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Abstract—This paper presents the framework and results of
the cluster analysis of a selected set of Arabidopsis (a leafy
plant) genes in the presence of insect-feeding and wounding
stress. We outline the methodology by which we coupled the
results of a microarray experiment with the Gene Ontology
(GO) annotations of each gene to produce aggregate rela-
tional data. Our method combines two relational matrices:
one matrix is derived from a fuzzy GO similarity measure
and another is derived from the microarray data using a
statistical similarity measure. Finally, we used a fuzzy clustering
algorithm (NERFcM) and a validity measure (CCV) to cluster
and validate the resulting relational data. Results are presented
that outline the functional summarization of the clusters. The
methods presented here give microarray researchers additional
tools to investigate relations between gene expression and gene
functions.

I. INTRODUCTION

Bioinformatics data can take many forms: e.g. patient

records, ontology annotations, and microarray experiments.

Microarray experiments allow biologists to characterize the

expression of a group of genes in the presence of treatments,

such as drugs, toxic chemicals, or stresses. These experi-

ments provide information on how genes express relative to

each other. Hence, functional annotation can be performed

by inference from well-characterized genes [1, 2]. On the

other hand, if a group of similarly behaving genes are

already well annotated, these annotations can be used to

produce a functional summarization of the group. In this

paper, we couple methods used in both functional annotation

and functional summarization to perform a novel analysis

of a set of plant genes. We achieve this by combining the

results of a microarray experiment with Gene Ontology (GO)

annotations. Figure 1 is an illustration of our procedure.

The GO is a hierarchical taxonomy of functional anno-

tations of genes [3]. Each term in the GO is taken from

a controlled vocabulary, or corpus, and describes gene and

gene product attributes. Suppose two genes, G1 and G2, are

represented by a set of GO terms G1 = {T11, T12, . . . , T1n}
and G2 = {T21, T22, . . . , T2m}. For these sets, we can

compute a similarity value using a number of methods [see
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4–8]. We use an augmented fuzzy measure-based similarity
(AFMS) as described in references [6, 7]. This similarity

measure has been shown to overcome limitations that are

present in both pair-wise aggregation methods, set-based sim-

ilarity measures, and vector space-based similarity measures

(the best known being the vector cosine) [6, 7]. Given a set

of gene products {G1, G2, . . . , GN}, we calculate an N×N
dissimilarity matrix D, where Dij is the dissimilarity value

of Gi and Gj .

DNA microarrays (also called gene or genome chips, DNA

chips, and gene arrays) measure gene expression level in the

presence of a treatment. Detailed information about gene ex-

pression and microarrays can be found in references [9, 10].

In brief, microarrays measure expression level by monitoring

fluorescent emission at array spots. The fluorescent emission

is proportional to the expression of the corresponding gene

(fragment). We examined a microarray experiment that mea-

sured the expression levels of 3,044 Arabidopsis thaliana
genes that are known to be related to transcription factors—

proteins that bind to regulatory regions and helps control

gene expression. The treatments applied to the plants were

insect-feeding and wounding stresses. In this paper, we focus

on 198 of the 3,044 genes, denoted as TF198. These genes

were selected for their important role in regulating gene

expression and responsiveness to stress. Section II describes

this data in detail.

We began by calculating relational data for each data set



TABLE I
INSECT-FEEDING MICROARRAY EXPERIMENT DATA EXAMPLE.

Insect Pieris Spodoptera Brevicoryne Myzus Wounding
Tissue Local Systemic Local Systemic Local Local Local Systemic

Sample Time (hrs) 6 24 6 24 6 24 6 24 6 24 6 24 6 24 6 24
GO id

AT2G35700 UP UP
AT1G46768 DOWN
AT4G17710 UP
AT5G60890 UP UP DOWN DOWN

(GO annotations and microarray expression). Hence, each

pair of genes will have two (dis)similarity values, one based

on the GO annotations, and one based on the microarray

experiment. Section III describes these relational data. We

then combine these relational data using a fuzzy aggrega-

tion operator. Finally, a relational clustering algorithm and

validation method (NERFcM and CCV [11, 12]) were used

to partition these aggregate data. Section IV describes the

methodology and results of this analysis. We wrap up this

paper in Section V.

II. ARABIDOPSIS DATA

The Arabidopsis thaliana plant is unique in that it was

the first plant genome to be sequenced [13]. As a result,

it is widely used in plant sciences, especially in genetics.

Each plant was exposed to one of four different insects, the

Pieris rapae (cabbageworm), the Spodoptera exigua (beet

armyworm), the Brevicoryne brassicae (cabbage aphid), and

the Myzus persicae (green peach aphid). As a stress control,

a set of plants were also exposed to mechanical wounding

as a stress control. The caterpillars were allowed to feed

until 10-30% of the leaf area was eaten (about 2-4 hours).

The caterpillars were then removed. Aphids have effects on

plants that are weaker and slower to develop than those of

caterpillars, thus, aphids were allowed to feed for one week

and then removed. Gene expression was measured at six and

24 hours following insect removal in local tissue (treated

leaf) and systemic tissue (untreated leaf). Systemic tissue

measurements were not possible on the aphid-treated plants

as the aphids were too small to be localized. Gene expression

was measured with a whole genome Operon oligo microarray

(v1) with 64 hybridizations of treatment and control RNA

for four biological replicates for each treatment and time.

The resulting data were filtered with a two-fold expression

ratio cutoff and analyzed by ANOVA. 3,044 genes were

differentially expressed in response to the treatment, of which

198 were transcription factors. Table I shows examples of the

expression data for four of the TF198 genes. UP indicates

the gene UP-regulated in the presence of the treatment,

DOWN indicates DOWN-regulation, and no entry indicates

no expression. As the table shows, the data is sparse and

there is little mixing of expression values between insects.

This is representative of the entire data set.

Additionally, the GO annotations of TF198 genes were

downloaded from the Arabidopsis Information Resource

(TAIR), which is a database of genetic data for the Ara-

TABLE II
EXAMPLE GO ANNOTATIONS FOR ARABIDOPSIS TRANSCRIPTION

FACTOR-RELATED GENES.

GO id GO term Definition
AT2G35700 GO:0003677 DNA binding

GO:0003700 Transcription factor activity
GO:0005634 Nucleus
GO:0006355 Regulation of transcription, DNA-dep.

AT1G46768 GO:0003677 DNA binding
GO:0003700 Transcription factor activity
GO:0005634 Nucleus
GO:0006355 Regulation of transcription, DNA-dep.

AT4G17710 GO:0003677 DNA binding
GO:0003700 Transcription factor activity
GO:0005634 Nucleus
GO:0006355 Regulation of transcription, DNA-dep.

AT5G60890 GO:0000162 Tryptophan biosynthesis
GO:0003677 DNA binding
GO:0003700 Transcription factor activity
GO:0005634 Nucleus
GO:0009651 Response to salt stress
GO:0009737 Response to abscisic acid stimulus
GO:0009739 Response to gibberellic acid stimulus
GO:0009751 Response to salicylic acid stimulus
GO:0009753 Response to jasmonic acid stimulus
GO:0009759 Indole glucosinolate biosynthesis
GO:0016301 Kinase activity
GO:0016563 Transcriptional activator activity

bidopsis plant [13]. Table II shows the GO annotations for

the four genes shown in Table I. This table illustrates the

main problem with using only GO annotations to compute

relational data. While human gene products are well anno-

tated, the Arabidopsis has many identical entries and the an-

notations tend to be very general. For example, the GO terms

GO:0003700-transcription factor activity and GO:0005634-

nucleus provide very little information content as they are

used to annotate virtually all the genes in TF198. Further-

more, Table II shows that AT2G35700, AT1G46768, and

AT4G17710 have identical GO annotations; however, they

have distinctly different expression data. Hence, combining

the microarray expression data with the GO annotation data

should provide a synergistic view into the inter-relationships

of the genes and their functions.

III. TF198 RELATIONAL DATA

The first step in our analysis was to compute (separate)

relational data from the GO annotations data and the microar-

ray data. The following subsections describe the methods we

used to compute these relational data and we also comment

on these data.



A. Gene Ontology dissimilarity data

The GO is organized as a hierarchical taxonomy of terms

derived from a corpus. These terms are then used to annotate

genes (or gene products) to describe the functional attributes

of the genes. Pair-wise similarities between terms can be

computed as in [4, 5] using shortest path and information

theoretic constructs. Each gene is described by a set of terms,

thus, the similarity value between two genes is some form of

combination of the pair-wise term similarities. The method

we use to aggregate these pair-wise term similarities is the

AFMS [see 6, 7]. In brief, the AFMS is based on the Sugeno

λ-measure [14]. The fuzzy densities are the importance

values of each GO term in determining the similarity between

two genes. Hence, important terms will have a larger impact

on the overall similarity than unimportant terms. To assign

a value to this importance (fuzzy density), we use the

information content of each term [15]. Information content

is the numerical specificity of a term—terms that are used

often have a low information content, while a term that

is used sparingly has a high information content [5, 15].

Terms that have a high information content are assigned

respectively higher fuzzy densities. This causes them to be

more important in determining the similarity between two

genes, which is an intuitively pleasing result.

The AFMS overcomes limitations that are present in other

similarity measures by augmenting the set of common terms

between two genes with the nearest-common-ancestor of

each unique term pair. This prevents a zero-valued similarity

when two genes share no common terms. The following

example, from [6], illustrates the AFMS calculation and pro-

vides a comparison to set-based and vector-cosine similarity

measures:

Example 1 Consider two sets G1 = {T1, T3} and G2 =
{T2, T4}, where the associated densities (information con-

tents) are given by the ontology shown in Fig. 2. The

augmented sets are: G1 = {T1, T3, T6, T5, T7} and G2 =
{T2, T4, T6, T5, T7}, where the augmented intersection is

[G1 ∩ G2] = {T5, T6, T7}. The λ-measure on G1 is

g1({T5, T6, T7}) ≈ 0.26 and on G2 is g2({T5, T6, T7}) ≈
0.248. Thus, the AFMS is

sAFMS(G1, G2) =
0.26 + 0.248

2
= 0.25.

Note that a set-based similarity measure or a vector-cosine

similarity measure produce a value of 0. The strength of the

AFMS is that it considers the layout of the entire tree when

determining gene similarity, not just the pair-wise terms.

We use the AFMS to compute a similarity for each gene

pair. This results in a 198 × 198 similarity matrix SAFMS .

We convert this to dissimilarity data by the transformation,

D = [1] − S. The dissimilarity matrix is displayed in Fig.

3(a), where black is a dissimilarity value of 0.0, viz. high

similarity, and white is a dissimilarity value of 1.0. Fig.

3(b) shows the Visual Assessment of cluster Tendency (VAT)

[16] reordered dissimilarity matrix D∗
AFMS . VAT reorders

the dissimilarity matrix such that the cluster tendency is

T7
g7 = 0.001

T6
g6 = 0.1

T5
g5 = 0.15

T1
g1 = 0.2

T2
g7 = 0.3

T3
g7 = 0.4

T4
g4 = 0.5

Fig. 2. Branch of an ontology with associated densities (information
contents) [6]

50 100 150

20
40
60
80

100
120
140
160
180

(a) Dissimilarity data - DAFMS

50 100 150

20
40
60
80

100
120
140
160
180

(b) VAT image - I(D∗
AFMS)

Fig. 3. AFMS-Based relational data of TF198 data set

shown by the number of dark blocks along the diagonal. For

these data, the VAT image does not show any clear cluster

structure. In fact, many of the dark blocks seen in this image

(such as at VAT indices 52-79 and 80-97) are genes with

identical GO annotations.

B. Microarray dissimilarity data

The gene expression data that we used are pre-processed

tertiary data, where a value of 1 indicates UP-regulation, -1

indicates DOWN-regulation, and 0 indicates no expression.

The sixteen treatments (as shown in Table I) of 3,044

differentially expressed genes are represented by a 3, 044×16
tertiary matrix of expression values. We used these data to

compute a 198×198 dissimilarity matrix DMA of the TF198

data. The construction of this matrix is as follows.

Assume that each treatment produces no more than one of

two states in a gene: UP-regulation or DOWN-regulation.

‘No expression’ is considered to be a NULL-hypothesis

or empty state. This is due to the nature of microarray

statistical analysis, which labels genes as UP or DOWN-

regulated only if the expression is statistically significant.

Hence, our analysis is only dependent on the statistically

significant results of the microarray experiment. Since there

are 16 treatments, there are 32 possible states that a gene

can occupy (16 simultaneously). We computed the 32 × 32
similarity matrix of the states via Dice’s coefficient [17].

Although many statistical similarity indices exist [see 17],

we chose to use Dice’s coefficient for its property of boosting

the influence of matches in determining the similarity value.

Consider two sets, {A} =the set of genes in state a, and

{B} =the set of genes in state b (e.g. a is UP-regulation

at six hours in local tissue fed on by Pieris and b is

DOWN-regulation at 24 hours in systemic tissue fed on by
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Fig. 4. Microarray insect-states DICE relational data

Spodoptera). For these sets, Dice’s coefficient is defined as

sDICE =
2|A ∩B|
|A|+ |B| . (1)

Notice that the NULL-hypothesis or empty state has no effect

on this similarity measure. This is an important result as

the TF198 microarray data are very sparse. Figure 4 shows

the dissimilarity data and VAT image computed with Dice’s

coefficient for the 32 state pairs (recall that similarity data

can be converted to dissimilarity data by the transformation

D = [1] − S). The checkerboard pattern in Fig. 4(a) is due

to the fact that there is a low dissimilarity between UP-

regulation states, even across different treatments (the same

is seen between DOWN-regulation states). The figure shows

that, in general, the dissimilarity values between states are

very high, with the lowest off-diagonal dissimilarity value

being 0.62 (a similarity of 0.38). This is a direct result of

the sparsity and lack of mixing of the TF198 microarray data.

The VAT image, Fig. 4(b), shows two darker blocks on the

diagonal, indicating that there are two clusters. Interestingly,

the states that are grouped in the dark block at the top-

left of the image are all UP-regulation states and the states

grouped in the middle dark block are mostly caterpillar and

wounding-induced DOWN-regulation states. This grouping

intuitively makes sense as the chewing of the caterpillars is

similar to wounding stress.

These pair-wise treatment dissimilarity values are aggre-

gated to produce relational data for the TF198 data. A number

of aggregation methods exist to compute the aggregated

dissimilarity of two genes, including pair-wise average, nor-

malized average, and linear combinations of order statistics
(LOS) [see 8]. We chose the LOS operator as it has been

shown to be robust to data variability and outliers [18]. The

following example shows how we compute the dissimilarity

value between the genes, AT5G60890 and AT2G35700, using

an LOS(3) operator:

Example 2 AT5G60890 has the expression data,

{1, 0, 0, 0, 1, 0, 0, 0,−1, 0,−1, 0, 0, 0, 0, 0}, where this

vector is arranged in the same order as the treatment

labels in Table I. AT2G35700 has the expression data,

{0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. There are eight

unique pairs of non-zero expression data between the two
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Fig. 5. Microarray experiment-based TF198 relational data

genes. The LOS(3) operator will aggregate the lowest

three pair-wise dissimilarity values. The dissimilarity values

are d1,5 = 0.62, d5,5 = 0, d9,5 = 0.99, d11,5 = 0.95,

d1,6 = 0.81, d5,6 = 0.79, d9,6 = 0.93, and d11,6 = 0.93.

Thus, the dissimilarity between AT5G60890 and AT2G35700

is

DLOS(3) =
0 + 0.62 + 0.79

3
= 0.47.

Figure 5 shows the dissimilarity matrix DMA and VAT image

I(D∗
MA) for the TF198 data set computed with the LOS(3)

aggregation operator. These relational data computed from

the microarray experiment show that the similarity values

between genes are fairly weak. Observe the dark block in

the VAT image at the indices 28-53. This is a group of genes

with identical expression data—each gene DOWN-regulates

at six hours in the presence of Myzue feeding. We discuss

this group of genes more in the next section.

IV. AGGREGATE ANALYSIS

The dissimilarity matrices, DGO and DMA, are rela-

tional data computed from different information. In order

to combine these two sources of information we aggregated

the dissimilarity matrices with a fuzzy aggregation operator.

Fuzzy aggregation operators are averaging operators and

produce output values that are between the MIN and MAX
of the input [19]. We present results for both the MIN and

MAX operators. The aggregate dissimilarity matrix DA is

computed as

(DA)ij = A ({(DGO)ij , (DMA)ij}) , i, j = 1, . . . , 198,
(2)

where A is a chosen aggregation operator. The MAX op-

erator produces a low dissimilarity only if both inputs are

low, where the MIN operator produces a low dissimilarity

if one input is low. Figure 6 shows the VAT images I(D∗)
of the aggregated dissimilarity matrices, DMAX and DMIN .

As expected, Fig. 6 shows that the MAX operator produces

dissimilarity values that are high and the MIN produces

dissimilarity values that are low (recall that black is low

dissimilarity d = 0.0, white is high dissimilarity d = 1.0).

We applied a relational clustering algorithm to the aggre-

gated data. Non-Euclidean Relational Fuzzy c-Means (NER-

FcM) is a fuzzy relational clustering algorithm that is based
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Fig. 6. Aggregated relational data for TF198 data set

on the fuzzy c-means clustering algorithm [11]. The param-

eters of NERFcM are c, the number of clusters, and m, the

fuzziness index. The fuzziness index determines the fuzziness

of the resultant partitions: m = 1 produces crisp clusters,

while an m > 1 produces fuzzy clusters (genes can belong

[partially] to more than one cluster). Correlation Cluster
Validity (CCV) is a relational cluster validity index that

has be shown to be effective with bioinformatics data [12].

We ran NERFcM for all possible pairs of c = 2, 3, . . . , 10
and m = 1.1, 1.2, . . . , 2. We then used CCV as a validity

heuristic to determine the optimal cluster choice. Although

we present results for only NERFcM and CCV, any relational

clustering algorithm could be used with this data [see 20].

Figure 7 shows the “best” partition for each aggregate

dissimilarity matrix. The top view shows the dissimilarity

matrix ordered such that the (hardened) partitions are aligned

(see [21] for a discussion of aligned partitions). The bottom

view is the partition matrix U , where each row represents

a cluster and each column is the cluster membership of a

gene (white represents high membership, black is low). The

optimal partitions, empirically determined using CCV, are

the UMAX partition produced with the parameters c = 8
and m = 1.1 and the UMIN partition produced with the

parameters c = 6 and m = 1.4. Notice that the UMIN parti-

tion is fuzzier than the UMAX partition, which is intuitively

accurate as there is overall lower dissimilarity between the

genes in the UMIN partition (see Figs. 6 and 7).

A. Cluster summary analysis

Functional summarization is very important as it gives

bioinformatics researchers information to determine the func-

tion of lesser-studied genes. We perform summarization by

computing the frequency of each GO annotation within a

cluster of genes [22]. If most or all the genes within a cluster

are annotated by the same term, we infer that this term is

a good summarization. However, there is a downside to this

simple counting method. The summarizing term is often very

general. This is seen in the TF198 data set, where almost

every gene is annotated by the GO term: transcription factor
activity. To circumvent this problem, we use an information-

content weighted functional summarization method [22].

The summarization is determined by weighting each term

by its information content and then computing the most-
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Fig. 7. NERFcM (with CCV) partition data for TF198 data set

TABLE III
FUNCTIONAL SUMMARIZATION OF SELECTED TF198 CLUSTERS IN

RELATIONAL DATA DMAX

Cluster No. 3 6
NG 12 33

MRTs (GO) TF activity (9) TF activity (29)
Nucleus (6) Nucleus (21)
R. to salt stress (2) Reg. of Trans., DNA-dep.

MRTs (MA) Myzus UP 6hr-L (12) Brevicoryne UP 24hr-L (23)
Pieris UP 24hr-S (1) Spodoptera UP 24hr-S (22)

Spodoptera UP 24hr-L (10)

representative-terms (MRT) with a weighted ranking. Terms

that are used less often have a higher information content.

The weighting method produces more specific and hence, we

argue, more useful summarizations.

Tables III and IV display the MRTs for selected clusters

in the partitions shown in Fig 7. We also show the most

frequent microarray states. Note that each of the MRTs has

a parenthetical notation that shows its count in the cluster.

These values are important as researchers can examine the

summarizations of each cluster and determine relations be-

tween microarray treatments and gene functions.

Consider clusters 3 and 6 in UMAX (Fig. 7(a)). Table III

shows that all twelve genes in cluster 3 are UP-regulated at

six hours in local tissue in the presence of Myzus feeding.

Furthermore, the GO-annotations show that two of these

genes are responsive to salt stress. This table also shows

that 23 of the 33 genes in cluster 6 are UP-regulated in the

presence of Brevicoryne feeding and 22 are UP-regulated

in the presence of Spodoptera feeding (in both local and

systemic tissue). Interestingly, Brevicoryne is an aphid and

Spodoptera is a caterpillar, two distinctly different feeding

mechanisms.

Now consider clusters 1 and 6 in UMIN (Fig. 7(b)). Table

IV shows that 18 of the 26 genes are annotated by the GO

term: zinc ion binding, and that nearly a third of the 26

genes are DOWN-regulated in the presence of Myzus feeding.

Finally, we examine cluster 6 in UMIN . The GO MRTs



TABLE IV
FUNCTIONAL SUMMARIZATION OF SELECTED TF198 CLUSTERS IN

RELATIONAL DATA DMIN

Cluster No. 1 6
NG 26 28

MRTs (GO) Zinc ion binding (18) R. to salt stress (17)
TF activity (23) R. to Jasmonic acid (13)
Reg. of trans. (16) R. to Auxin (15)

MRTs (MA) Myzus DN 6hr-L (7) Myzus DN 6hr-L (7)
Spodoptera UP 24hr-L (4) Spodoptera UP 24hr-S (5)
Brevicoryne UP 24hr-L (3) Wounding UP 6hr-L (5)

of this cluster are all related to stress responses and seven

of these genes DOWN-regulated in the presence of Myzus
feeding. Interestingly, the Myzus-related treatments caused a

larger number of genes to express than any other treatment.

While we hesitate to draw concrete conclusions about these

specific data, we believe that the examples shown here

provide evidence that our tools are effective for investigating

relations between microarray treatments and gene functions.

V. FUTURE WORK

In the future, we will further exemplify the strengths

of using multiple sources of information in bioinformatics

analysis by leveraging the semantic relationships in the

microarray experiment to produce additional relational data.

For example, we have prior knowledge of the four insects and

the method in which they feed—the Pieris and Spodoptera
are both caterpillars and the Brevicoryne and Myzus are

aphids. Additionally, it is known that Pieres and Brevico-
ryne are specialists—they usually feed on Arabidopsis—and

Spodoptera and Myzus are generalists, meaning they will feed

on just about anything. We think that including these facts

about the insects will reveal further information about the

genes’ functions.

Bioinformatics data tend to be very sparse; thus, tying

together multiple sources of information is important to

creating a clear picture of the relationships that exist within

and between genes and gene products.
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