . , vi(t−1)) ∈ Rt−1. Let Np be the number of particles—the number of
trial partitions of O—in each swarm, where each swarm represents a different choice
of the number of clusters t . Let m̂it denote the current best position of each particle
in swarm t , let ˆ̂mt denote the current best position of all Np particles in swarm t ,

and let ˆ̂G be the best particle over all swarms. In our specification, rand([a, b])
is a random vector, each component distributed uniformly on [a, b]. With these
conventions, we are ready to state the CLODD algorithm, displayed in Algorithm 2.
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Algorithm 2 CLODD: Extraction of clusters from ordered dissimilarity data
Input: An n × n matrix of ordered (from, e.g., VAT) dissimilarities,
D∗ = [d∗

ij ]; ∀i, j : 0 ≤ d∗
ij ≤ 1, d∗

ij = d∗
ji , d

∗
ii = 0.

Parameters:
C = {2, 3, . . . , cmax} = range of values for search over M∗

hcn

Np = no. of particles for each swarm c ∈ C
α = mixing coefficient for Eα(U; D∗), 0 ≤ α ≤ 1
γ = set point control for Sγ (U), 2/n < γ ≤ 1
qmax = maximum number of swarm iterations
ε = threshold multiplier
εc = εNp(c − 1), c ∈ C = termination threshold at each value of c

PSO parameters:
K = inertial constant, 0 < K < 1
Alocal = local influence constant, 0 < Alocal < 4
Aglobal = global influence constant, 0 < Aglobal < 4
Main Loop:

1 for t = 2 to cmax do

�

2 Initialize particles, (i, t), i = 1, 2, . . . , Np

3 for q = 1 to qmax do

�

4 for i = 1 to Np

�

5 if �m(q)
it produces a valid partition then

�

6 Build the partition matrices U(q)
it , Ûit , and ˆ̂Ut equivalent to

�m(q)
it , m̂it , ˆ̂mt

7 if E(U(q)
it ) > E(Ûit ) then m̂it = �m(q)

it

8 if E(U(q)
it ) > E( ˆ̂Ut ) then ˆ̂mt = �m(q)

it

9 �v(q+1)
it = K�v(q)

it + Alocal · rand([0, 1])(.∗)(m̂it − �m(q)
it ) +

Aglobal · rand([0, 1])(.∗)( ˆ̂mt − �m(q)
it )

10 �m(q+1)
it = Round( �m(q)

it + �v(q+1)
it )

11 CLIP �m(q+1)
it , constrain the elements of �m(q+1)

it to the
interval [1, n − 1]

12 SORT �m(q+1)
it , sort �m(q+1)

it such that m(it)1 ≤ m(it)2 ≤ . . . ≤ m(it)t−1

13 if

⎡
⎣ t−1∑

s=1

Np∑
i=1

|�v(q+1)
is | < εt = εNp(t − 1) OR q = qmax

⎤
⎦ then STOP

14 if E( ˆ̂Ut ) > E(U ˆ̂G
) then ˆ̂G = ˆ̂mt

Although the CLODD algorithm looks complex, it is really quite simple. Line 2
initializes the particles according to the following procedure:

1. Randomly choose �m(1)
it so that

�m(1)
it �= �m(1)

st , i �= s,
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and

�m(1)
it ← U(1)

it ∈ M∗
htn.

2. �v(1)
it = rand([−1, 1]) : m̂it = �m(1)

it : ˆ̂mt = �m(1)
1t

Line 6 builds the candidate partitions according to the particles, including
the particles’ current location, previous best personal location, and previous best
overall location. Although, in our algorithm outline we show that candidate partitions
are built at every iteration of the particle swarm, because this problem is discrete
in nature, candidate partitions only need to built when new particle locations are
explored. If a candidate partition has been tested in a previous iteration, the objective
function does not need to be calculated again. Lines 7 and 8 test to see whether
candidate partitions are better than the best previously found candidate partitions.
Line 9 is the PSO update equation, which updates the velocity of each particle. Line
10 calculates the new location of each particle. Lines 11 and 12 are of particular
interest and lead to the following remark. Line 12 sorts the elements of �m(q+1) such
that the elements are ordered and increasing. Line 13 is the termination criterion for
the PSO. Finally, line 14 keeps track of the best candidate partition over all values
of t , the number of clusters.

Remark 2. It is possible that at the end of the Round operation, �m(q+1) could have
one or more negative entries. This would be not be a valid partition. For example,
we might have �m(q+1) = (−2, −1, 0, 3, 1) before clipping. This condition is only
temporary, because �m(q+1) is clipped before it has a chance to reach the objective
function. Thus, CLIP (−2, −1, 0, 3, 1) = (1, 1, 1, 3, 1). In this example, there are
several equal elements in the clipped �m(q+1). This is NOT a valid partition, because
it violates the condition that m1 < m2 < · · · < mt−1. When this occurs, CLODD
will not evaluate the objective function and, subsequently, will not update the local
or best particle positions. The particle is allowed to stay in its location (which is
invalid) but does not contribute. If the particle is lucky, it will be updated to a valid
location at the next iteration.

Remark 3. If the termination criterion
∑t−1

s=1

∑Np

i=1 |�v(q+1)
is | < εt = εNp(t − 1) is

met, the average value of the magnitude of the particle velocities is less than ε.
There are (t − 1) velocity elements in each particle. The particles can only move in
discrete jumps (integers; see line 10); hence, an average velocity less than ε = 0.5
virtually ensures that all particles have converged to a solution—usually, but not
necessarily, the globally best solution of Equation 11.

Remark 4. Two or more particles can occupy the same location. In fact, as a swarm
approaches termination by the velocity criterion, many particles may be located at
the global maximum. As a results of the formulation of the update equation (line 9),
once the particles arrive at the global maximum (with minimal momentum), they
stay.
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The specification we have given for CLODD looks pretty intimidating, but this
algorithm is simple to describe verbally. For each c

1. Guess a bunch of particles, each of which represents a candidate aligned c-partition of n
objects;

2. Test the fit of each guess to the image I (D∗) using E(U; D∗);
3. Adjust each particle by moving the interior boundaries according to the standard PSO

delta rule;
4. GOTO 2. until termination condition is satisfied.

6. NUMERICAL EXAMPLES

This section contains a number of examples that illustrate various facets of the
CLODD algorithm. First, we list the computing protocols (for all examples except
where noted). C = {2, 3, . . . , cmax} varies from example to example; α = 0.5, γ =
0.05; Np = 20 particles per swarm; qmax = 1000; ε = 0.5 = termination threshold
multiplier; K = 0.75; Alocal = Aglobal = 2. Many papers attempt to establish “best”
choices for the PSO parameters. We chose the values shown after a limited amount
of experimentation with each. A given problem may warrant other choices, but here,
we concentrate on the showing the basic points of CLODD.

Example 2. (Three Gaussian Clouds). Figure 5a shows n = 100 object vectors
X3 ⊂ R2. Figure 5c is the VAT image I (D∗

3) of the corresponding Euclidean dis-
similarity data D3. The well-defined cluster structure that is visually evident in X3

is represented exactly in I (D∗
3), so we expect CLODD to find a perfect match to

the boundaries in the VAT image. Figure 5b is a plot of the values of the objective
function E(Uc; D∗

3) for the PSO winners at each c = 2, 3, . . . , 10. The aligned par-
tition U3∗ has a strong maximum of 0.72 in Figure 5b. This partition—the expected
perfect match—is superimposed on I (D∗

3) in Figure 5d.

Example 3. (Three Lines). Figure 6a shows n = 100 object vectors X3L ⊂ R2.
Figure 6c is the VAT image I (D∗

3L) of the corresponding Euclidean dissimilarity
data D3L. Most observers would agree that there is a well-defined cluster structure,
which is visually evident in X3L, but view 6c shows that VAT does not elicit this from
these data. The visual impression given by I (D∗

3L) is that X3L has c = 5 clusters,
and we see that CLODD agrees. The PSO winners at each c, shown in Figure 6b,
have a clear maximum at c = 5. Note that the corresponding aligned partition U5∗,
which solves Equation 12, has a very weak maximum of 0.23. This partition of
X3L is shown in Figure 6d. What went wrong? VAT failed to reorder the distance
matrix to show the c = 3 linear clusters. As discussed in Ref. 35, the ability of
VAT to show “proper” cluster tendency is directly linked to Dunn’s cluster validity
index.39 Dunn’s index for the visually apparent 3-partition of X3L is approximately
0.3, which is less than 1; hence, the contrast of the VAT image is not sufficient to
show a cluster tendency of c = 3.
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Figure 5. Object data scatterplot, PSO winners, VAT image, and optimal CLODD partition for
the Three Clouds data X3—dotted line in view (d) indicates partition boundaries.

Example 4. (Uniform Random Field). To study the candidate partitions that
CLODD might suggest when there are no visible clusters in the data, we gener-
ated a set of 500 object vectors Xu, uniformly distributed in [0, 1] × [0, 1], and
converted them to Euclidean dissimilarity data Du. What would you conjecture,
based only on the visual evidence in the VAT image I (D∗

u), shown in Figure 7c?
There are several dark blocks in the lower part of this image that attract the eye, and
there are quite a few smaller dark blocks along the diagonal, so you might speculate
that there is some type of cluster substructure in the data—albeit weak and perhaps
not distinguishable by the reordering procedure used by VAT.

The solution of the CLODD objective function Equation 12 for these data is
indicated by the maximum on the graph in Figure 7b. CLODD finds c = 5 clusters,
and the corresponding partition is shown in Figure 7d. The optimal CLODD partition
U5∗ is not an unreasonable fit to the VAT image. Although it certainly could be argued
that there is NO cluster structure in these data. Hence, does CLODD fail for these
data? No. CLODD finds an aligned partition that is a pretty good match to the VAT
image it has to work with. The failure in this case, as in the three lines example, is
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Figure 6. VAT image, PSO winners, and optimal CLODD partition for the 3 lines data X3L.

due to VAT, which produces a reordered image that seems to have more structure
than the scatterplot of these data suggest. This reminds us that the job of every
clustering algorithm is to find clusters, and CLODD is not different from all other
clustering algorithms in this respect: CLODD does its job—namely, finding clusters
where none seem to exist.

Example 5. (“VOTE” Data). This example uses the real-world VOTE data set,
downloaded from the UCI Machine Learning Repository.40 The data are generated
from Congressional voting records and consist of the 1984 records of the 435
members of the United States House of Representatives on 16 key votes. These
data consist of “y” for yea, “n” for nay, and “?” for unknown disposition. To
represent these data numerically, we chose the values 0.5 for yea, −0.5 for nay,
and 0 for unknown. Thus, the voting records are represented by an object data set
XV OT E = {x1, . . . , x435} ⊂ R16. We use Euclidean and squared Euclidean distances
to generate relational data sets De and De2 from XV OT E . Figure 8a shows the VAT
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Figure 7. VAT image, PSO winners, and optimal CLODD partition for the uniform data Xu—
dotted line in view (d) indicates partition boundaries.

image I (D∗
e ). This image gives the impression that there are two clusters in the

data, but the intensities at the edges of the dark regions fade into neighboring pixels
more or less continuously, and the lower corner, along the diagonal of the lower
block, simply disappears. Figure 8c plots the values of the objective function for
the winner of each PSO competition, where, recall, each PSO competition is for a
different number of clusters. The range of values of the vertical axis of Figure 8c is
very compressed and is relatively small—E(U; D∗

e ) is valued in [0.208, 0.223]. The
graph from c = 3 to c = 6 is nearly flat, so while there is a maximum at c = 5, it is
relatively weak. This indicates that the optimal CLODD partition U5∗ is not clearly
preferable, just better than those at other values of c.

Figure 8b, the VAT image I (D∗
e2 ), has improved visual contrast. The dark

blocks are darker and the boundaries seem more distinct, but we still see a gray
area along the bottom and right edge of the VAT image. Figure 8(d) plots the win-
ning objective function value at each c. Figures 8c and 8d show that changing the

International Journal of Intelligent Systems DOI 10.1002/int



524 HAVENS ET AL.

input data from De to De2 changes the number of optimal clusters from c = 5 to
c = 3. This demonstrates the ability of the edginess and contrast factors, which com-
prise E(U; D∗), to track changes in contrast and edge definition in the VAT image
I (D∗). The 3-partition chosen as the best match for I (D∗

e2 ) is U3∗ = {176 : 224 : 45}.
This is a somewhat more satisfying result than the partition U5∗ = {145 : 31 : 210 :
24 : 25} that CLODD matches to I (D∗

e ). The two identified classes in these data
are Republicans (54.8%) and Democrats (45.2%), but this does not guarantee that
the numerical data contain two geometrically well-defined clusters. Our conjec-
ture is that the two apparent clusters correspond to Democrats and Republicans
voting along party lines, while the poorly defined region in the bottom right
corner of I (D∗

e2 ) corresponds to 45 voters who crossed party lines on these 16
votes.

Example 6. (Bioinformatics Data). Our last example uses one version of the real-
world data GPD19412.10.03, denoted here as D194. These data are different from the
previous examples in that they are not derived from object data. Rather, they are
derived directly from a (dis)similarity relation built with a fuzzy measure applied
to annotations of 194 human gene products which appear in the Gene Ontology.40

Popescu et al.41 contains a detailed description of the construction of this data. These
data comprise 21 gene products from the Myotubularin protein family, 87 gene
products from the Receptor Precursor protein family, and 86 gene products from the
Collagen Alpha Chain protein family. The three protein families are clearly visible in
the image of D194 shown in Figure 9a; the upper left block is the Myotubularins, the
middle block is the Receptor Precursors, and the lower right block is the Collagens.
Note the strong substructure within the Collagen protein family dissimilarity data.
This substructure has been corroborated in Ref. 43 and, as you will see, is also
supported by CLODD.

Figure 9a displays an image of D194, and if you compare this image to the
VAT image I (D∗

194) in Figure 9c, you will see that they are similar, but not exactly
equal. However, both these images seem to suggest that there are more than just
three clusters, with c = 5–7 main clusters being our estimate from the VAT image.
In this regard, CLODD agrees. Figure 9b shows a slight maximum in the objective
function at c = 6, and the corresponding partition U6∗ is shown superimposed in
Figure 9d. In this example, the three highest values of the objective function, which
occur at c = 5, 6, and 7, are all about 0.64. Compare this to the best values of the
objective function in the previous examples. In the Three Clouds data, the maximum
objective function value is larger than 0.6; in this example CLODD (arguably) found
a good partition of these data. But in the Three Lines, Uniform, and VOTE data,
where either VAT or CLODD performed less reliably, the value of the objective
function is below 0.25. Hence, we believe that CLODD supports the substructure
found in the collagen family. Also, please note that within the six main clusters
found by CLODD in the GPD19412.10.03 data (which, for lack of a better term,
we call first order clusters), there are visually apparent subclusters (second-order
clusters).
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Figure 8. VAT images, PSO winners, and optimal CLODD partitions for the VOTE data—dotted
line in views (e,f) indicates partition boundaries. Views (a,c,e) use Euclidean dissimilarity relation,
and views (b,d,f) use squared Euclidean dissimilarity relation.
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Figure 9. VAT image, PSO winners and optimal CLODD partition for the GPD19412.10.03

data—dotted line in view (d) indicates partition boundaries

7. CONCLUSIONS AND FUTURE RESEARCH

Our examples demonstrate that when D has “good” clusters, CLODD will find
them. In our examples when CLODD finds a good match to a good VAT image of the
data, the value of the objective function is larger than 0.6. But in the examples where
either VAT or CLODD is less reliable, the value of the objective function is below
0.25. This indicates that CLODD is useful for both finding clusters in unlabeled data
and, also, presenting a cluster validity index of those clusters.

There are algorithms besides VAT that produce block diagonal images: some
are displays of clusters already found7,19,20,25,26 others are constructed, like VAT, to
assess structure prior to clustering24,26; still others are used to simultaneously find
and display clusters7,18,21; and, finally, images with this type of structure are used to
attack the validity question.30,31 Consequently, CLODD is much more widely useful
than it might appear. However, many good questions remain. For example, we have
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ignored the possibility that Equation 12 may not have a solution, or that it has more
than one. These questions are interesting, but the objective function in Equation 11
is discontinuous on its domain; hence, these questions are indeed formidable.

On a more practical note, we ask whether there is a better way than trial and
error to find a reliable pair of CLODD parameters (α, γ )? Our initial attempts at
approaching this question have centered on computational ways to make CLODD
“adaptive,” but so far, we have met with little success. Another interesting question
concerns the reliance of CLODD on VAT. Certainly, CLODD will fail when VAT
does, and we have illustrated here that this can happen. It is possible that other
reordering methods might be useful “front-end” partners for CLODD in such cases.
This leads to a related question concerning the size of the data O. VAT is a useful
reordering scheme for small- to medium-sized data sets (n ≤ 10,000). The scalable
version of VAT32 produces a sample-based estimate of the VAT image I (D∗) for
very large n, but does not reorder the very large data in preparation for CLODD
clustering. What is the bottom line? As with all research, we are left interesting,
unanswered questions.
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