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tight frames

A finite collection of vectors S = {xi, 1 ≤ i ≤ N} ⊂ Rn is called a
finite frame for the Euclidean space Rn if there are constants
0 < A ≤ B < ∞ such that for all x ∈ Rn

A||x||2 ≤
N∑
i=1

⟨x, xi⟩2 ≤ B||x||2. (1)

If A = B, then S is called an A-tight frame.

An equivalent condition for A-tight frames is Ax =
∑N

i=1⟨x, xi⟩xi
for all x ∈ Rn.

If in addition ∥xi∥ = 1 for all i, then S is a unit-norm tight frame.

3



characterization of unit-norm tight frames

Theorem (Benedetto-Fickus, 2003)

If N > n then
N∑

i,j=1
⟨xi, xj⟩2 ≥

N2

n (2)

with equality if and only if S is a tight frame.
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two-distance tight frames

A finite collection of unit vectors S ⊂ Rn is called a spherical
two-distance set if there are two numbers a and b such that
the inner products of distinct vectors from S are either a or b.
If at the same time S is a finite unit-norm tight frame, we call it
a two-distance tight frame.

If a+ b ̸= 0, the definition of a tight frame immediately shows
that S must be regular, i.e. the distribution of inner products is
the same for each vector xi.
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equiangular tight frames

If the two inner products of a two-distance tight frame S
satisfy the condition a = −b, then it is called an equiangular
tight frame.

..Equiangular tight frames.

Certain strongly regular graphs

See Waldron (Linear Alg. Appl., vol. 41, pp. 2228-2242, 2009).
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spherical designs

For a natural number t, a finite set of vectors
S = {xi, 1 ≤ i ≤ N} ⊂ Sn−1 is called a spherical t-design if for
any polynomial f(x) of degree at most t

1
|Sn−1|

∫
x∈Sn−1

f(x)dσ(x) = 1
N

n∑
i=1

f(xi). (3)

Examples:

∙ Icosahedron and dodecahedron are 5-designs
∙ 120-cell and 600-cell are 11-designs
∙ Root systems
∙ Minimal vectors of the Leech lattice form an 11-design
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spherical 2-designs are tight frames

S = {xi, 1 ≤ i ≤ N} ⊂ Sn−1 is a spherical 2-design if and only if

N∑
i,j=1

⟨xi, xj⟩2 =
N2

n and
N∑
i=1

xi = 0 (4)

..Two-distance tight frames.

Spherical two-distance 2-designs

8



spherical 2-designs are tight frames

S = {xi, 1 ≤ i ≤ N} ⊂ Sn−1 is a spherical 2-design if and only if

N∑
i,j=1

⟨xi, xj⟩2 =
N2

n and
N∑
i=1

xi = 0 (4)

..Two-distance tight frames.

Spherical two-distance 2-designs

8



strongly regular graphs

A regular graph of degree k on v vertices is called strongly
regular if every two adjacent vertices have λ common
neighbors and every two non-adjacent vertices have µ

common neighbors. We use the notation SRG(v, k, λ, µ) to
denote such a graph.

Examples:

∙ Cycle of length 5
∙ Petersen graph
∙ Hoffman-Singleton graph
∙ Conference graphs
∙ n× n rook’s graphs
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strongly regular graphs and 2-designs

Delsarte, Goethals, and Seidel obtained a spherical embedding
of Γ = SRG(v, k, λ, µ) by associating a basis of Rv with the
vertices of Γ, projecting these vectors on an eigenspace of the
adjacency matrix of Γ, and normalizing lengths of projections.
They also showed that this embedding forms a two-distance
2-design.

..Spherical two-distance 2-designs.

Strongly regular graphs
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regular two-distance tight frames are almost 2-designs

Proposition

If S is a regular 2-distance tight frame in Rn, then S is either an
n-dimensional spherical 2-design, or is similar to an
(n− 1)-dimensional spherical 2-design contained in a
subsphere of radius

√
1− 1/n.

Proof.

Let s =
∑N

i=1 xi. The value t := ⟨xi, s⟩ is the same for all i. Using
an equivalent definition of tight frames, we get
N
n s =

∑N
i=1 txi = ts. Hence either s = 0 or t = N

n .
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two-distance tight frames are defined by srg’s

Proposition

If S is a regular two-distance tight frame, then its associated
graph Γ1 (and Γ2 as the complement of Γ1) is a strongly regular
graph.

Proof.

Use a theorem by Delsarte, Goethals, Seidel for 2-designs or
just check the definition of tight frames carefully.
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two-distance tight frames are defined by srg’s

..Spherical two-distance 2-designs.

Strongly regular graphs

Question

What two-distance spherical embeddings of SRG’s form
2-designs?
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spectral structure of srg’s and spherical embeddings

For a given SRG(v, k, λ, µ) which is not a complete or empty
graph, its adjacency matrix has three mutually orthogonal
eigenspaces (subspaces) that correspond to three eigenvalues:
the all-one vector 1 with eigenvalue k and subspaces E1 and E2.

Projecting an orthonormal basis of Rn on 1 and normalizing
gives a trivial 1-dimensional embedding, where all inner
products are 1.

Projections on E1 or on E2 after normalization give
two-distance 2-designs.

Direct orthogonal sum of two spherical embeddings is a
spherical embedding.
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two-distance spherical embeddings of srg’s

Proposition

For a given Γ = SRG(N, k, λ, µ), any two-distance spherical
embedding may be represented as a direct orthogonal sum of
the trivial and Delsart-Goethals-Seidel embeddings.

Proof.

Since the Gram matrix is positive definite, the set of possible
values of scalar products a and b associated to embeddings of
Γ forms a triangle on (a,b)-plane with vertices corresponding
to the trivial and two Delsarte-Goethals-Seidel embeddings.
Therefore, any pair (a,b) may be obtained as a non-negative
linear combination of scalar products from these
embeddings.
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two-distance 2-designs

Theorem

Any spherical two-distance 2-design with graph
Γ = SRG(N, k, λ, µ) for one of the distances is either one of two
Delsarte-Goethals-Seidel embeddings, or a regular
(N− 1)-dimensional simplex.

Proof.

Use the previous proposition and the description of
embeddings via eigenspaces of the adjacency matrix of Γ.
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characterization of two-distance tight frames

Theorem

Let S be a regular two-distance tight frame in Rn. Then S forms
a spherical two-distance 2-design or a shifted 2-design. In
either case S can be obtained as a spherical embedding of a
strongly regular graph. Under spherical embedding, every
strongly regular graph gives rise to three different
two-distance 2-designs and therefore, to six different
two-distance tight frames, two of which are regular simplices.
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constructing two-distance tight frames

SRG(N, k, λ, µ) 2-design (n,N, a,b)
shifted 2-design (n,N, a,b)

(10, 6, 3, 4) (4, 10, 1
6 ,−

2
3); (5, 10,

1
3 ,−

1
3);

(5, 10, 13 ,−
1
3); (6, 10,

4
9 ,−

1
9)

(15, 8, 4, 4) (5, 15, 1
4 ,−

1
2); (9, 15,

1
6 ,−

1
4);

(6, 15, 38 ,−
1
4); (10, 15,

1
4 ,−

1
8)

(16, 10, 6, 6) (5, 16, 15 ,−
3
5); (10, 16,

1
5 ,−

1
5);

(6, 16, 13 ,−
1
3); (11, 16,

3
11 ,−

1
11)
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