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Resolvability of a cyclic orbit

v, k: positive integers such that k
∣∣∣v

Zv: a residue ring of integers mod-

ulo v.

For a subset (block) B ⊂ Zv of size k,

OrbZv(B) = {B + i
∣∣∣i ∈ Zv} is called a

cyclic orbit of B.

OrbZv(B) is said to be full if

|OrbZv(B)| = v, otherwize short.
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A subfamily R ⊂ OrbZv(B) satisfying ∪E∈RE = Zv is
called a resolution class. If OrbZv(B) is decomposed
into disjoint resolution classes then OrbZv(B) is said to
be resolvable.



For any A,B ⊂ Zv, let A + B = {a + b
∣∣∣a ∈ A, b ∈ B},

which is considered as a mulitiset.

If OrbZv(B) has a resolution

class, then there is a subset

C ⊂ Zv satisfying

B+ C = Zv. (1)

If (1) holds, we say that

(B,C) is a factorization of

Zv. Note that if (B,C) is

a factorization of Zv, then

(B+ x,C+ y) is also a fac-

torization for x, y ∈ Zv.
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R={B, B+c1, B+c2, B+c3}

Let C={0, c1, c2, c3}, then

B+C=Zv

v-1



Lemma 1 If OrbZv(B) has a resolution class then

OrbZv(B) is resolvable.

Proof: A resolution class is represented as R =

∪c∈C(B + c) with C ⊂ Zv. Take R + b1,R + b2, . . . as

resolution classes for bi ∈ B.

What is the condition for B that OrbZv(B) is resolvable?



A subset A ⊂ Zv is said to be periodic if its stabilizer

N = {g ∈ Zv
∣∣∣A+ g = A} is a nontrivial subgroup of Zv.

Theorem 1 (see, Szabo and Sands (2009)) In the

case when k = |B| is a power of a prime, if B+ C = Zv,
then B or C is periodic.

Hereafter, we consider only the case when k = |B| is a

power of a prime.



The structure of a factor (B,C) of Zv

Theorem 2 For a factorization (B,C) of Zv, assume that

k = |B| is a power of a prime and 0 ∈ B, 0 ∈ C. Then, B

and C are represented by

B = N1+ · · ·+Nt−1+Bt, C =M0+M1+ · · ·+Mt′−1+Ct′,

where n0 = v, N0 = {0},

mi =
ni

|Ni|
,Mi = {0 ≤ g < mi

∣∣C + g(mod mi) = C}, for i′ = 0,1, . . .

ni =
mi−1

|Mi−1|
, Ni = {0 ≤ g < ni

∣∣B+ g(mod ni) = B}, for i = 1,2, . . .

and t = maxi{i
∣∣Ni ̸= {0}}, t′ = maxi{i

∣∣Mi ̸= {0}}, Bt = Nt

(mod nt), Bt ⊂ Zmt−1, Mt′ =Mt′ (mod mt′),Mt′ ⊂ Znt′.



Example 1 For v = 48, let B = {0,9,24,33} and C =
{0,1,2,6,7,8,12,13,14,18,19,20}. Then, B+C = Z48.

B = N1 +B2 = {0,24}+ {0,9},
C =M1 + C2 = {0,6,12,18}+ {0,1,2}

Then {0,24} is a subgroup of Z48, {0,6,12,18} is a
subgroup of Z24, {0,9} ≡ {0,3} is a subgroup of Z6,
and {0,1,2} is Z3.

Is this true for any k = |B|?

Example 2 (Zsabo and Sands (2009)) For v = 72,
let B = {0,8,16}+{0,8} and C = ({0,24,66}+{0,36})∪
({0,24,48} + {0,44} + {1}) Then, B + C = Z72. But
both of B and C are not periodic in Z72. That is, a
“bad” factorization!!



Minimum factorization theorem

Theorem 3 For a prime p and integrs r, t,m satisfying

r ≤ t and (m, p) = 1, let v = ptm. For a subset B ⊂ Zv
with |B| = k = pr, assume that there is a subset C ⊂ Zv
such that (B,C) is a factorization of Zv. Then

e = min{n
∣∣∣ ∃C, (B,C) is a factorization of Zn, n|v}.

is a divisor of pt.

By this theorem, in order to check the resolvablity of

a cyclic orbit OrbZv(B) for |B| = pr, we have only to

check whether OrbZ
pi
(B) has a resolution class, or not

for each i ≤ t.



Application: Spread decomposition of
a line orbit of PG(2n− 1, q)

For a prime power q, the lines of PG(2n− 1, q) consist

of a number of Singer cycles of length v = q2n−1
q−1 and a

single short orbit.

Among them, some Singer cycle of full length may be
decomposed into spreads (resolution classes).

We want to decide the number of Singer cycles which
are decomposed into spreads.

In this talk, we consider the cases of q = 3 and 4. In
these cases the sizes of lines L are q+ 1 = 4,5, which
are a prime or a prime power.



The case of q = 3: PG(2n− 1,3)

Let ⟨g⟩ = GF(32n)×/GF(3)×. Then, |⟨g⟩| = v = 32n−1
2 .

A base line L of Orb⟨g⟩(L) is represented by

L = {1 = q0, x = gb1, x+1 = gb2, x− 1 = gb3},

or simply by pow(L) = {0, b1, b2, b3} ⊂ Zv.
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A line orbit is decomposed into spreads.

⇔
There is a subset C ⊂ Zv such that pow(L)+C = Zv.
⇔
There is a subset C ⊂ Z2i such that pow(L)+C = Z2i

for some i such that 2i|v. (by Theorem 3)

⇔
There is a “proper” distribution of the elements of

L = {1, x, x+ 1, x − 1} in cyclotomic cosets C(2i)
j for

some i such that 4 | 2i | v.



What is the proper disribution

Lemma 2 If a Singer cycle Orb⟨g⟩(L) of a line L =

{1, x, x+1, x−1} has a resolution then the four elements

must fall in C
(2i)
0 , C

(2i)
j , C

(2i)
2i−1, C

(2i)
2i−1+j

, respectively.

That is

pow(L) (mod 2i)

≡ {0, j1, j2, j3} = {0,2i−1}+ {0, j} = {0, j,2i−1,2i−1 + j}

for 1 ≤ j < 2i−2.

We call i the depth of cyclotomic cosets.



Counting the Singer cycles which is de-
composed into spreads.

Theorem 4 Let

Mi = {x
∣∣∣x, (x+1)−1(x− 1) ∈ C

(2i)
2i−1 ∧ x+1 /∈ C

(2i)
0 }.

Then, for any x ∈ Mi, a Singer cycle of a line L =

{1, x, x+1, x− 1} is decomposed into four spreads. And

total # of spreads within Singer cyclces =
1

2
|Mi|.

We count |Mi| by using a number theoretical technique.



Counting methods

e: a divisor of v

ζe ∈ C: a primitive e-th root

ψ(gh) = ζhe : a multiplicative character of order e of F32n

f
C
(e)
j

(z) =
1

e

e−1∑
u=0

ζ−uje ψu(z) =

1 if z ∈ C
(e)
j

0 otherwize

Note that

Mi ={x | x, (x+1)−1(x− 1) ∈ C
(2i)
2i−1 ∧ x+1 /∈ C

(2i−1)
0 }

={x | x, (x+1)−1(x− 1) ∈ C
(2i)
2i−1}

\ {x | x, (x+1)−1(x− 1) ∈ C
(2i)
2i−1 ∧ x+1 ∈ C

(2i−1)
0 }



Representation of |Mi| by Jacobi-like
sum.
Hence,

|Mi| =
∑

x∈F32n\F3

f
C(2i)

2i−1

(x)f
C(2i)

2i−1

((x+1)−1(x− 1))

−
∑

x∈F32n\F3

f
C(2i)

2i−1

(x)f
C(2i)

2i−1

((x+1)−1(x− 1))f
C(2i−1)

0

(x+1)

=
1

22i

∑
(u,v)∈Z2

2i

(−1)u+vTψi
(u,−v, v)

−
1

23i−1

∑
(u,v,w)∈Z2

2i
×Z2i−1

(−1)u+vTψi
(u,2w − v, v),

where

Tψi
(u, v, w) =

∑
x∈F32n\F3

ψui (x)ψ
v
i (x+1)ψwi (x− 1).

and ψi is a multiplicative character of Fq of order 2i.



Evaluation of Tψi(u, v, w) for i ≤ 2

If i ≤ 2, then we can compute the “exact values” of

Tψi(u, v, w) for any (u, v, w) ∈ Z3
2i

since Tψi(u, v, w) can

be reduced to computable Jacobi sums.

Lemma 3 Let q be a power of 3. For any a, b ∈ Zm,

Tψ(a, b,0) =

 q − 3 if a = b = 0,
−1− ψa(−1) if a ̸= 0 and b = 0,
ψa(−1)J(ψa, ψb)− ψ2a+b(−1) if a, b ̸= 0.

Lemma 4 Let q be a power of 3, ψi be a multiplicative character
of Fq of order 2i and
η be the quadratic character of Fq. Then, for any u, v, w ∈ Z×

4 ,

Tψ2
(u, v, w) =

{
J(ψ3, η) + J(ψ5

3, η) if u, v and w are distinct,
J(ψi3, ψ

j
2) + J(ψi+4

3 , ψj2) if (u, v, w) ∈ {(i, j, j), (j, i, j), (j, j, i)}.



# of spreads for depth i ≤ 2

Theorem 5 The total number K of spreads obtained by

decomposing every Singer cycle of lines in PG(2n−1,3)

depth at most i = 2 is

K =


1
64

{
32n − 2 · 3n+1 +2I(n) + 2

}
if n is even,

1
64

{
32n+14 · 3n+6 · I(n) + 1

}
if n is odd,

where I(n) = (1− i
√
2)n+ (1+ i

√
2)n, i =

√
−1.

If n is odd, v = 4m with m odd. Thus Theorem 5

gives the best decomposition in the sense that the total

number of spreads within Singer cycles is maximum.



More decomposition for even n

For even n, as for i ≥ 3, unlike the case i ≤ 2, not every

Tψi(u, v, w) can be reduced to Jacobi sums, and thus we

need to find another way to compute Tψi(u, v, w).

Applying Theorem 5.39 in “Finite Fields” by Lidl and Neiderreiter,
we have

Tψi
(u, v, w) =

∑
x∈F32n\F3

ψui (x)ψ
v
i (x+1)ψwi (x− 1) =

∑
x∈F

32
i−1ℓ\F3

ψ(ℓ)
i (f(x))

= −ωℓ1 − ωℓ2 − ψ(ℓ)
i (f(0))− ψ(ℓ)

i (f(1))− ψ(ℓ)
i (f(−1)),

where (ω1, ω2) is a solution to the system of equations

∑
c∈F

32
i−1

ψi(c
u(1 + c)v(−1+ c)w) = −ω1 − ω2,

∑
(b,c)∈F2

32
i−1

ψi(c
u(1 + b+ c)v(1− b+ c)w) = ω1ω2.



# of speads for depth i ≤ 3
n Numbers spreads depth i

2 1 2
5 3∗

3 13 2∗

4 97 2
129 3

5 1021 2∗

6 8257 2
11177 3∗

7 74929 2∗

8 671617 2
923745 3

9 6058057 2∗

10 54479041 2
74914145 3∗

‘∗’ in the column for i means the best decomposition in the sense
that the total number of spreads is maximum.



The case of PG(2n− 1,4)
Evaluation of |Mi| leads us to a decomposition of the Singer cycles
of lines in PG(2n− 1,4).

Theorem 6 Let s be the highest power of 5 in n and r be an integer
within 1 ≤ r ≤ s+1.
The Singer cycles in PG(2n− 1,4) can be decomposed into

K =
1

3

(
r∑

i=1

|Mi|

)
+ δ

spreads, where δ = 0 or 1 depending on if r = s+1 or otherwise.

To conut |Mi|, instead of Tψi
(u, v, w), we use

Qψi
(u, v, w, z) =

∑
x∈F42n\F4

ψui (x)ψ
v
i (x+1)ψwi (x+2)ψzi (x+4)

where ψi is a multiplicative character of order 5i.



Size of M1 for q = 4
By a similar manner to the case of q = 3, we obtain the following
for M1.

|M1| =



Number of spreads by Theorem 6 for
PG(2n− 1,4)
Considering just M1, the number of spreads obtained by our de-
composition is calculated as follows.

n Number of spreads

2∗ 1
3∗ 16
4∗ 161
5 3426
6∗ 52576
7∗ 858481
8∗ 13737761
9∗ 219913936
10 3518321826

‘∗’ in the column for n means the best decomposition in the sense
that the total number of spreads is maximum.



Thank you.


