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A partition of an integer n is a sequence λ = (λ1, . . . , λr ) such
that λ1 ≥ λr ≥ 1 and λ1 + · · ·+ λr = n. The partitions of 4 are

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

The generating function for the number of partitions of n is

∞∑
n=0

p(q)qn =
1

(q; q)∞

where we have used the notation

(a; q)n =
n−1∏
k=0

(1− aqk), (a; q)∞ =
∞∏
k=0

(1− aqk).



Threads

One of the oldest themes in partition theory is the relationship
between partitions in which no part is divisible by a given number
m, and those in which parts must appear fewer than m times.
These two sets are equinumerous, as shown either by the equality
of their generating functions

∏
m-k

1

1− qk
=
∞∏
k=1

1− qmk

1− qk
=
∞∏
k=1

(
1 + qk + q2k + · · ·+ q(m−1)k

)
or by Glaisher’s bijection which maps the two sets together:

if λ contains amk ` times, m - a, then write `mk appearances of a.
Reverse by writing the number of appearances of a in m-ary digits.



Threads

A newer theme in partition theory (a mere 100 years old) is the
study of congruences for p(n). Ramanujan’s congruences are

p(5n + 4) ≡ 0 (mod 5)

p(7n + 5) ≡ 0 (mod 7).

p(11n + 6) ≡ 0 (mod 11)

In fact for any α, β, γ ≥ 0, there is a δ such that

p(5α7b
β+1
2
c11γn + δ) ≡ 0 (mod 5α7β11γ).



Threads

These were first proved for low powers by Hardy and Ramanujan,
then for all powers of 5 and 7 by Watson, and finally for powers of
11 by A. O. L. Atkin. In the meantime Freeman Dyson had
constructed the rank of a partition

rank(λ) = largest part− number of parts

and Atkin and Swinnerton-Dyer showed that the classes of
partitions with rank a mod 5 or 7 neatly divided the partitions of
5n + 4 and 7n + 6 into equally sized classes. It doesn’t work for 11,
but in 1987 George Andrews and Frank Garvan successfully
produced the crank which did the job.

Indeed, Ahlgren and Ono showed that there are congruences for
p(n) modulo every prime from 5 on, and Karl Mahlburg showed
that the crank explains every one of these.



Tying them together

One goal of this talk is to show that there is a partition statistic,
related to a very natural generalization of Glaisher’s bijection,
which also realizes all of these congruences.

In order to prove this, we’ll construct the part-frequency matrices
of the title. We’ll use them to give an identity or two and talk
about some of the questions they inspire. A second goal is to
demonstrate that these might be a useful tool for partition proofs.



Part-frequency matrices

The modulus-m part-frequency matrices of a partition λ are the
infinite sequence of matrices Mj indexed by the j not divisible by
m, in which if part jmk appears in λ aj ,0m

0 + aj ,1m
1 + aj ,2m

2 + . . .
times, then row k of matrix Mj has entries aj ,`.

Example

If m = 2, the partition (20, 5, 5, 4, 2, 2, 1, 1, 1, 1, 1) of 43 would be
depicted

1

1 0 1
0 1 0
1 0 0

3

0 0 0
0 0 0
0 0 0

5

0 1 0
0 0 0
1 0 0

.



Part-frequency matrices

Clearly Glaisher’s bijection is just transposition of the matrices for
partitions which have either only first-row entries nonzero, or those
which have only first-column entries nonzero.

But it is easy to observe that any transformation of the matrices
which leaves the NW-SE antidiagonal sums unchanged will be a
weight-preserving map on partitions.



Orbits under rotation

Define φm(λ) by the following action on the modulus-m matrices
Mj :

f (ak,i ) = ak−1,i+1 for k > 0 and f (a0,i ) = ai ,0.

That is, if jmk appears ai ,km
i times in the m-ary expansion,

rewrite this as ai ,km
i−1 appearances of jmk+1, and if jmk appears

a0,km
0 times, rewrite this as a0,km

k appearances of j .

Glaisher’s bijection can also be understood this way, as rotation
applied to matrices with entries only in the first column.



Orbits under rotation

Example

In the 2-modular matrices for (20, 5, 5, 4, 2, 2, 1, 1, 1, 1, 1) the first
and second matrices are fixed; the third has six images

5

0 1 0
0 0 0
1 0 0

5

0 0 1
1 0 0
0 0 0

5

0 1 0
0 1 0
0 0 0

5

0 0 0
1 0 0
1 0 0

5

0 1 1
0 0 0
0 0 0

5

0 0 0
1 1 0
0 0 0

So under this action (20, 5, 5, 4, 2, 2, 1, 1, 1, 1, 1) is part of an orbit
of size 6.



Orbits under rotation

The fixed points of this action are matrices such as:

1

1 0 1
0 1 0
1 0 0

in which entire antidiagonals are filled with the same entry.
(Remember, if m > 2 the entry can be from 0 to m − 1.)



Orbits under rotation

Start by considering a subset of these, in which only the upper left
corners may be filled:

j

1 0 0
0 0 0
0 0 0

These are partitions into parts not divisible by m, appearing less
than m times: the fixed points of Glaisher’s bijection. Denote the
number of these by pm,m(n). It’s easy to see that their generating
function is

∞∑
n=0

pm,m(n)qn =
∞∏
k=1
m-k

(
1 + qk + · · ·+ q(m−1)k

)
=

(qm; qm)2∞
(q; q)∞(qm2 ; qm2)∞

.



Orbits under rotation

∞∑
n=0

pm,m(n)qn =
∞∏
k=1
m-k

(
1 + qk + · · ·+ q(m−1)k

)
=

(qm; qm)2∞
(q; q)∞(qm2 ; qm2)∞

.

From this it’s easy to see that we can write down a recurrence for
pm,m(n) in terms of values of the partition function p(n − `m),
where the coefficients will be the terms of

(qm; qm)2∞
(qm2 ; qm2)∞

.

So if p(An + B) ≡ 0 (mod C ) for some (A,B,C ), A|m, and all
n ≥ 0, then pm,m(n) will share this congruence, because all terms
in the recurrence will share it.



Orbits under rotation

And now what are the generating functions for the orbit classes?
We simply take the partitions enumerated by pm,m and add orbits
that satisfy the requirements; for instance, to get an orbit of the
required size. For instance, if m = 5, any upper left entries plus
antidiagonals of the form

Example

1

? 1 0
1 0 0
0 0 0

2

? 0 0
0 0 0
0 0 0

3

? 4 0
0 0 0
0 0 0

will yield an orbit of size 2, and the number of these for n is just
the number of upper-left fillings of n − 70.



Orbits under rotation

So the number of partitions of n with a given orbit class size can
be written as a recurrence in the pm,m(n − `m) and, once again,
share any congruence that these have.

The orbit class sizes themselves can be written with a similar
recurrence, where we use equivalence classes of rotated
antidiagonals.

Thus, the orbit class sizes for modulus m give a statistic that
realizes any partition congruence p(An + B) ≡ 0 (mod C ) by
dividing the partitions of n into classes of size divisible by C .

�



Orbits under rotation
Remarks

Here are the orbit classes for m = 5, n ≡ 5 (mod 4):

5n + 4 1 2 3 6

4 5 0 0 0

9 20 5 0 0

14 75 30 0 0

19 220 135 0 0

24 605 485 0 0

29 1480 1535 5 0

34 3470 4375 20 5

39 7620 11580 75 30



Orbits under rotation
Remarks

1 Here we have a connection between partition congruences,
and an elementary map that predates them. We’ve used
nothing deep in the argument so far. Can we improve these
results with more insight?

2 We used the existence of a partition congruence to guarantee
the congruence for the orbit size classes. Can we reverse the
argument, perhaps by finding a rank or m-fold map on the
pm,m(n)?

3 Study of the pm,m partitions immediately suggests itself. More
information about these might yield more information about
the orbits.



Generalizing an identity of Andrews, Dixit and Yee

In a recent paper, George Andrews, Atul Dixit and Ae Ja Yee
consider identities related to the third order mock theta functions.
Most involve partitions into odd or distinct parts with restrictions
on the parts appearing. One such identity is (Theorem 3.4 there)

Theorem∑∞
n=1

qn

(qn+1;q)n(q2n+1;q2)∞
= −1 + (−q; q)∞

which, interpreted combinatorially, yields their Theorem 3.5:

Corollary

The number of partitions of positive n with unique smallest part in
which each even part does not exceed twice the smallest part
equals the number of partitions of n into distinct parts.



Generalizing an identity of Andrews, Dixit and Yee

Partitions with unique smallest part c in which each even part does
not exceed twice the smallest part have a very specific form of
2-modular matrices Mj :

if an odd j > c , then no even multiple of j can appear, so only the
first row of Mj can have nonzero entries;

if an odd j < c is smaller than the smallest part, there is exactly
one power of 2 such that c < 2k j < 2c .

So only one row of each Mj can be occupied, except that both the
smallest part and twice the smallest part may appear.



Generalizing an identity of Andews, Dixit and Yee

So write the matrices Mj and mark the allowed row. Say
λ = (15, 15, 15, 10, 10, 8, 6):

1

0 0 0
0 0 0
0 0 0

∗ 1 0 0

3

0 0 0
1 0 0

∗ 0 0 0
0 0 0

5

0 0 0
∗ 0 1 0

0 0 0
0 0 0

. . .

15

∗ 1 1 0
0 0 0
0 0 0
0 0 0

Transpose the part of the matrices at and below the marked row.

1

0 0 0
0 0 0
0 0 0

∗ 1 0 0

3

0 0 0
1 0 0

∗ 0 0 0
0 0 0

5

0 0 0
∗ 0 0 0

1 0 0
0 0 0

. . .

15

∗ 1 0 0
1 0 0
0 0 0
0 0 0



Generalizing an identity of Andews, Dixit and Yee

The entire operation works perfectly well for the m-modular
matrices with analogous entries, and since it fixes the smallest part
we have a refinement and generalization of the theorem: for any
n ≥ 1, m ≥ 2, the terms with smallest part n yield

(qmn; qm)∞
(qn+1; q)(m−1)n(qmn; q)∞

=
(qm(n+1); qm)∞

(qn+1; q)∞
.

If you multiply by an extra factor of qn(1−q(m−1)n)
1−qn and set m = 2,

summing over all n obtains the previous theorem.



Concluding remarks

I hope I have demonstrated that the part-frequency matrices are

very natural,

connected to interesting partition objects, and

a useful technique for proving some kinds of theorems.

I would be thrilled if people found use for them elsewhere.

Thank You!


