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On the Lie algebra with multiple brackets

Lie(n)

Lie bracket

A Lie bracket over a vector space V is a bilinear binary product
[·, ·] : V × V → V that for x , y , z ∈ V satisfies the properties:

[x , y ] + [y , x ] = 0 (Antisymmetry)

[x , [y , z ]] + [z , [x , y ]] + [y , [z , x ]] = 0 (Jacobi Identity)
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Free Lie algebra

The free Lie algebra on [n] = {1, 2, . . . , n} is the algebra generated
by “bracketed words” subject only to antisymmetry and Jacobi
identity.

Examples of generators:

[1, 2]

[[3, 4], 3]

[[[3, 4], 3], [1, 2]]
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Lie(n) is the component of the free lie algebra on [n] generated
by all the possible bracketings of {1, 2, ..., n} containing each label
exactly once (the multilinear component). Let’s call these
bracketings bracketed permutations.

[[[[3, 4], 6], [1, 5]], [[[2, 7], 9], 8]]

Lie(n) has the structure of an Sn-module.
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There is another way to
describe the generators
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Generating set for Lie(n)
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Let’s turn the page temporarily
to visit a combinatorial object.
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Poset of partitions

A partition of [n] is a collection of disjoint sets {B1,B2, . . . ,Bn}
such that their union

⋃
i Bi = [n].

Example: 147|2|35|68 is a partition of [8]

We can order the partitions of [n] by refinement.

Example: 147|2|35|68 ≤ 147|268|35

Let Πn be the partially ordered set (poset) of partitions of [n] with
the order relation above.
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13|2

1|2|3

123

12|3 23|1

Πn has a bottom element, all singletons 1|2|3.
Πn has a top element, the block 123.
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13|2

1|2|3

123

12|3 23|1

A chain is a totally ordered subset of P.

Example: in Π3, 1|2|3 < 12|3 is a chain as well as 1|2|3 < 123.
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1|2|3

123

12|3 23|1

A chain is a totally ordered subset of P.
Example: in Π3, 1|2|3 < 12|3 is a chain as well as 1|2|3 < 123.
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Cohomology of a poset

Let P be a finite and bounded poset. We define (reduced) chain
and cochain complexes

· · ·
∂r+1−−→←−−
δr

Cr (P)
∂r−−→←−−
δr−1

Cr−1(P)

∂r−1−−−→←−−
δr−2

· · ·

where

Cr (P) = C{r -chains in P}

and

∂r (α0 < α1 < · · · < αr ) =
r∑

i=0

(−1)i (α0 < · · · < α̂i < · · · < αr )
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Cohomology of a poset

H̃∗(P) is the reduced cohomology of this complex.

H̃top(P) = C{maximal chains}/{cohomology relations}
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Another set generated by
leaf-labeled binary trees
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Order the internal nodes of the binary tree in postorder (recursively
left subtree < right subtree < root):
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A maximal chain in the poset of
partitions Πn!
Example (Π3)
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Remark

Not every maximal chain in Πn

is of this form (postorder is not
enough!). But every maximal
chain is cohomology equivalent
to a chain of this form.
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The isomorphism

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998))

Lie(n) ∼=Sn H̃top(Πn \ {0̂, 1̂})⊗ sgnn

This relation has a long history.

Character of Lie(n) - E. Witt (1934) and A. J. Brandt (1944).

Character of H̃top(Πn) - R. Stanley (1980) and P. Hanlon .
Species theoretic proof of the isomorphism - A. Joyal (1985).
Combinatorial correspondence between Lyndon basis and
Björner’s NBC basis - H. Barcelo (1988).
Natural correspondence between generating sets - M. Wachs
(1998).
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The isomorphism

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998))

Lie(n) ∼=Sn H̃top(Πn \ {0̂, 1̂})⊗ sgnn

Moral:
We can study Lie(n) by applying
poset topology techniques to Πn.
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A few results

Theorem (Joyal(1985), Barcelo (1988), Wachs (1998))

Lie(n) ∼=Sn H̃top(Πn \ {0̂, 1̂})⊗ sgnn

Πn is EL-shellable (Stanley-Björner, Wachs) and hence
Cohen-Macaulay.

Stanley-Bjorner ascent-free chains ⇒ Lyndon basis
Wachs ascent-free chains ⇒ Comb basis.

µ(Πn) = (−1)n−1(n − 1)! =⇒ dimLie(n) = (n − 1)!
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On the Lie algebra with multiple brackets

Lie2(n)

Lie2(n)

Consider two Lie brackets:

[x , y ] = −[y , x ] (Antisymmetry)

[x , [y , z ]] + [z , [x , y ]] + [y , [z , x ]] = 0 (Jacobi Identity)

〈x , y〉 = −〈y , x〉 (Antisymmetry)

〈x , 〈y , z〉〉+ 〈z , 〈x , y〉〉+ 〈y , 〈z , x〉〉 = 0 (Jacobi Identity)

[x , 〈y , z〉] + [z , 〈x , y〉] + [y , 〈z , x〉] + 〈x , [y , z ]〉
+ 〈z , [x , y ]〉+ 〈y , [z , x ]〉 = 0 (Mixed Jacobi Identity)

Denote by Lie2(n) the multilinear component of the free
doubly-bracketed Lie algebra on [n].
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[x , 〈y , z〉] + [z , 〈x , y〉] + [y , 〈z , x〉] + 〈x , [y , z ]〉
+ 〈z , [x , y ]〉+ 〈y , [z , x ]〉 = 0 (Mixed Jacobi Identity)

Denote by Lie2(n) the multilinear component of the free
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Lie2(n) is generated by bracketed permutations of the form:

〈[〈[3, 4], 6〉, [1, 5]], 〈〈[2, 7], 9〉, 8〉〉

Denote by Lie2(n, i) the component of Lie2(n) generated by
bracketed permutations with exactly i brackets of the first type.
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Lie2(n)

Results on Lie2(n) and Lie2(n, i)

Theorem (Dotsenko-Koroshkin (2007),Liu (2008))

dimLie2(n) = nn−1

(The number of rooted trees on [n]).

Theorem (Liu (2008))

dimLie2(n, i) = |Tn,i |

(the number of rooted trees on [n] with i descents).
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Results on Lie2(n) and Lie2(n, i)

Theorem (Dotsenko-Koroshkin (2007),Liu (2008))
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Theorem (Liu (2008))
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Lie2(n)

The poset of weighted partitions Πw
n

V. Dotsenko and A. Khoroshkin defined the poset of weighted
partitions Πw

n .

Example (Πw
3 )

1232

130|20

10|20|30

1231

120|30 131|20

1230

10|230 121|30 231|10



On the Lie algebra with multiple brackets

Lie2(n)

It follows from a result of B. Vallette or from a proof using Wachs
technique that

Theorem

Lie(n, i) ∼=Sn Htop((0̂, [n]i ))⊗ sgnn

Other results:

Theorem (G - Wachs)

Π̂w
n := Πw

n ∪ 1̂ is EL-shellable and hence Cohen-Macaulay.

The EL-labeling generalizes the Björner-Stanley labeling of
Πn.

Ascent-free chains ⇒ bicolored Lyndon basis.
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Other results:

Theorem (G - Wachs)
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Lie(µ)

Question (Liu (2008) )

Is it possible to define Liek(n) for any k ≥ 1 so that it has nice
dimension formulas like those for Lie(n) and Lie2(n)? What are
the right combinatorial objects for Liek(n), if it can be defined?



On the Lie algebra with multiple brackets

Lie(µ)

Preliminary definitions

We are going to consider Lie brackets [·, ·]j indexed by positive
integers j ∈ P.

Consider the set wcompn of weak compositions of
n.

Example: (0, 2, 0, 1, 2, 0, 0, . . . ) =: (0, 2, 0, 1, 2) is a weak
composition of 5.

We say that a set of Lie brackets on a vector space is compatible if
any linear combination of them is a Lie bracket.
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Preliminary definitions

We are going to consider Lie brackets [·, ·]j indexed by positive
integers j ∈ P. Consider the set wcompn of weak compositions of
n.

Example: (0, 2, 0, 1, 2, 0, 0, . . . ) =: (0, 2, 0, 1, 2) is a weak
composition of 5.

We say that a set of Lie brackets on a vector space is compatible if
any linear combination of them is a Lie bracket.
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Lie(µ)

For a weak composition µ define Lie(µ) to be the multilinear
component of the free multibracketed Lie algebra on [n] generated
by bracketed permutations with µj brackets of type j for each j .

Example: Lie(0, 2, 0, 1, 2) is generated by bracketed permutations
with two brackets of type 2, one bracket of type 4 and two
brackets of type 5.
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Lie(µ)

For a weak composition µ define Lie(µ) to be the multilinear
component of the free multibracketed Lie algebra on [n] generated
by bracketed permutations with µj brackets of type j for each j .

Example: Lie(0, 2, 0, 1, 2) is generated by bracketed permutations
with two brackets of type 2, one bracket of type 4 and two
brackets of type 5.



On the Lie algebra with multiple brackets

Lie(µ)

Is there a poset associated with
Lie(µ)?
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Lie(µ)

The poset of weighted partitions Πk
n

Example (k = n = 3)

1(0,0,0)|2(0,0,0)|3(0,0,0)

12(1,0,0)|3(0,0,0) 13(1,0,0)|2(0,0,0) 1(0,0,0)|23(1,0,0) 12(0,1,0)|3(0,0,0) 13(0,1,0)|2(0,0,0) 1(0,0,0)|23(0,1,0) 12(0,0,1)|3(0,0,0) 13(0,0,1)|2(0,0,0) 1(0,0,0)|23(0,0,1)

123(2,0,0) 123(1,1,0) 123(1,0,1) 123(0,2,0) 123(0,1,1) 123(0,0,2)
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Lie(µ)

Theorem (G (2013))

The poset Πk
n ∪ {1̂} is EL-shellable and hence Cohen-Macaulay.

The EL-Labeling extends the Björner-Stanley EL-labeling for
Πn and the one of González D’León-Wachs for Πw

n .

Ascent-free chains ⇒ multicolored Lyndon basis .
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Lie(µ)

Recall that the maximal elements in Πk
n are of the form [n]µ

where µ ∈ wcompn−1 with supp(µ) ⊆ [k].

Theorem (G (2013))

Lie(µ) 'Sn H̃top((0̂, [n]µ))⊗ sgnn
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Lie(µ)

Recall that the maximal elements in Πk
n are of the form [n]µ

where µ ∈ wcompn−1 with supp(µ) ⊆ [k].

Theorem (G (2013))

Lie(µ) 'Sn H̃top((0̂, [n]µ))⊗ sgnn



On the Lie algebra with multiple brackets

Lie(µ)

What is dimLie(µ)?.
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Lie(µ)

Let x = (x1, x2, . . . ) and xµ =
∏

i≥1 xµii .

We consider for all n ≥ 0 the following generating function:∑
µ∈wcompn

dimLie(µ) xµ

This generating function is actually a homogeneous symmetric
function of degree n.
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Lie(µ)

Let x = (x1, x2, . . . ) and xµ =
∏

i≥1 xµii .
We consider for all n ≥ 0 the following generating function:∑

µ∈wcompn

dimLie(µ) xµ

This generating function is actually a homogeneous symmetric
function of degree n.
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Lie(µ)

Normalized trees

Definition

We say that a leaf-labeled (planar) binary tree T is normalized if in
every subtree of T the minimal label is attached to the left-most
leaf.

Example:

1 3

4 8
5

2
6 7
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On the Lie algebra with multiple brackets

Lie(µ)

We can assign a type or number partition to a normalized binary
tree T where the parts are given by the number of internal nodes
in maximal “right-runs” in T .

For the example:

1 3

4 8
5

2
6 7

λ(T ) = (3, 2, 1, 1)
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Lie(µ)

Theorem (G (2013))∑
µ∈wcompn−1

dimLie(µ) xµ =
∑

T∈Norn

eλ(T )(x)

where eλ is the elementary symmetric function indexed by λ.
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Lie(µ)

Why is this?
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Lie(µ)

The steps:

Ascent-free chains of the EL-labeling ⇔ Multicolored Lyndon trees
⇔ Multicolored Combs

Multicolored combs look like:

1 3

4 8
5

2
6 7

3

2

3

2

1

1

2
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Lie(µ)

Elementary symmetric functions

For the set of variables x = (x1, x2, . . . )

e0 := 1
e1 := x1 + x2 + x3 · · ·
e2 := x1x2 + x1x3 + x2x3 + · · ·
· · ·
ek :=

∑
i1<i2<···<ik

xi1xi2 · · · xik

And for a number partition λ of n (i.e. a weak composition
(λ1, λ2, · · · ) of n with weakly decreasing values λ1 ≥ λ2 ≥ · · · )
define

eλ := eλ1eλ2 · · ·
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What is the contribution of a normalized tree to the generating
function?

1 3

4 8
5

2
6 7

λ(T ) = (3, 2, 1, 1)

e3

e2

e1

e1

⇒ e(3,2,1,1)
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Theorem (G (2013))∑
µ∈wcompn−1

dimLie(µ) xµ =
∑

T∈Norn

eλ(T )(x)

where eλ is the elementary symmetric function indexed by λ.
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