On the Lie algebra with multiple brackets

Rafael S. González D'León

Department of Mathematics University of Kentucky Lexington, KY

August 28, 2015

KENTUCKY*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lie bracket

A Lie bracket over a vector space V is a bilinear binary product $[\cdot, \cdot] : V \times V \to V$ that for $x, y, z \in V$ satisfies the properties:

Lie bracket

A Lie bracket over a vector space V is a bilinear binary product $[\cdot, \cdot] : V \times V \to V$ that for $x, y, z \in V$ satisfies the properties:

•
$$[x, y] + [y, x] = 0$$
 (Antisymmetry)

• [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Identity)

Free Lie algebra

The free Lie algebra on $[n] = \{1, 2, ..., n\}$ is the algebra generated by "bracketed words" subject only to antisymmetry and Jacobi identity.

Free Lie algebra

The free Lie algebra on $[n] = \{1, 2, ..., n\}$ is the algebra generated by "bracketed words" subject only to antisymmetry and Jacobi identity.

Examples of generators: [1, 2] [[3, 4], 3] [[[3, 4], 3], [1, 2]]

 $\mathcal{Lie}(n)$ is the component of the free lie algebra on [n] generated by all the possible bracketings of $\{1, 2, ..., n\}$ containing each label exactly once (the multilinear component). Let's call these bracketings bracketed permutations.

 $\mathcal{Lie}(n)$ is the component of the free lie algebra on [n] generated by all the possible bracketings of $\{1, 2, ..., n\}$ containing each label exactly once (the multilinear component). Let's call these bracketings bracketed permutations.

$[\llbracket [3,4],6], \llbracket 1,5 \rrbracket], \llbracket \llbracket [2,7],9 \rrbracket,8 \rrbracket]$

 $\mathcal{Lie}(n)$ is the component of the free lie algebra on [n] generated by all the possible bracketings of $\{1, 2, ..., n\}$ containing each label exactly once (the multilinear component). Let's call these bracketings bracketed permutations.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

$[\llbracket [3,4],6], \llbracket 1,5 \rrbracket], \llbracket \llbracket [2,7],9 \rrbracket,8 \rrbracket]$

$\mathcal{L}ie(n)$ has the structure of an \mathfrak{S}_n -module.

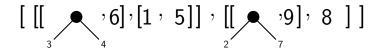
There is another way to describe the generators

Generating set for $\mathcal{L}ie(n)$

[[[[3,4],6],[1,5]], [[[2,7],9], 8]]

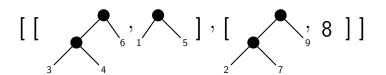
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Generating set for $\mathcal{L}ie(n)$



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

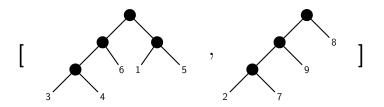
Generating set for $\mathcal{L}ie(n)$



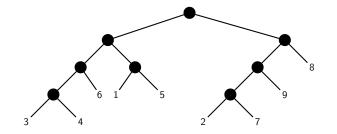
▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

└─ *Lie(n*)

Generating set for $\mathcal{L}ie(n)$



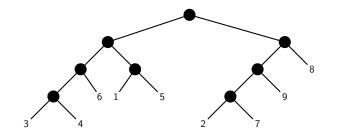
Generating set for $\mathcal{L}ie(n)$



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Generating set for $\mathcal{L}ie(n)$

A leaf-labeled binary tree



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへ⊙

└─ Lie(n)

Let's turn the page temporarily to visit a combinatorial object.

A partition of [n] is a collection of disjoint sets $\{B_1, B_2, \ldots, B_n\}$ such that their union $\bigcup_i B_i = [n]$.

A partition of [n] is a collection of disjoint sets $\{B_1, B_2, \ldots, B_n\}$ such that their union $\bigcup_i B_i = [n]$.

Example: 147|2|35|68 is a partition of [8]

A partition of [n] is a collection of disjoint sets $\{B_1, B_2, \ldots, B_n\}$ such that their union $\bigcup_i B_i = [n]$.

Example: 147|2|35|68 is a partition of [8]

We can order the partitions of [n] by refinement.

A partition of [n] is a collection of disjoint sets $\{B_1, B_2, \ldots, B_n\}$ such that their union $\bigcup_i B_i = [n]$.

Example: 147|2|35|68 is a partition of [8]

We can order the partitions of [n] by refinement.

Example: $147|2|35|68 \le 147|268|35$

A partition of [n] is a collection of disjoint sets $\{B_1, B_2, \ldots, B_n\}$ such that their union $\bigcup_i B_i = [n]$.

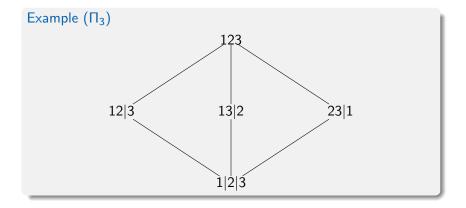
Example: 147|2|35|68 is a partition of [8]

We can order the partitions of [n] by refinement.

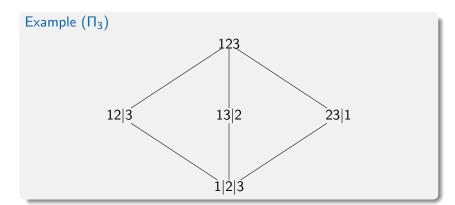
Example: $147|2|35|68 \le 147|268|35$

Let Π_n be the partially ordered set (poset) of partitions of [n] with the order relation above.

└─ *Lie(n*)

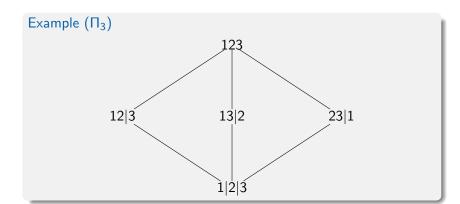


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



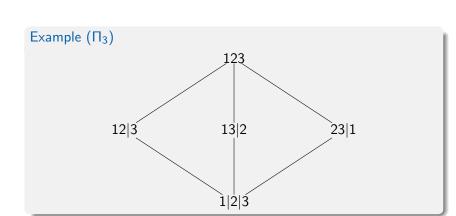
・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

 Π_n has a bottom element, all singletons 1|2|3.



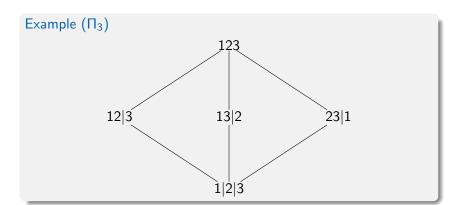
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 Π_n has a bottom element, all singletons 1|2|3. Π_n has a top element, the block 123.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A chain is a totally ordered subset of *P*.



A chain is a totally ordered subset of *P*. Example: in Π_3 , 1|2|3 < 12|3 is a chain as well as 1|2|3 < 123.

Cohomology of a poset

Let P be a finite and bounded poset. We define (reduced) chain and cochain complexes

$$\cdots \xrightarrow[]{\frac{\partial_{r+1}}{\langle \delta_r \rangle}} C_r(P) \xrightarrow[]{\frac{\partial_r}{\langle \delta_{r-1} \rangle}} C_{r-1}(P) \xrightarrow[]{\frac{\partial_{r-1}}{\langle \delta_{r-2} \rangle}} \cdots$$

where

$$C_r(P) = \mathbb{C}\{r\text{-chains in } P\}$$

and

$$\partial_r(\alpha_0 < \alpha_1 < \cdots < \alpha_r) = \sum_{i=0}^r (-1)^i (\alpha_0 < \cdots < \hat{\alpha}_i < \cdots < \alpha_r)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cohomology of a poset

 $\widetilde{H}^*(P)$ is the reduced cohomology of this complex.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

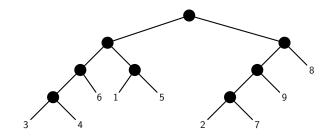
Cohomology of a poset

 $\widetilde{H}^*(P)$ is the reduced cohomology of this complex.

 $\widetilde{H}^{top}(P) = \mathbb{C}\{\text{maximal chains}\}/\{\text{cohomology relations}\}$

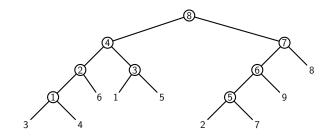
Another set generated by leaf-labeled binary trees

Order the internal nodes of the binary tree in postorder (recursively left subtree < right subtree < root):

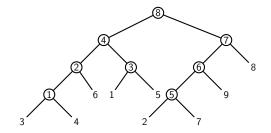


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

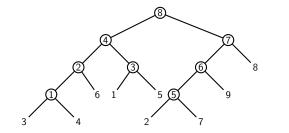
Order the internal nodes of the binary tree in postorder (recursively left subtree < right subtree < root):



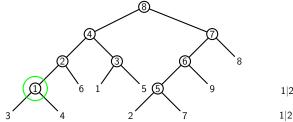
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



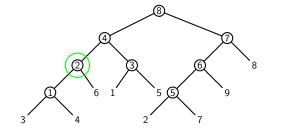
1|2|3|4|5|6|7|8|9



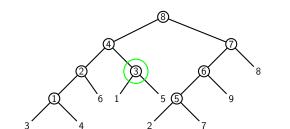
 $1|2|34|5|6|7|8|9\\|\\1|2|3|4|5|6|7|8|9$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

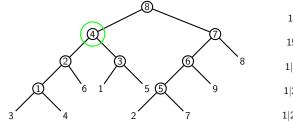
└─ *Lie(n*)



 $1|2|346|5|7|8|9\\|\\1|2|34|5|6|7|8|9\\|\\1|2|3|4|5|6|7|8|9$



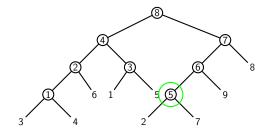
15|2|346|7|8|9 | 1|2|346|5|7|8|9 | 1|2|34|5|6|7|8|9 | 1|2|3|4|5|6|7|8|9



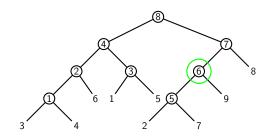
 $\begin{array}{c|c} 13456|2|7|8|9\\ & |\\ 15|2|346|7|8|9\\ & |\\ 1|2|346|5|7|8|9\\ & |\\ 1|2|34|5|6|7|8|9\\ & |\\ 1|2|3|4|5|6|7|8|9\end{array}$

On the Lie algebra with multiple brackets

└─ *Lie(n*)

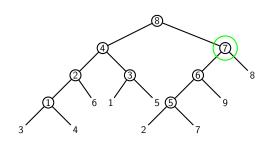


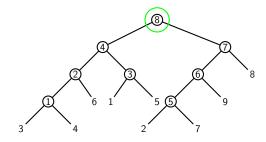
 $\begin{array}{c|c} 13456|27|8|9\\ |\\ 13456|2|7|8|9\\ |\\ 15|2|346|7|8|9\\ |\\ 1|2|346|5|7|8|9\\ |\\ 1|2|34|5|6|7|8|9\\ |\\ 1|2|34|5|6|7|8|9\\ |\\ 1|2|3|4|5|6|7|8|9\end{array}$



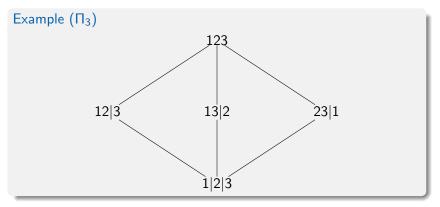
 $\begin{array}{c|c} 13456|279|8\\ |\\ 13456|27|8|9\\ |\\ 13456|2|7|8|9\\ |\\ 15|2|346|7|8|9\\ |\\ 1|2|346|5|7|8|9\\ |\\ 1|2|34|5|6|7|8|9\\ |\\ 1|2|3|4|5|6|7|8|9\\ |\\ 1|2|3|4|5|6|7|8|9\end{array}$

Lie(n)

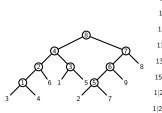




A maximal chain in the poset of partitions $\Pi_n!$



└─ Lie(n)



123456789 13456[2789] 13456[279]8 13456[27]8]9 13456[27]8]9 15[2]346[7]8]9 1[2]346[5]7]8]9 1[2]34[5]6[7]8]9 1[2]34[5]6[7]8]9

Remark

Not every maximal chain in Π_n is of this form (postorder is not enough!). But every maximal chain is cohomology equivalent to a chain of this form.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998)) $\mathcal{L}ie(n) \cong_{\mathfrak{S}_n} \widetilde{H}^{top}(\Pi_n \setminus \{\hat{0}, \hat{1}\}) \otimes \operatorname{sgn}_n$

This relation has a long history.

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998)) $\mathcal{L}ie(n) \cong_{\mathfrak{S}_n} \widetilde{H}^{top}(\Pi_n \setminus {\hat{0}, \hat{1}}) \otimes \operatorname{sgn}_n$

This relation has a long history.

• Character of $\mathcal{L}ie(n)$ - E. Witt (1934) and A. J. Brandt (1944).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998)) $\mathcal{L}ie(n) \cong_{\mathfrak{S}_n} \widetilde{H}^{top}(\Pi_n \setminus \{\hat{0}, \hat{1}\}) \otimes \operatorname{sgn}_n$

- This relation has a long history.
 - Character of $\mathcal{L}ie(n)$ E. Witt (1934) and A. J. Brandt (1944).

• Character of $H_{top}(\overline{\Pi_n})$ - R. Stanley (1980) and P. Hanlon .

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998)) $\mathcal{L}ie(n) \cong_{\mathfrak{S}_n} \widetilde{H}^{top}(\Pi_n \setminus \{\hat{0}, \hat{1}\}) \otimes \operatorname{sgn}_n$

- This relation has a long history.
 - Character of $\mathcal{L}ie(n)$ E. Witt (1934) and A. J. Brandt (1944).
 - Character of $H_{top}(\overline{\Pi_n})$ R. Stanley (1980) and P. Hanlon .
 - Species theoretic proof of the isomorphism A. Joyal (1985).

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998)) $\mathcal{L}ie(n) \cong_{\mathfrak{S}_n} \widetilde{H}^{top}(\Pi_n \setminus \{\hat{0}, \hat{1}\}) \otimes \operatorname{sgn}_n$

- This relation has a long history.
 - Character of $\mathcal{L}ie(n)$ E. Witt (1934) and A. J. Brandt (1944).
 - Character of $H_{top}(\overline{\Pi_n})$ R. Stanley (1980) and P. Hanlon .
 - Species theoretic proof of the isomorphism A. Joyal (1985).

 Combinatorial correspondence between Lyndon basis and Björner's NBC basis - H. Barcelo (1988).

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998)) $\mathcal{L}ie(n) \cong_{\mathfrak{S}_n} \widetilde{H}^{top}(\Pi_n \setminus \{\hat{0}, \hat{1}\}) \otimes \operatorname{sgn}_n$

- This relation has a long history.
 - Character of $\mathcal{L}ie(n)$ E. Witt (1934) and A. J. Brandt (1944).
 - Character of $H_{top}(\overline{\Pi_n})$ R. Stanley (1980) and P. Hanlon .
 - Species theoretic proof of the isomorphism A. Joyal (1985).
 - Combinatorial correspondence between Lyndon basis and Björner's NBC basis - H. Barcelo (1988).
 - Natural correspondence between generating sets M. Wachs (1998).

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998))

$$\mathcal{L}ie(n) \cong_{\mathfrak{S}_n} \widetilde{H}^{top}(\Pi_n \setminus \{\hat{0}, \hat{1}\}) \otimes \operatorname{sgn}_n$$

Moral:
We can study
$$\mathcal{L}ie(n)$$
 by applying poset topology techniques to Π_n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998)) $\mathcal{L}ie(n) \cong_{\mathfrak{S}_n} \widetilde{H}^{top}(\Pi_n \setminus \{\hat{0}, \hat{1}\}) \otimes \operatorname{sgn}_n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998))

$$\mathcal{L}ie(n) \cong_{\mathfrak{S}_n} \widetilde{H}^{top}(\Pi_n \setminus \{\hat{0}, \hat{1}\}) \otimes \operatorname{sgn}_n$$

 Π_n is EL-shellable (Stanley-Björner, Wachs) and hence Cohen-Macaulay.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998)) $\mathcal{L}ie(n) \cong_{\mathfrak{S}_n} \widetilde{H}^{top}(\Pi_n \setminus \{\hat{0}, \hat{1}\}) \otimes \operatorname{sgn}_n$

 Π_n is EL-shellable (Stanley-Björner, Wachs) and hence Cohen-Macaulay.

■ Stanley-Bjorner ascent-free chains ⇒ Lyndon basis Wachs ascent-free chains ⇒ Comb basis.

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998)) $\mathcal{L}ie(n) \cong_{\mathfrak{S}_n} \widetilde{H}^{top}(\Pi_n \setminus \{\hat{0}, \hat{1}\}) \otimes \operatorname{sgn}_n$

- Π_n is EL-shellable (Stanley-Björner, Wachs) and hence Cohen-Macaulay.
- Stanley-Bjorner ascent-free chains ⇒ Lyndon basis Wachs ascent-free chains ⇒ Comb basis.

•
$$\mu(\Pi_n) = (-1)^{n-1}(n-1)! \Longrightarrow \dim \mathcal{L}ie(n) = (n-1)!$$

The story with two brackets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\mathcal{L}ie_2(n)$

Consider two Lie brackets:

Consider two Lie brackets:

- [x, y] = -[y, x] (Antisymmetry)
- [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Identity)

•
$$\langle x, y \rangle = -\langle y, x \rangle$$
 (Antisymmetry)

• $\langle x, \langle y, z \rangle \rangle + \langle z, \langle x, y \rangle \rangle + \langle y, \langle z, x \rangle \rangle = 0$ (Jacobi Identity)

Consider two Lie brackets:

- [x, y] = -[y, x] (Antisymmetry)
- [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Identity)

•
$$\langle x, y \rangle = -\langle y, x \rangle$$
 (Antisymmetry)

- $\langle x, \langle y, z \rangle \rangle + \langle z, \langle x, y \rangle \rangle + \langle y, \langle z, x \rangle \rangle = 0$ (Jacobi Identity)
- They are compatible if any linear combination of the two brackets is also a Lie bracket.

Consider two Lie brackets:

- [x, y] = -[y, x] (Antisymmetry)
- [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Identity)

•
$$\langle x, y \rangle = -\langle y, x \rangle$$
 (Antisymmetry)

• $\langle x, \langle y, z \rangle \rangle + \langle z, \langle x, y \rangle \rangle + \langle y, \langle z, x \rangle \rangle = 0$ (Jacobi Identity)

 $[x, \langle y, z \rangle] + [z, \langle x, y \rangle] + [y, \langle z, x \rangle] + \langle x, [y, z] \rangle$ $+ \langle z, [x, y] \rangle + \langle y, [z, x] \rangle = 0$ (Mixed Jacobi Identity)

Consider two Lie brackets:

- [x, y] = -[y, x] (Antisymmetry)
- [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Identity)

•
$$\langle x, y \rangle = -\langle y, x \rangle$$
 (Antisymmetry)

- $\langle x, \langle y, z \rangle \rangle + \langle z, \langle x, y \rangle \rangle + \langle y, \langle z, x \rangle \rangle = 0$ (Jacobi Identity)
- $[x, \langle y, z \rangle] + [z, \langle x, y \rangle] + [y, \langle z, x \rangle] + \langle x, [y, z] \rangle$ $+ \langle z, [x, y] \rangle + \langle y, [z, x] \rangle = 0$ (Mixed Jacobi Identity)

Denote by $\mathcal{L}ie_2(n)$ the multilinear component of the free doubly-bracketed Lie algebra on [n].

$\mathcal{L}ie_2(n) \text{ is generated by bracketed permutations of the form:} \\ & \langle [\langle [3,4],6\rangle, [1,5]], \langle \langle [2,7],9\rangle,8\rangle \rangle$

Denote by $\mathcal{L}ie_2(n, i)$ the component of $\mathcal{L}ie_2(n)$ generated by bracketed permutations with exactly *i* brackets of the first type.

Results on $\mathcal{L}ie_2(n)$ and $\mathcal{L}ie_2(n,i)$

Theorem (Dotsenko-Koroshkin (2007),Liu (2008)) $\dim \mathcal{L}ie_2(n) = n^{n-1}$

(The number of rooted trees on [n]).

Results on $\mathcal{L}ie_2(n)$ and $\mathcal{L}ie_2(n, i)$

Theorem (Dotsenko-Koroshkin (2007), Liu (2008))

 $\dim \mathcal{L}ie_2(n) = n^{n-1}$

(The number of rooted trees on [n]).

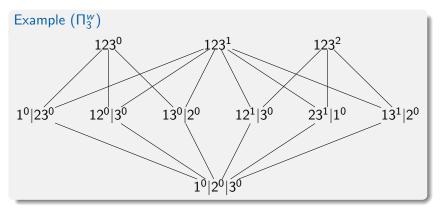
Theorem (Liu (2008))

 $\dim \mathcal{L}ie_2(n,i) = |\mathcal{T}_{n,i}|$

(the number of rooted trees on [n] with i descents).

The poset of weighted partitions Π_n^w

 V. Dotsenko and A. Khoroshkin defined the poset of weighted partitions Π^w_n.



Theorem

$$\mathcal{L}ie(n,i) \cong_{\mathfrak{S}_n} H^{top}((\hat{0},[n]^i)) \otimes \operatorname{sgn}_n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

$$\mathcal{L}ie(n,i) \cong_{\mathfrak{S}_n} H^{top}((\hat{0},[n]^i)) \otimes \operatorname{sgn}_n$$

Other results:

Theorem (G - Wachs) $\widehat{\Pi_n^w} := \Pi_n^w \cup \hat{1}$ is EL-shellable and hence Cohen-Macaulay.

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへぐ

Theorem

$$\mathcal{L}ie(n,i) \cong_{\mathfrak{S}_n} H^{top}((\hat{0},[n]^i)) \otimes \operatorname{sgn}_n$$

Other results:

Theorem (G - Wachs)

 $\widehat{\Pi_n^w} := \Pi_n^w \cup \hat{1}$ is EL-shellable and hence Cohen-Macaulay.

The EL-labeling generalizes the Björner-Stanley labeling of Π_n.

Theorem

$$\mathcal{L}ie(n,i) \cong_{\mathfrak{S}_n} H^{top}((\hat{0},[n]^i)) \otimes \operatorname{sgn}_n$$

Other results:

Theorem (G - Wachs)

 $\widehat{\Pi_n^w} := \Pi_n^w \cup \hat{1}$ is EL-shellable and hence Cohen-Macaulay.

The EL-labeling generalizes the Björner-Stanley labeling of Π_n.

• Ascent-free chains \Rightarrow bicolored Lyndon basis.

 $-\mathcal{L}ie(\mu)$

Question (Liu (2008))

Is it possible to define $Lie_k(n)$ for any $k \ge 1$ so that it has nice dimension formulas like those for Lie(n) and $Lie_2(n)$? What are the right combinatorial objects for $Lie_k(n)$, if it can be defined?

Preliminary definitions

We are going to consider Lie brackets $[\cdot, \cdot]_j$ indexed by positive integers $j \in \mathbb{P}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminary definitions

We are going to consider Lie brackets $[\cdot, \cdot]_j$ indexed by positive integers $j \in \mathbb{P}$. Consider the set wcomp_n of weak compositions of n.

Preliminary definitions

We are going to consider Lie brackets $[\cdot, \cdot]_j$ indexed by positive integers $j \in \mathbb{P}$. Consider the set wcomp_n of weak compositions of n.

Example: (0, 2, 0, 1, 2, 0, 0, ...) =: (0, 2, 0, 1, 2) is a weak composition of 5.

Preliminary definitions

We are going to consider Lie brackets $[\cdot, \cdot]_j$ indexed by positive integers $j \in \mathbb{P}$. Consider the set wcomp_n of weak compositions of *n*.

Example:
$$(0, 2, 0, 1, 2, 0, 0, ...) =: (0, 2, 0, 1, 2)$$
 is a weak composition of 5.

We say that a set of Lie brackets on a vector space is compatible if any linear combination of them is a Lie bracket.

 $\mathcal{L}ie(\mu)$

For a weak composition μ define $\mathcal{Lie}(\mu)$ to be the multilinear component of the free multibracketed Lie algebra on [n] generated by bracketed permutations with μ_j brackets of type j for each j.

 $\mathcal{L}ie(\mu)$

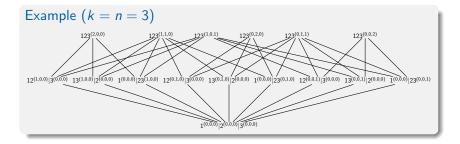
For a weak composition μ define $\mathcal{Lie}(\mu)$ to be the multilinear component of the free multibracketed Lie algebra on [n] generated by bracketed permutations with μ_j brackets of type j for each j.

Example: $\mathcal{L}ie(0, 2, 0, 1, 2)$ is generated by bracketed permutations with two brackets of type 2, one bracket of type 4 and two brackets of type 5.

Is there a poset associated with $\mathcal{L}ie(\mu)$?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The poset of weighted partitions Π_n^k



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (G (2013))

The poset $\Pi_n^k \cup \{\hat{1}\}$ is EL-shellable and hence Cohen-Macaulay.

Theorem (G (2013))

The poset $\Pi_n^k \cup \{\hat{1}\}$ is EL-shellable and hence Cohen-Macaulay.

 The EL-Labeling extends the Björner-Stanley EL-labeling for Π_n and the one of González D'León-Wachs for Π^w_n.

Theorem (G (2013))

The poset $\Pi_n^k \cup \{\hat{1}\}$ is EL-shellable and hence Cohen-Macaulay.

 The EL-Labeling extends the Björner-Stanley EL-labeling for Π_n and the one of González D'León-Wachs for Π^w_n.

• Ascent-free chains \Rightarrow multicolored Lyndon basis .

■ Recall that the maximal elements in Π_n^k are of the form $[n]^{\mu}$ where $\mu \in \operatorname{wcomp}_{n-1}$ with $\operatorname{supp}(\mu) \subseteq [k]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

■ Recall that the maximal elements in Π_n^k are of the form $[n]^{\mu}$ where $\mu \in \operatorname{wcomp}_{n-1}$ with $\operatorname{supp}(\mu) \subseteq [k]$.

Theorem (G (2013))

 $\mathcal{L}ie(\mu) \simeq_{\mathfrak{S}_n} \widetilde{H}^{top}((\hat{0}, [n]^{\mu})) \otimes \operatorname{sgn}_n$

What is dim $\mathcal{L}ie(\mu)$?.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let
$$\mathbf{x} = (x_1, x_2, \dots)$$
 and $\mathbf{x}^{\mu} = \prod_{i \geq 1} x_i^{\mu_i}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let $\mathbf{x} = (x_1, x_2, ...)$ and $\mathbf{x}^{\mu} = \prod_{i \ge 1} x_i^{\mu_i}$. We consider for all $n \ge 0$ the following generating function:

$$\sum_{\mu\in\mathrm{wcomp}_n}\dim\mathcal{L}ie(\mu)\,\mathsf{x}^\mu$$

Let $\mathbf{x} = (x_1, x_2, ...)$ and $\mathbf{x}^{\mu} = \prod_{i \ge 1} x_i^{\mu_i}$. We consider for all $n \ge 0$ the following generating function:

 $\sum_{\mu\in\mathrm{wcomp}_n}\dim\mathcal{L}ie(\mu)\,\mathsf{x}^\mu$

This generating function is actually a homogeneous symmetric function of degree n.

Let $\mathbf{x} = (x_1, x_2, ...)$ and $\mathbf{x}^{\mu} = \prod_{i \ge 1} x_i^{\mu_i}$. We consider for all $n \ge 0$ the following generating function:

 $\sum_{\mu\in\mathrm{wcomp}_n}\dim\mathcal{L}ie(\mu)\,\mathsf{x}^\mu$

This generating function is actually a homogeneous symmetric function of degree n.

Normalized trees

Definition

We say that a leaf-labeled (planar) binary tree T is normalized if in every subtree of T the minimal label is attached to the left-most leaf.

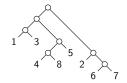
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

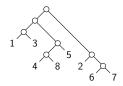
Normalized trees

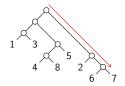
Definition

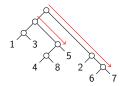
We say that a leaf-labeled (planar) binary tree T is normalized if in every subtree of T the minimal label is attached to the left-most leaf.

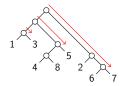
Example:

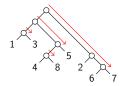


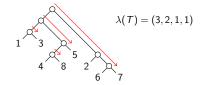




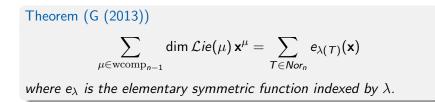








▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Why is this?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The steps:

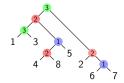
Ascent-free chains of the EL-labeling \Leftrightarrow Multicolored Lyndon trees \Leftrightarrow Multicolored Combs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The steps:

Ascent-free chains of the EL-labeling \Leftrightarrow Multicolored Lyndon trees \Leftrightarrow Multicolored Combs

Multicolored combs look like:



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

For the set of variables $\mathbf{x} = (x_1, x_2, \dots)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For the set of variables $\mathbf{x} = (x_1, x_2, \dots)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $e_0 := 1$

For the set of variables $\mathbf{x} = (x_1, x_2, \dots)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $e_0 := 1$ $e_1 := x_1 + x_2 + x_3 \cdots$

For the set of variables $\mathbf{x} = (x_1, x_2, \dots)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $e_0 := 1$ $e_1 := x_1 + x_2 + x_3 \cdots$ $e_2 := x_1 x_2 + x_1 x_3 + x_2 x_3 + \cdots$

For the set of variables $\mathbf{x} = (x_1, x_2, \dots)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

```
e_0 := 1

e_1 := x_1 + x_2 + x_3 \cdots

e_2 := x_1 x_2 + x_1 x_3 + x_2 x_3 + \cdots

...
```

For the set of variables $\mathbf{x} = (x_1, x_2, \dots)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$e_{0} := 1$$

$$e_{1} := x_{1} + x_{2} + x_{3} \cdots$$

$$e_{2} := x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + \cdots$$

$$\cdots$$

$$e_{k} := \sum_{i_{1} < i_{2} < \cdots < i_{k}} x_{i_{1}}x_{i_{2}} \cdots x_{i_{k}}$$

For the set of variables $\mathbf{x} = (x_1, x_2, \dots)$

$$e_{0} := 1$$

$$e_{1} := x_{1} + x_{2} + x_{3} \cdots$$

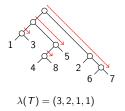
$$e_{2} := x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + \cdots$$

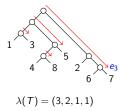
$$\cdots$$

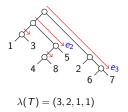
$$e_{k} := \sum_{i_{1} < i_{2} < \cdots < i_{k}} x_{i_{1}}x_{i_{2}} \cdots x_{i_{k}}$$

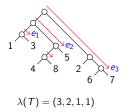
And for a number partition λ of n (i.e. a weak composition $(\lambda_1, \lambda_2, \cdots)$ of n with weakly decreasing values $\lambda_1 \ge \lambda_2 \ge \cdots$) define

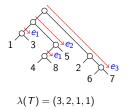
$$e_{\lambda} := e_{\lambda_1} e_{\lambda_2} \cdots$$

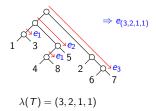




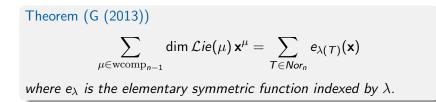








▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@