
2008 IEEE Swarm Intelligence Symposium
St. Louis MO USA, September 21-23, 2008

Roach Infestation Optimization
Timothy C. Havens, Student Member, IEEE, Christopher J. Spain, Student Member, IEEE,

Nathan G. Salmon, Student Member, IEEE, and James M. Keller, Fellow, IEEE

Abstract—There are many function optimization algorithms
based on the collective behavior of natural systems — Particle
Swarm Optimization (PSO) and Ant Colony Optimization (ACO)
are two of the most popular. This paper presents a new
adaptation of the PSO algorithm, entitled Roach Infestation
Optimization (RIO), that is inspired by recent discoveries in the
social behavior of cockroaches. We present the development of
the simple behaviors of the individual agents, which emulate
some of the discovered cockroach social behaviors. We also
describe a “hungry” version of the PSO and RIO, which we
aptly call Hungry PSO and Hungry RIO. Comparisons with
standard PSO show that Hungry PSO, RIO, and Hungry RIO
are all more effective at finding the global optima of a suite of
test functions.

Index Terms—cockroach, optimization, particle swarm.

I. INTRODUCTION

THERE is a strong precedent for biologically-inspired
algorithms in computational intelligence — the motto of

the IEEE Computational Intelligence Society is, “Mimicking
nature for problem solving”. Researchers have modeled al-
gorithms on the behavior of natural systems such as flocking
birds, shoals of fish, bacterial growth, and colonies of ants
[1, 2]. The collective behavior of these natural systems is sur-
mised to be an aggregate result of decentralized and simple
behaviors of the individuals [3]. Hence, the development of
algorithms that mimic collective behavior is a type of reverse-
engineering, in which one uses available information about
the natural system to create or discover the simple behaviors
of the individuals.

Recent discoveries in the behavior of cockroaches are the
inspiration for our proposed algorithm, Roach Infestation
Optimization (RIO). Studies have shown that cockroaches
not only have a distaste for the light, but they also enjoy
the company of friends. Jeanson et al. [4] determined,
through experiment, that cockroach larvae exhibit a complex
collective behavior that ultimately results in the formation
of aggregates — in other words, cockroaches like to hang
out with friends. Halloy et al. [5] and Ame et al. [6] further
studied the social behavior of cockroaches by guiding groups
of cockroaches with cockroach-like robots. Interestingly, this

Manuscript received June 15, 2008; revised July 19, 2008.
T.C. Havens is with the Department of Electrical and Computer Engi-

neering, University of Missouri. (e-mail: havenst@gmail.com).
C.J. Spain is with the Department of Electrical and Computer Engineer-

ing, University of Missouri. (e-mail: cjs2pc@mizzou.edu).
N.G. Salmon is with the Department of Electrical and Computer Engi-

neering, University of Missouri. (e-mail: ngsp68@mizzou.edu).
J.M. Keller is with the Department of Electrical and Computer Engineer-

ing, University of Missouri. (e-mail: kellerj@missouri.edu).

experiment showed that the individual decisions of cock-
roaches modulate the collective behavior of the entire group,
which supports the hypothesis that collective behavior is
aggregated from simple decentralized behavior. This experi-
ment also accentuated the hypothesis that cockroaches prefer
to be in groups, as well as in the dark. Garnier et al. [7] were
able to mimic the behavior of cockroaches with a group of
cockroach-like robots, each programmed with a simple set of
behaviors. We discuss these studies in more detail in Section
II.

Our algorithm, RIO, is inspired by the collective and
individual behaviors of cockroaches. Section III describes
our adaptation of cockroach behaviors to Particle Swarm
Optimization (PSO) [as described in 8–10]. In essence, we
are augmenting the optima-searching behavior of the PSO
with cockroach behaviors. Section IV presents numerical
examples of the algorithms. We compare the ability of PSO,
RIO, and the hungry versions of these algorithms in finding
the global optima of several test functions. There were
several cases in which each algorithm converged to local
optima. However, Hungry PSO, RIO, and Hungry RIO were
able to find the global optima in more tests than the PSO.
We summarize this paper in Section V.

II. COCKROACH BEHAVIORS

Recent research has shown that cockroaches are more
social than we would like to believe. After all, we would
rather think that one of the worst asthma triggers [11] is
just an uncivilized insect. To the contrary, cockroaches have
shown complex social behavior and reasoning in multiple
studies [4, 5, 12]. It is these behaviors that we use as a
model for our function optimization algorithms.

Jeanson et al. [4] conducted an experiment where the
behavior of individual cockroach larvae was tracked in a
enclosed circular arena. They discovered that roaches upon
entering the arena would first exhibit a wall-following behav-
ior along the periphery. Some individuals would then choose
to explore the central area of the experiment arena. The
cockroaches would also form aggregates or groups. Table
I summarizes the numerical results of this study [4]. An
encounter is defined as two cockroaches coming within 6mm
of one another and a collision is defined as when a moving
cockroach encounters a stopped cockroach that is a member
of an aggregate. Notice that the probability of leaving an
aggregate (or moving) is very low when the size of the group
is greater than one. This is indicative of the cockroaches’
desire to stay in aggregates or groups. The behaviors outlined
in Table I will be important in the design of the individual
behaviors of the RIO agents.

978-1-4244-2705-5/08/$25.00 c©2008 IEEE

TABLE I
NUMERICAL RESULTS OF COCKROACH AGGREGATION BEHAVIOR STUDY [4]

Characteristic Measured value Description
1/τstop,p 0.08/s Probability per unit time of stopping in periphery
1/τexit 0.13/s Probability per unit time of exiting periphery
Fstop,c 0.21 Fraction of paths in the center of arena that ended before reaching periphery

1/τstop,c 0.03/s Probability per unit time of stopping in center
1/τstop,N 0.49/s (N = 1) Probability per unit time of stopping when encountering N friends

0.63/s (N = 2)
0.65/s (N = 3)

1/τcollision,N 0.27/s (N = 1) Probability per unit time of moving after collision for group of N size
0.052/s (N = 2)
0.021/s (N = 3)

Halloy and Ame et. al [5, 6] further revealed intricate
social behavior in roaches with a novel experiment. These
studies showed that cockroaches can be persuaded to aggre-
gate under the lighter of two dark discs by cockroach-like
robots. In essence, they determined that cockroaches prefer
to optimize the number of friends and the darkness of the
shelter simultaneously. Halloy and Ame also developed a
simple behavior model for the cockroaches that was able to
accurately predict how they aggregate under shelters. This
model relied on two rates - R the rate of entering a shelter,
and Q the rate of quitting a shelter. These rates were defined
by the capacity of the shelter and the number of individuals
(and robots) in the shelter.

Garnier et al. [7] showed that the collective behavior of
cockroaches could be simulated by groups of robots, each
programmed with a simple set of behaviors based on the
findings in [4]. For this reason, we think that cockroaches
are an excellent model for swarm intelligence algorithms.

III. ROACH INFESTATION OPTIMIZATION

Based on the studies outlined in the previous section, we
defined three simple behaviors of cockroach agents:

1) Cockroaches search for the darkest location in the
search space. The level of darkness at a location
~r ∈ RD is directly proportional to the value of the
fitness function at that location F (~r).

2) Cockroaches enjoy the company of friends and social-
ize with nearby cockroaches with a probability equal
to the bolded values shown in Table I.

3) Cockroaches periodically become hungry and leave the
comfort of darkness or friendship to search for food.

These simple behaviors allowed us to begin designing the
algorithm. We now examine each behavior individually, but
within the context of the whole set of behaviors. Behavior 1),
which we denote as Find Darkness, is the main goal of every
optimization algorithm — find the minimum (or maximum)
of a fitness function F (~r) upon a given search space. Within
the cockroach paradigm, we define the level of darkness to
be the fitness function value. Hence, if one is searching for a
minimum, −∞ is perfectly dark, while ∞ is perfectly light.
The RIO is a cockroach-inspired PSO; hence, we model
the Find Darkness behavior with a portion of the velocity
update equation in the PSO. The PSO algorithm is outlined

Algorithm 1: Particle Swarm Optimization (PSO) [9, 10]

Input: Fitness function F (~x) ∈ RD
Parameters:
Np = 20, Number of particles
tmax = 1000, Maximum iterations
C0 = 0.7, Cmax = 1.43, Swarm parameters
Initialize population, ~xi and ~vi, randomly
for t = 1 to tmax do

for i = 1 to Np do
if F (~xi) < F (~pi) then ~pi = ~xi
~pg = arg min~pneighbors

F (~pneighbors)

~vi = C0~vi+Cmax ~R1(~pi−~xi)+Cmax ~R2(~pg−~xi)
(2)

~xi = ~xi + ~vi

in Algorithm 1. Equation (2) is the velocity update equation.
The part of this equation that models the Find Darkness
behavior is

~vi = C0~vi + Cmax ~R1. ∗ (~pi − ~xi), (1)

where ~vi is the velocity of the ith agent, ~xi is the current
location, ~pi is the best location found by the ith agent,
{C0, Cmax} are parameters, and ~R1 is a vector of uniform
random numbers. The .∗ in Eq.(1) is element-by-element vec-
tor multiplication, as in Matlab [13]. This equation emulates
Find Darkness because (~pi− ~xi) is a velocity change in the
direction of the darkest known location for that agent.

Behavior 2), which we call Find Friends, is an important
element in the RIO algorithm. We assume that all cockroach
agents begin as individuals and are governed by only the
Find Darkness behavior. If a cockroach agent comes within
a detection radius of another cockroach agent, then there is
a probability of 1/τstop,N (see Table I) that these roaches will
socialize (or group). This socializing is emulated in the algo-
rithm by a sharing of information, where this information is
the darkest known location. In essence, when two cockroach
agents meet, there is a chance that they will communicate
their knowledge of the search space to each other. They
share their knowledge by setting the darkest local location ~l

according to

~li = ~lj = arg min
k
{F (~pk)}, k = {i, j}, (3)

where {i, j} are the indices of the two socializing cock-
roaches and ~pk is the darkest known location for the indi-
vidual cockroach agent (personal best). Equation 1 can now
be extended to include the Find Friends behavior,

~vi = C0~vi+Cmax ~R1.∗(~pi−~xi)+Cmax ~R2.∗(~li−~xi). (4)

It is immediately obvious that this is very much like the
standard PSO velocity update, Eq.(2). However, the global
best solution is replaced by a group best solution ~li. In
other words, we are defining the neighborhood of the agents
to emulate the cockroach behavior described in Section II.
Algorithm 2 outlines the RIO and Hungry RIO (HRIO)
algorithms.

The last behavior we defined is Find Food — when a
cockroach agent becomes hungry it searches for food. We
emulate this behavior algorithmically by defining a hunger
counter for each agent hungeri. When this counter reaches a
chosen threshold the cockroach agent is immediately trans-
ported to a random food location ~b. These food locations
are initialized randomly within a chosen hypercube in the
search space. When a piece of food is eaten by a hungry
cockroach agent, that piece of food is randomly placed at
another location. Hence, there is always food present in the
search space. The numbered lines in Algorithm 2 show the
Find Food portion of the RIO algorithm. Line 1 checks to see
if the ith cockroach agent has a hunger that is greater than the
chosen threshold thunger. Lines 2 and 3 are the RIO update
equations as described in the preceding paragraphs and are
implemented if the cockroach agent is not hungry. If the
cockroach agent is sufficiently hungry then Line 4 transports
it to a random food location ~b. And then this piece of food is
randomly relocated in Line 5. Finally, Line 6 checks to see if
one is running the “Hungry” version of the algorithm and, if
so, increments the hunger counters. The Find Food behavior
periodically perturbs the population, ideally minimizing the
chance of converging to a local optima. Algorithm 3 outlines
the Hungry PSO (HPSO).

Matlab code of the algorithms presented in this paper can
be downloaded at http://co-cluster.com.

IV. NUMERICAL EXAMPLES

This section presents a number of numerical examples that
show the relative ability of the PSO, HPSO, RIO, and HRIO
in finding global minima of multi-dimensional test functions.
We also show a number of illustrative results that display the
difference in behavior of the cockroach inspired algorithms
and the PSO.

Each algorithm was run on each of the test functions pre-
sented in the Appendix. The bounds shown in the Appendix
for each test function were the bounds on the initial positions
of the agents. However, after the algorithm was started the
agents were not bound to a test space — they were allowed

Algorithm 2: Roach Infestation Optimization (RIO)

Input: Fitness function F (~x) ∈ RD
Parameters:
Na = 20, Number of cockroach agents
tmax = 1000, Maximum iterations
C0 = 0.7, Cmax = 1.43, Roach parameters
A1 = 0.49, A2 = 0.63, A3 = 0.65, Group parameters
thunger = 100, Hunger interval
Initialization:
set hungers hungeri = rand{0, thunger − 1}
set population, ~xi and ~vi, randomly
set food locations ~b randomly
for t = 1 to tmax do

M = [Mjk] = [||~xj − ~xk||2]
dg = median{Mjk ∈M : 1 ≤ j < k ≤ Na}
for i = 1 to Na do

if F (~xi) < F (~pi) then ~pi = ~xi
Compute the neighbors of roach i as,
{j} = {k : 1 ≤ k ≤ Na, k 6= i,Mik < dg}
Ni = number of neighbors |{j}|
for q = 1 to Ni do

if rand[0,1]< Amin{Ni,3} then
~li = ~ljq = arg mink{F (~pk)}, k = {i, jq}

if hungeri < thunger then1

~vi =2

C0~vi+Cmax ~R1(~pi− ~xi)+Cmax ~R2(~li− ~xi)
~xi = ~xi + ~vi3

else
~xi = Random food location ~b4

Relocate eaten food randomly5

hungeri = 0

if Hungry then6
Increment hungeri counters

to explore unlimitedly. This represents the most general type
of optimization problem as many optimization problems have
an unknown search space; thus, we did not limit the agents
to a prescribed search space. To maintain parity between
each set of tests, we used the same initialization position and
velocity for each of the algorithms. The algorithms were also
presented the same sequence of random number vectors for
~R1 and ~R2 (as shown in Algorithms 1-3). This procedure
was repeated 11 times for each test function, each run with
a different set of initialized positions and velocities, and
random number vector sequence. This test procedure ensured
that each algorithm could be compared fairly in both overall
results and in individual test cases. Algorithm 4 outlines our
test procedure in algorithmically.

Table II outlines the results of our testing of PSO, HPSO,
RIO, and HRIO, on nine different test functions. These test
functions are outlined in detail in the Appendix. Seven of
the functions were tested in both 2 and 10 dimensions, while
two of the functions were strictly 2-dimensional. The bold

Algorithm 3: Hungry Particle Swarm Optimization
(HPSO)
Input: Fitness function F (~x) ∈ RD
Parameters:
Np = 20, Number of particles
tmax = 1000, Maximum iterations
C0 = 0.7, Cmax = 1.43, Swarm parameters
thunger = 100, hunger interval
Initialization:
set hungers, hungeri = rand{0, thunger − 1}, randomly
set population, ~xi and ~vi, randomly
set food locations ~b, randomly
for t = 1 to tmax do

for i = 1 to Np do
if F (~xi) < F (~pi) then ~pi = ~xi

~pg = arg min
~pneighbors

F (~pneighbors) (5)

if hungeri < thunger then
~vi =
C0~vi+Cmax ~R1(~pi−~xi)+Cmax ~R2(~pg−~xi)
~xi = ~xi + ~vi

else
~xi = Random food location ~b
Relocate eaten food randomly
hungeri = 0

Increment hungeri counters, ∀i

Algorithm 4: Testing Procedure

for i = 1 to 11 do
Draw random initialization position ~xi and velocity1

~vi
Draw random vector sequences {~R1}1000 and2

{~R2}1000
for each test function do

Run PSO, HPSO, RIO, and HRIO using
initialization and random vectors drawn in lines
1 and 2
Record results

values in Table II indicate the algorithm(s) that performed
best for each test function. The last row in the table shows
the number of tests in which the HPSO, RIO, and HRIO
performed as good or better than the PSO. As Table II shows,
the RIO performed as good or better than the PSO in 9 out
of 14 tests, while the HPSO and HRIO performed as good
or better than the PSO in 7 out of 14 tests. In essence, this
shows that the cockroach-inspired algorithms are as good or
better than the PSO. This is an interesting result, as the goal
of our algorithm development was not to create a “better”
PSO, it was inspired by the documented social behavior of
cockroaches.

Now we discuss the results more specifically. The HPSO,
RIO, and HRIO performed better than the PSO in almost
every 10-dimensional test. We expect the PSO to be the
best algorithm for the Sphere function as this function is
monotonically decreasing to the global optima, with no local
optima. The Rastrigin, Ackley, and Griewank are all highly-
modal functions and the proposed algorithms, on average,
are more effective at finding the global optima for these
functions. The Rosenbrock function is special in that there
are no local optima for D < 4 dimensions. And we see
that the PSO is more effective in the 2-dimensional case,
while the RIO and HRIO and the most effective for the
10-dimensional Rosenbrock (there is one local minima in
D ≥ 4 dimesional Rosenbrock functions [14]). Interestingly,
the PSO appears to be more effective than the RIO and
HRIO for the 10-dimensional Ackley function. However, we
examined the results more closely and came to a different
conclusion.

Table III details the results for each of the 11 runs for
the 10-dimensional Ackley function. The bold values in
the table indicate that the algorithm converged to a local
minima. The last row contains the tally of the number of
runs in which the algorithm converged to the global optima
(within the monotonically decreasing area around the global
minima). The mean result, shown in Table II, appears to
suggest that the PSO is more effective than the RIO and
HRIO for this function. However, it is clear, from the results
shown in Table III, that the HPSO, RIO, and HRIO are more
effective in finding the global optima of the 10-dimensional
Ackley function. Additionally, the HPSO is the most effective
algorithm for this case, converging to the global optima in
all 11 test runs.

Table IV details the results for each of the 11 runs on the
2-dimensional Griewank function. Again, the bold values in
these tables indicate that the algorithm converged to a local
minima. The last line tallies the number of runs in which
the algorithm converged to the global optima. It is clear that
the proposed RIO algorithms (RIO and HRIO) are able to
more effectively find the global optima. We note that the
Griewank function is highly-modal. Examining the results
for the 10-dimensional Griewank function, shown in Table
II, shows that all the algorithms performed comparably, with
the HPSO having a slightly better result.

Lastly, the results of the Michaewicz function tests were
especially interesting. Incredibly, the RIO and HRIO found
an average global optima value of -1.9 in the 2-dimensional
test, while the published global optima value is only -1.8013.
However, upon further examination, the published global
optima is within the search space −π ≤ xi ≤ π [15]. The
RIO and HRIO explored beyond this region (recall that food
is only located within the predefined search space) and found
a lower optima value. The PSO and HPSO did not exhibit this
behavior. While this result is an artifact of how we coded our
algorithms — we did not constrain the agents to a predefined
region, except upon initialization — it does exemplify the
exploration properties of the RIO and HRIO.

TABLE II
MEAN OPTIMA VALUE FOUND BY ALGORITHMS FOR SOME TEST FUNCTIONS — OVER 11 RUNS, BOLD INDICATES BEST ALGORITHM FOR EACH

TEST FUNCTION

Test Function Dimensions PSO HPSO RIO HRIO Actual Value
Sphere 2 0 4.5 · 10−10 0 6.5 · 10−23 0
Sphere 10 4.5 · 10−33 4.4 · 10−7 2.7 · 10−31 4.8 · 10−14 0

Rastrigin 2 0 1.2 · 10−10 0 0 0
Rastrigin 10 12.4 4.5 8.3 11.6 0

Rosenbrock 2 7.1 · 10−28 4.6 · 10−9 9.2 · 10−18 4.8 · 10−12 0
Rosenbrock 10 11.0 14.7 7.3 3.8 0

Ackley 2 8.9 · 10−16 1.6 · 10−6 8.9 · 10−16 1.4 · 10−11 0
Ackley 10 0.61 8.2 · 10−4 1.6 2.6 0

Griewank 2 2.0 · 10−3 1.3 · 10−3 1.3 · 10−12 1.4 · 10−5 0
Griewank 10 1.0 · 10−1 8.2 · 10−2 1.5 · 10−1 1.4 · 10−1 0

Michalewicz 2 -1.8 -1.8 -1.9 -1.9 -1.8013
Michalewicz 10 -7.7 -8.1 -5.8 -6.1 -9.66015

Easom 2 -1 -1 -1 -1 -1
Hump 2 4.7 · 10−8 4.7 · 10−8 4.7 · 10−8 4.7 · 10−8 0

No. as good or 7 9 7
better than PSO

TABLE III
OPTIMA VALUES FOUND BY ALGORITHMS FOR 10-DIMENSIONAL

ACKLEY FUNCTION — BOLD INDICATES ALGORITHM CONVERGED TO
LOCAL OPTIMA, LAST ROW INDICATES NUMBER OF TESTS IN WHICH

GLOBAL OPTIMA WAS FOUND

PSO HPSO RIO HRIO
1.2 1.3 · 10−3 16.4 1.9 · 10−7

4.4 · 10−15 0.5 · 10−3 8.0 · 10−15 1.7 · 10−7

1.6 0.6 · 10−3 4.4 · 10−15 2.4 · 10−7

4.4 · 10−15 1.2 · 10−3 1.2 3.9 · 10−7

8.0 · 10−15 0.4 · 10−3 4.4 · 10−15 20.1
1.2 1.3 · 10−3 1.5 · 10−14 3.5 · 10−7

8.0 · 10−15 0.3 · 10−3 4.4 · 10−15 4.0 · 10−7

1.2 0.5 · 10−3 4.4 · 10−15 2.6 · 10−7

8.0 · 10−15 0.9 · 10−3 4.4 · 10−15 4.7
1.6 0.4 · 10−3 8.0 · 10−15 3.3

4.4 · 10−15 1.2 · 10−3 4.4 · 10−15 4.1 · 10−7

6 11 9 8

Considering the results and analysis described in this sec-
tion, we conclude that the HPSO, RIO, and HRIO are more
effective for optimizing highly-modal functions. This result is
intuitively pleasing as, in essence, the adaptations we propose
encourage the optimization algorithms to explore the search
space more vigorously than the standard PSO. Additionally,
the HPSO, RIO, and HRIO perform comparably to the PSO
for the 2-dimensional test functions.

V. CONCLUSIONS AND FUTURE WORK

The results presented in Tables II-IV clearly show that the
addition of simple cockroach-inspired behaviors to the PSO
have a positive effect on its ability to find global optima.
This is quite an interesting result as we were not trying to
develop a “better” PSO. Our aim was to examine the effect
of adapting the PSO with the social behavior of cockroaches.
Thus we concluded that the examples presented in this paper
show that the social behavior of cockroaches is an effective
model for algorithm development.

In the future we will further analyze the RIO and Hungry
algorithms with regard to other non-standard PSO formu-
lations, such as PSO with mass extinction [16], dissipative

TABLE IV
OPTIMA VALUES FOUND BY ALGORITHMS FOR 2-DIMENSIONAL

GRIEWANK FUNCTION — BOLD INDICATES ALGORITHM CONVERGED
TO LOCAL OPTIMA, LAST ROW INDICATES NUMBER OF TESTS IN

WHICH GLOBAL OPTIMA WAS FOUND

PSO HPSO RIO HRIO
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1.2 · 10−13

0 0 3.5 · 10−15 1.6 · 10−4

7.4 · 10−3 7.4 · 10−3 0 1.2 · 10−15

7.4 · 10−3 7.4 · 10−3 0 0
7.4 · 10−3 0 0 0

0 0 1.5 · 10−12 0
8 9 11 11

PSO [17], and PSO with near neighbor interactions [18].
These formulations of the PSO all have similar aspects of our
RIO algorithm. PSO with mass extiction and dissipative PSO
both have a randomizing feature similar to our Find Food
behavior that discourages the swarm from converging to local
optima. The PSO with near neighbor interactions uses a
similar neighborhood concept as our Find Friends behavior.
These algorithms are only a sample of the multitude of
modified PSO formulations that exist; hence, our future work
aims to investigate how RIO fits in with the wide spectrum
of PSO research.

Additionally, we will further leverage the collective be-
havior of cockroaches to create algorithms that find global
optima of multi-dimensional highly-modal functions. In this
paper we adapted the PSO with a loose model of the
social collective behavior of cockroaches, only using a small
fraction of the available information on roaches (Table I).
We are furthering this work by developing an optimization
algorithm that is more intricately tied to the behaviors of the
cockroach. This algorithm will most likely be far different
from the PSO-based RIO that was presented in this paper. We

also hope to apply the cockroach model to other real-world
problems such as robot goal-seeking and navigation.

APPENDIX

The D-dimensional test functions used in this paper are:
• Sphere (De Jong)

F (~r) =
D∑
i=1

(r2i − 1), (6)

−50 ≤ ri ≤ 50, i = 1, . . . , D;
• Rastrigin

F (~r) = 10D +
D∑
i=1

[
r3i − 10 cos(2πri)

]
, (7)

−50 ≤ ri ≤ 50, i = 1, . . . , D;
• Rosenbrock

F (~r) =
D−1∑
i=1

[
(1− ri)2 + 100(ri+1 − r2i)2

]
, (8)

−50 ≤ ri ≤ 50, i = 1, . . . , D;
• Ackley [19]

F (~r) = 20 + e− 20 exp

−0.2

√√√√ 1
D

D∑
i=1

(r2i)

− exp

(
1
D

D∑
i=1

[cos(2πri)]

)
, (9)

−50 ≤ ri ≤ 50, i = 1, . . . , D;
• Griewangk

F (~r) =
D∑
i=1

r2i
4000

−
D∏
i=1

cos(ri/
√
i) + 1, (10)

−600 ≤ ri ≤ 600, i = 1, . . . , D;
• Michalewicz [15]

F (~r) = −
D∑
i=1

sin(ri)(sin(ir2i /π))20, (11)

−π ≤ ri ≤ π, i = 1, . . . , D.
The strictly 2-dimensional test functions used are:
• Easom [20]

F (~r) = − cos(r1) cos(r2)e−(r1−π)2e−(r2−π)2 , (12)

−100 ≤ ri ≤ 100, i = 1, 2;
• Hump [21]

F (~r) = A+4r21−2.1r41+r61/3+r1r2−4r22+4r42, (13)

where A = 1.0316285, and −50 ≤ ri ≤ 50, i = 1, 2.
Table V displays the location and value of the global

minima for each of these test functions.

ACKNOWLEDGMENT

Spain and Salmon are supported in part by the University
of Missouri College of Engineering Honors Undergraduate
Research Program.

TABLE V
LOCATION AND VALUE OF GLOBAL MINIMA OF TEST FUNCTIONS

Function Location Value
Sphere ~r = {1, . . . , 1} 0

Rastrigin ~r = {0, . . . , 0} 0
Rosenbrock ~r = {1, . . . , 1} 0

Ackley ~r = {0, . . . , 0} 0
Griewangk ~r = {0, . . . , 0} 0

Michalewicz varies with D varies with D
Easom ~r = {π, π} -1
Hump ~r = {0.0898,−0.7126} 0

~r = {−0.0898, 0.7126} 0

REFERENCES

[1] C. Zimmer, “From ants to people, an instinct to swarm,”
The New York Times, November 2007.

[2] P. Miller, “The genius of swarms,” National Geo-
graphic, July 2007.

[3] G. Beni and J. Wang, “Swarm intelligence in cellular
robotic systems,” in Proceedings of NATO Advanced
Workshop on Robots and Biological Systems, Tuscany,
Italy, June 1989.

[4] R. Jeanson, C. Rivault, J. Deneubourg, S. Blan-
cos, R. Fournier, C. Jost, and G. Theraulaz, “Self-
organized aggregation in cockroaches,” Animal Be-
haviour, vol. 69, pp. 169–180, 2005.

[5] J. Halloy et al., “Social integration of robots into groups
of cockroaches to control self-organizined choices,”
Science, vol. 318, November 2007.

[6] J. Ame, J. Halloy, C. Rivault, C. Detrain, and
J. Deneubourg, “Collegial decision making based on
social amplification leads to optimal group formation,”
Proc. Natl. Acad. Sci., vol. 103, no. 15, pp. 5835–5840,
April 2006.

[7] S. Garnier et al., “Collective decision-making by a
group of cockroach-like robots,” in Proceedings of 2005
Swarm Intelligence Symposium, June 2005, pp. 233–
240.

[8] J. Kennedy and R. Eberhardt, “Particle swarm optimiza-
tion,” in Proceedings of the IEEE Int. Conf. on Neural
Networks, Piscataway, NJ, 1995, pp. 1942–1948.

[9] M. Clerc, Particle Swarm Optimization. Newport
Beach, CA: ISTE USA, 2006.

[10] Y. Shi and R. Eberhart, “A modified particle swarm
optimizer,” IEEE Int. Conf. on Evolut. Comp., pp. 69–
73, May 1998.

[11] R. Gruchalla et al., “The inner city asthma study: Rela-
tionships between sensitivity, exposure and morbidity,”
J. of Allergy and Clinical Immunology, vol. 115, pp.
584–591, March 2005.

[12] H. Watanabe and M. Mizunami, “Pavolv’s cockroach:
Classical conditioning of salivation in an insect,” PLoS
ONE, vol. 2, no. 6, p. e529, June 2007.

[13] Using MATLAB, The Mathworks, Natick, MA, Novem-
ber 2000.

[14] Y. Shang and Y. Qiu, “A note on the extended Rosen-
brock function,” Evolutionary Computation, vol. 14,

no. 1, pp. 119–126, April 2006.
[15] Z. Michalewicz, Genetic Algorithms + Data Structures

= Evolution Programs. Berlin, Heidelberg, New York:
Springer-Verlag, 1992.

[16] X. Xie, W. Zhang, and Z. Yang, “Hybrid particle swarm
optimizer with mass extinction,” in Proc. ICCCAS,
Chengdu, China, June 2002, pp. 1170–1173.

[17] ——, “A dissipative particle swarm optimization,” in
Proc. Cong. on Evolut. Comp., Honolulu, HI, May
2002, pp. 1456–1461.

[18] K. Veeramachaneni, T. Peram, C. Mohan, and L. Os-
adciw, “Optimization using particle swarm with near
neighbor interactions,” in Proc. Genetic and Evolut.
Comp. Conf., Chicago, IL, July 2003, pp. 110–121.

[19] D. Ackley, A Connectionist Machine for Genetic Hill-
climbing. Boston: Kluwer Academic Publishers, 1987.

[20] E. Easom, “A survey of global optimization tech-
niques,” Master’s thesis, Univ. Louisville, Louisville,
KY, 1990.

[21] L. Dixon and G. Szego, Towards Global Optimization
II. New York: North Holland, 1978, ch. The optimiza-
tion problem: An introduction.

