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Summary

We construct several new cyclic difference families (v; k1, ko, k3; A)
3v—1

with v = 3 (mod 4) a prime and A = k1 + ko + k3 — 1

The construction is based on the method of orbits, together with an efficient

algorithm to solve a corresponding 3-way matching problem.

Such families can be used in conjunction with the well-known Paley-Todd difference
sets to construct Hadamard and skew Hadamard matrices of order 4wv.

In particular, we construct the first example of a skew Hadamard matrix of order
4 -239.



Motivation

Hadamard matrices are n X n matrices H with 41 elements such that H - H* = nl,,.
trivial cases: n =1 and n = 2.

well-known necessary condition: n =0 (mod 4)

the sufficiency of this condition is the celebrated Hadamard conjecture

“There exists a Hadamard matrix of order n, for every n =0 (mod 4)” (1893)
smallest unresolved order until 1985: 268

smallest unresolved order until 2004: 428

smallest four unresolved orders until 2012:
668 =4-167, 716 =4-179, 892 =4-223, 1004 =4-251

Construction of a HM of order 1004, Djokovic, Golubitsky, Kotsireas, JCD, 2012

unions of orbits approach, new matching algorithm based on hashing techniques,
4 complementary sequences of lengths 251, plug them into the Goethals-Seidel array.



Autocorrelation of finite sequences

e The periodic autocorrelation function associated to a finite sequence

A = lag,...,an—1] of length n is defined as

n—1
Pa(s) = E ararts, s=0,...,n—1,
k=0

where k + s is taken modulo n, when k 4+ s > n.

e The aperiodic autocorrelation function associated to a finite sequence

A = lag,...,an—1] of length n is defined as
Na(s) = Z axagtrs, S=0,...,n—1,
k=0

We are mostly concerned with binary {—1, 41}, ternary {—1,0,+1} and 4th roots of
unity {+£1,+i} sequences.

Note that for sequences with complex number elements, a1 s is replaced by ax.



Example: n =7, A = [a,...

Pa(0) =
P, (1)
Pa(2)
P4 (3)
Py (4)
P4 (5)
P4 (6)

N 4 (0)
N A (1)
N A (2)
N A (3)
N A (4)
N A (5)
N 5 (6)

’ CL7]

012 4+ a02 + as2 + ag2 + ag2 + ag2 + a2
ajag + agagz +agay + agap + agag + agay +aray
ajag + agayg +agzag + agag + agay +agayl + ayag
ajay + agag + agag + agay + agay + agag +arag
ajay + agag + agag + agay + agay + agag +arag
ajagz + agayg + agag + agag + agay +agal + ayag
ajag + agaz + agayg + agas + agag + agay +ayay

012 + a92 + ag2 + ag2 + a5 + ag2 + ar2
aijag + agag + agay + agaz + agag + agary

aijag + agay + agag + agag + agay

aijayq + agay + agzag + agary
ajas + agag + azary

aijag + agary
= ajary



Circulant matrices

A n x n matrix C(A) is called circulant if every row (except the first) is obtained

by the previous row by a right cyclic shift by one.

I ao al Ap—2 Ap—1 ]
an—-1 Qo Ap—3 Anp—-2
C(A) =
a9 as ao ai
i ai as .o Ap—1 ao ]
e Consider a finite sequence A = |ag,...,an—1] of length n and the circulant matrix C'(A)

whose first row is equal to A. Then P4(7) is the inner product of the first row of C'(A)
and the i + 1 row of C(A).

e symmetry property ~» Pa(s)=Pa(n—3s),s=1,...,n—1.
o 2nd gsF property ~» Pa(l)4+ Pa(2)+...+ Pa(n—1) =2e2(ao,...,an-1)
e ~» Na(s)+Na(n—s)=Pa(s),s=1,...,n—1.



[ > restart;
> aa:=[-1,-1,-1,-1,-1,-1,-1,-1,-1,1,12,-1,1,-1,1,-1,2,2,1,-1,2,1,-1,-1,1,2,1,-1,-1,1,1,-1,1,-1
,1,1,1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,1,1];

bb:-[1,-12,-12,-1,1,-1,-12,1,-12,1,-1,12,1,-12,12,12,1,1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1
’_1’1’_1’_1’1’1’1’_1’1’_ ’1’1’1’1];
- -1 1

aa:=[-1,-1,-1,-1,-1,-1,-1,-1,-1,1,2,-1,2,-1,1,-1,1,2,2,-1,2,2,-1,-1,1,1,2,-1,-1,1,1,-1,1,-1,1,1,1,-1,1,1,-1,1, -1, -1,
-1,-1,1,1,1, 1]
bb:=[1,-1,-1,-1,1,-1,-1,1,-1,1,-1,2,2,-1,1,1,1,2,2,-1,-1,2,2,2,-1,1,1,2,2,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,1,-1, 1,
L -1,1,1,1,1]
[ > nops(aa); nops(bb);
50
50

[ > PAF := proc(a,s)

local 1,j,n,paf;

paf = 0;

n := nops(a);

for 1 from 1 to n do

paf = paf + a[i]*a[((i+s-1) mod n) + 1];

od:

RETURN(paf);

end proc:

[ > seq(PAF(aa,s),s=1..25);
2,2,-2,2,-2,-2,-6,2,2,-2,2,6,-2,2,-2, -6, -6, 2, -10, 2, 2, -2, -2, -6, -2
[ > seq(PAF(bb,s),s=1..25);
-2,-2,2,-2,2,2,6,-2,-2,2,-2,-6,2,-2,2,6,6,-2,10,-2,-2,2,2,6, 2
[ > seq(PAF(aa,s)+PAF(bb,s),s=1..25);

0000000000000¢,0,°¢°©°000000000




Complementary Sequences

Definition:

Let {A;}i=1....+ be t sequences of length v with complex elements. The sequences

{A;}i=1,. .+ are called complementary, if

with the convention:

PAFA%. = [PAFAI.(O),PAFA%.(I), .. .,PAFAZ.(U — 1)]

Algorithms and Metaheuristics for Combinatorial Matrices,

Ilias S. Kotsireas, in Handbook of Combinatorial Optimization, 2nd edition,
Pardalos, P. M., Du, D.-Z., Graham, R. L. (eds)

pp. 283-309, Springer 2013



Unified description of combinatorial objects

number /type of sequences

defining property

narme

1 binary
1 ternary
2 binary
2 binary
2 binary
2 binary
2 ternary
2 ternary
3 binary
4 binary
4 binary
4 ternary

4 ternary

2...12 binary

aper. autoc. 0, %1
per. autoc. O
aper. autoc. 0
per. autoc. 0
per. autoc. 2

per. autoc. — 2
aper. autoc. 0
per. autoc. 0

aper. autoc. const.

aper. autoc. 0
aper. autoc. 0
aper. autoc. 0
per. autoc. O

per. autoc. zero

Barker sequences

circulant weighing matrices

Golay sequences
Hadamard matrices
D-optimal matrices
Hadamard matrices

TCP
Weighing matrices
Normal sequences

Base sequences

Turyn type sequences
T-sequences

T-matrices

PCS



Power Spectral Density, PSD

Seberry & Gysin first introduced the PSD concept in the search for

complementary sequences of various kinds.
Definition:

PSD(lay,...,ay], k) denotes the k-th element of the power spectral density
sequence, i.e. the square magnitude of the kth element of the discrete Fourier

transform (DFT) sequence associated to |aq,...,ay].
The DFT sequence associated to |a1,...,a,] is defined as
n—1
DFT[al,...,an] — [MO: ooy Mn—1 ] , with ug = Z Ai+1 WZk, k=0,....,n—1
i=0

271 . . . . o« . .
where w = e » = cos (2%) + 7 sin (27”) is a primitive n-th root of unity.




An important relationship: Wiener-Khinchin Theorem

e The PSD of a sequence is equal to the DFT of its PAF sequence

n—1

[ [P= ) PAFA(j)w’

j=0

e The PAF of a sequence is equal to the inverse DFT of its PSD sequence
1 n—1
PAFA(j) = — 2wk
A7) =~ ; [ e |

The Parseval Theorem provides a horizontal relationship between the elements of

a sequence |aq,...,a,| and its DFT sequence:
D la; P= EZPSD([CH,...,an],z)
i=1 i=1

The PSD theorem provides a vertical relationship between the elements of two

sequences [ai,...,a,] and [by,..., by,].

10



> restart; Digits := 30;
Digits := 30
> aa:=-[-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-12,2,-1,2,-1,1,1,1,-1,1,1,-1,-2,2,1,1,-1,-1,1,1,-1,1,-1
)1)1)1)_1)1)1)_1)1)_1)_1)_1)_1)1)1)1)1];

bb:=[1,-1,-1,-1,
,-1,1,-1,-1,1,1,
=[-1,-1,-1,-1, -1, -1,
1,-1,1,1,1,1]
=[1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,1,1,1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1,-1,1, -1, -1, 1, 1, 1, -1, 1,
1,1,1,1,1]

1,-1
1)_1)1)_ )1)1)1)1];
-1,-1 ,-1,1,-1,1-1,112121,-,112,-1-1112,1,-1,-1,2,1,-1,1,-1,1,1,1,-1,1,1,-1,1,-1, -1,

,-1,1,-1,1,-1,1,1,-1,1,1,1,1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1
-1, 1,1

aa

bb

87.
38.
44
86
90
11.
59.
40.
44 .

0054244549987861587797994798,
3009108073017522110335936774,

-6331649608443387733495258225,
-0366735776235587505391514704,
.2492235949962145353651260370,

4655615743216915673000814942,
7176438341575262781783924293,
3953424016126963413969348329,
2998028919322357851348696384,

45.5278640450004206071816526627,
56.4523148018045629478057141304,
78.3736868995174261223580580200,
40.9528537925420137617626306523,
60.3877419064009381641442859248,
9.75077640500378546463487396282,
16.1088577115697920357015355564,
95.5527311411579803585918902088,
38.2082948574547495276045751520,
26.5418177719289531054412805340,
54 _.4721359549995793928183473377,
13.3399603043375650387465995303,
77.0824448091112727616985750044,
31.5042860462960377922092975734,
53.6404854550861225182232088661 ,

12.9945755450012138412202005203,
61.6990891926982477889664063224,
55.3668350391556612266504741778,
13.9633264223764412494608485296,
9.75077640500378546463487396287,
88.5344384256783084326999185057,
40.2823561658424737218216075700,
59.6046575983873036586030651669,
55.7001971080677642148651303617,
54.4721359549995793928183473373,
43.5476851981954370521942858699,
21.6263131004825738776419419798,
59.0471462074579862382373693477,
39.6122580935990618358557140743,
90.2492235949962145353651260370,
83.8911422884302079642984644435,
4.44726885884201964140810979089,
61.7917051425452504723954248480,
73.4581822280710468945587194655,
45.5278640450004206071816526624,
86.6600396956624349612534004698,
22.9175551908887272383014249955,
68.4957139537039622077907024268,
46.3595145449138774817767911340,

100.000000000000000000000000000
99.9999999999999999999999999998
100.000000000000000000000000000
100.000000000000000000000000000
99.9999999999999999999999999999
99.9999999999999999999999999999
99.9999999999999999999999999993
99.9999999999999999999999999998
100.000000000000000000000000000
100.000000000000000000000000000
100.000000000000000000000000000
99.9999999999999999999999999998
100.000000000000000000000000000
99.9999999999999999999999999991
99.9999999999999999999999999998
99.9999999999999999999999999999
99.9999999999999999999999999997
100.000000000000000000000000000
99.9999999999999999999999999995
100.000000000000000000000000000
100.000000000000000000000000000
99.9999999999999999999999999999
100.000000000000000000000000000
100.000000000000000000000000000



PSD criterion

case study: 2 complementary sequences of length n, PAF 0, PSD 2n, n is even.

PSD(A,s)+ PSD(B,s)=2n, s=1,..., g
if for a certain sequence |a1, ..., a,] there exists ¢ € {1,...,n — 1} with the property
that PSD(|aq,...,ay],7) > B, then this sequence cannot be used to construct 2 such

complementary sequences

Important Consequence: we can now decouple the PAF equations, roughly

corresponding to cutting down the complexity by half.

11



Consider the ring Z, = {0,1,...,v — 1} of integers modulo a positive integer v.

Let k1,..., ks be positive integers and A an integer such that

t

Av—1) = kilk; - 1), (1)

i=1
Let Xq,...,X; be subsets of Z, such that
X =k;, e {l,... t}. (2)

Definition
We say that X1,..., X, are supplementary difference sets (SDS) with parameters

(v;k1,..., ke A), if for every nonzero element ¢ € Z, there are exactly A ordered
pairs (a,b) such that a — b= ¢ (mod v) and {a,b} C X; for some i € {1,2,...,t}.

The parameter n is defined as: n = k1 +--- + kt — A

SDSs with ¢t = 1 are called cyclic difference sets

SDSs with ¢t = 2 are called difference families with two base blocks

12
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We are interested in the case of difference families (SDSs) with three base blocks, i.e.
t = 3 and in the special class for which v is equal to a prime p = 3 (mod 4).

These SDSs can be used with the well-known difference sets for primes
p =3 (mod 4), (see the book of van Lint & Wilson) “Paley-Todd difference sets”.

For SDSs (v; k1, k2, k3; A) with three base blocks we have that n = k1 + ko + ks — A
and if we denote the {41}-sequences associated to it by A, B, C, then using the

general formulae from

Djokovic, Dragomir Z. and Kotsireas, Ilias S.
Compression of periodic complementary sequences and applications.
Des. Codes Cryptogr. 74 (2015), mno. 2, 365-377

PSD(A,i) + PSD(B,i) + PSD(C,i) =4n, i=1,...,v — 1, (3)

and
PAF(A,i) + PAF(B,i) + PAF(C,i) =3v—4n=1, i=1,...,v— 1. (4)

because 4n = 3v — 1.

14



Examples

SDS(67; 39, 39, 36;64), n =50
{6,8,9,10, 16,17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 35, 36, 38, 39, 40, 41, 43, 46, 47, 50, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66}
{1,6,9,12,13, 15,16, 17, 19, 21, 24, 25, 26, 27, 29, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 48, 50, 52, 54, 55, 56, 57, 59, 60, 61, 62, 65}

{2,3,7,9,12,13,15,17, 19, 20, 24, 25, 26, 30, 32, 33, 34, 36, 38, 39,41, 42, 43, 44, 45, 48, 50, 52, 54, 55,57, 58, 59, 60, 65, 66}

SDS(67; 30, 30,27;37), n =50
{8,12,13,15,16, 17,19, 24, 25, 26, 27, 28, 31, 32, 33, 34, 41, 42, 43, 45, 46, 48, 50, 52, 54, 55, 56, 57, 61, 62}
{1,3,9,12,13, 15, 19, 20, 23, 25, 29, 32, 33, 34, 36, 37, 39, 42, 44, 45, 47, 48, 52, 54, 55, 57, 59, 60, 64, 65}

{1,4,6,8,10, 14, 18, 21, 22, 23, 25, 28, 29, 31, 34, 35, 37, 40, 47, 48, 49, 52,53, 54, 55,63, 64}

15



Searching for SDSs (v; k1, ko, k3; A)

16



1998

WHO DO YOI TRUST?
Y5L94 /BUHBPAGV Y
SEFA7RUHLEAIZHGR
NWEFJNIUT /BYZ223U

4angJauLL9avgUH

A45687RUHEPGVA
SLAARIIHEY ACHGR
NWeEFJNIUT?8YE L
A novel by DAN BROUWN
PHRAPHNIYQRETPA
CLPA&IUEPOASITALL
IUREA8 YRUHLPGV 3

17



2015 http://top500.org/

The List.

TIANHE-2 (MILKYWAY-2)
Site: National Super Computer Center in Guangzhou
Cores: 3,120,000

Linpack Performance (Rmax)

Theoretical Peak (Rpeak)

33,862.7 TFlop/s
54,902.4 TFlop/s

Memory: 1,024,000 GB
Processor: Intel Xeon E5-2692v2 12C 2.2GHz
Compiler: icc
2007: open problem, 2°° ops ~»  2015: ex. search in 10 minutes

18



o
The Epiphany
The sequences D of length v arising from Paley-Todd difference sets for v a prime

v =3 (mod 4) satisfy:
PAF(D,i) = —1,i=1,...,0— 1.

Therefore:
if for a prime v = 3 (mod 4) we can find SDSs (v; k1, k2, k3; \), with
3v—1
4
then the sequences A, B, C, D will satisfy

)\:k'1—|—k2—|—]{73—

PAF (A, i) + PAF(B,i) + PAF(C,i) + PAF(D,i) =0, i=1,...,v — 1.

i.e. they are complementary sequences and can be used in the G-S array, to
yield HMs of order 4 - v.

SDS(223;111,102,123;169),n = 167 ~»  HM of order 4 - 223

19



3-way matching

> a positive integer constant A

> three text files A, B, C' with k columns and n4,ng,nc rows (resp.), containing

positive integers

ouTPUT

> match
> three line numbers L4, L, L¢ in files A, B, C' (resp.) s.t.

y

Lall]+ Lp[1]+ Le|l] = A

LA[]C] -+ LB[k] + Lc[k] = )\

\

20



EXAMPLE

A=120, k=3, ng =np=nc =4

file A
10 20 30
20 40 50
50 60 70
30 80 10

file B
60 70 40
50 80 20
80 60 50
90 40 30

file C
20 20 20
30 50 10
60 40 80
30 40 50

A match is given by Ly =2, Lp =3,Lc =1

21



For problems of interest:
Typically, A < 1000, elements < 100,
k € [40 — 50|, sizes of na,np,nc: Billions, size of A, B, C: Terabytes

Additional Property:
The line sums in files A, B, C are (all) constant.

~» geometric interpretations

Applications of 3-way matching:

e solution of extremely hard combinatorial problems, such as construction of D-optimal

matrices, Hadamard matrices, weighing matrices etc.

e construction of cyclic (v; k1, k2, k3; \) difference families with v = 3 (mod 4) a prime

22



Compression of complementary sequences

Definition:

Let A = |ag,a1,...,a,_1] be a complex sequence of length v = dm. Set
ag.d) =a; +ajyqg+ ...+ ajtm-1)ya, for 7 =0,...,d— 1. Then we say that the

sequence A(®) = [a(()d), agd), . ,agld_)l] of length d is the m-compression of A.
PhD thesis of Yoseph Strassler, (1997), Bar Ilan University, Israel.

Example:

A=CW(24,9) =10,0,0,—1,—1,0,0,0,0,0,1,—1,0,0,0,—1,1,0,0,1,0,0, —1, —1]
m=2 d=12, ~ A1? =10,0,0,-2,0,0,0,1,0,0,0,—2]
m=3, d=8, ~ A® =[1,0,1,-1,-1,0,—1,—2]

23



Theorem: Djokovic-Kotsireas (2012)
Let {A;}i—=1,..+ be t complementary sequences, of length v each, with complex

elements A; = [a;0,@i1,-..,0; 1], for i =1,...,¢ and ZPAFAi = |ag, @,...,a .
i=1 v
v—1 terms
Assume that v = dm and set a,fj) = Qi+ Qi jrd T+ A jpm—1)g for i =1,...,1
and 7 =0,...,d— 1.
Let Az(-d) be the t sequences Agd) la ,Eg), . 562 ], fori=1,...,t.

Then the t sequences {Agd)}izl,m,t, of length d each, are also complementary and we

have:

ZPA A = = [ao + (m — L)a,ma, ..., ma] (5)
d—1 terms
ZPSDA(d):[B(b 57 6] (6)

d—1 terms

24



Optimization formalism

The search for complementary sequences can be formulated as an optimization

problem, via the concept of the PAF.
There are optimization algorithms that deal with problems with 20K (discrete)

variables.

We need symmetric matrices and certain vector/matrix products

min 2! Az
x€{0,1}"
Let a = [a1,as,...,a,]’ be a column n x 1 vector, where ay,as,...,a, € {—1,+1}

and consider the elements of the PAF vector P4(1),..., Pa(m). Define the following
m = [n/2] symmetric matrices (which are independent of the sequence a)

M, = (ma). st Mk = Mk = %, when a;ar € Pa(i), j,k €{1,...,n}
i = (M), s.t.
’ 0, otherwise

25

1=1,...



LEMMA

The matrices M; can be used to write the PAF equations in a matrix form:

o for n odd:
a’ Mija = Pa(3), i=1,...,m.

e for n even:

1
a’ Mja = Pa(i), i=1,...,m —1and o’ M,,a = §PA<m)'

Example

Let n =8, a = |a1,...,as]. Then we have that m = 4 and

1
al M;a = Pa(2), i =1,2,3 and al Mya = §PA(4)

26



LT

Graphical representations of the four symmetric matrices My, Mo, Mg, My

Problem I Now suppose that we are looking for two {—1,+1} sequences A and B
of lengths n, such that

Pa(i)+ Pg(i)=2, i=1,...,m.

Via the previous lemma we can reformulate this problem as follows:

Problem II Find two binary sequences a, b, (viewed as n x 1 column vectors) such
that

CLTMiOJ—FbTMib:z, 221,,771

27



EXpliCit DFT/PSD evaluati()ﬂs The elements of the

DFT/PSD vectors associated to a {—1, 4+1}-sequence are usually complex numbers

with floating point real and imaginary parts.

However, for n = 0 (mod 3)

LEMMA
, la1,...,a,] {—1,4+1}-sequence. Then we have

Wl <

v odd integer, v = 0 (mod 3), m =

the explicit evaluations:

DFT([al,...,av],m) = (Al — %AQ — %A3> + (fAz — ng)

PSD([CLl, ce ,av],m) = A% + A% + A% — A1A2 — A1A3 — A2A3

where
m—1 m—1 m—1
Al = E A3i+1, AQZ E aA3i42, A3= E a3;+3-
=0 1=0 =0

COROLLARY PSD(lay,...,a,],m) is a non-negative integer.

28



Necklaces, Bracelets, Charm bracelets

One of the most natural groups acting on k-ary strings agaq - - - a,,—1 of length n is

the group of rotations.

The generator of this group acts on the indices by sending ¢ — 7 + 1 (mod n):

agay - - Apn—-1 ~ A1 - Anp-1040.

Applying this action partitions the set of k-ary strings into equivalence classes that

are called necklaces.

When the action of reversal is composed with rotations, the resulting dihedral

groups partition k-ary strings into equivalence classes called bracelets.

We refer only to the lexicographically smallest element in each respective

equivalence class as a necklace or a bracelet.

29



Example: consider the bracelet equivalence class for the string 12003:

12003 30021

20031 00213 < bracelet (necklace)
necklace — 00312 02130

03120 21300

31200 13002

Observe that this class contains two necklaces 00312 and 00213, the
lexicographically smallest being the bracelet representative.

An efficient algorithm to list bracelets is given in:

Joe Sawada. Generating bracelets in constant amortized time.
SIAM J. Comput., 31(1), 259-268, 2001.

Our study of charm bracelets was motivated by the search for periodic Golay
pairs of length 68 and 72.



Periodic Golay pairs of length 68

Consider the following two sequences of length 34 each, with {—2,0,+2} elements:

ABGY = 10,0,0,2,0,0,—2,0,0,0,2,—2,0,0,—2,0,0,2,0,0,0,2,2,—2,0,0,—2,0,0,2,0, 2,0, 2]
BGY = 0,0,-2,2,0,2,0,—2,-2,0,2,2,0,2,—2,0,2,0,—2,2,0,2,2,0,2,0,2,2,0, —2,2,0, —2, —2]

These two sequences satisfy the following properties:
1. PAF(ABY s) + PAF(B®Y s) =0,5=0,1,...,33;
2. PSD(A®GY 5) + PSD(BBY 5) =2-68 =136, s =0,1,...,33;
3. PSD(AGY,17) = 100 and PSD(B®3Y | 17) = 36;
34 34
4.3 APY =6 and Y B = 10;

i=1 i=1
5. The total number of 0 elements in AB®% and B®% is equal to 34;
6. The total number of £2 elements in AB®% and B®% is equal to 34;

7. ABGY contains 21 zeros and B4 contains 13 zeros.
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AGY and BGY are the 2-compressed sequences of two {—1,+1} sequences of length

68 each, that form a particular periodic Golay pair of length 68:

D e s e s i e +—+++
+t+—++———+—t+—F——t+—F+++++—F+—F+++++—F
s e o s e s e
t+—+—+F+———+F -+ -+t —F—FF++—++——

~» Hadamard matrices of order 2 - 68

Djokovic, Dragomir; Kotsireas, Ilias; Recoskie, Daniel; Sawada, Joe
Charm bracelets and their application to the

construction of periodic Golay pairs.
Discrete Appl. Math. 188 (2015), 32-40.
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Periodic Golay pairs of length 72

Using the same machinery, we also found periodic Golay pairs of length 72

Dragomir Djokovic and Ilias Kotsireas, Periodic Golay pairs of length 72
in:

Springer Proceedings in Mathematics & Statistics, Vol. 133

Algebraic Design Theory and Hadamard Matrices

ADTHM, Lethbridge, Alberta, Canada, July 2014

Colbourn, Charles J. (Ed.) 2015

Only known example of a length of a periodic Golay pair that is divisible by 3
SDS(72; 36, 30; 30)

10M lines of C code, meta-programming with Maple & bash shell

next open case: order 90
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Power spectral density constancy over
orbits

Let Z, be the ring of integers mod v, i.e Z, = {0,1,...,v — 1}. Let Z be the
group of invertible elements of Z,,, i.e. Z} ={k € Z, : ged(k,v) = 1}.

The order of Z} is equal to ¢(v).

Let H < Z] be a subgroup of Z;;. Then H acts on Z, and we denote the orbits of

this action by
O, ={0},0,,...0,,.

Thus we have the disjoint union relationship Z, = O UO; U ---UO,,.

Djokovic, Gysin, Seberry, 1991,1997,1998 constructed solutions for circulant type
D-optimal matrices by expressing the corresponding SDSs as unions of certain orbits

associated to a suitable subgroup of Z7.

The special structure of these solutions implies certain constraints on the possible
range of values of the PSDs of the sequences associated to the SDS.

The power spectral densities remain constant over the orbits.
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Let (X,Y) be an SDS of Z, with parameters (v;r,s; A), with v odd and

A=r+s— %L1 corresponding to a circulant D-optimal matrix.

2
X:UOj’ Y:UOk

jed keK
for some subsets J, K of {1,2,...,m}.

Assume that

By abuse of notation, let X also denote the sequence xq, z1,...,T,_1 Where
1 if 1¢X
r; =
—1 if 1€ X
and define similarly the sequence Y = yg,¥1,..., Yu—1-

THEOREM (Djokovic-Kotsireas 2012)

If kK and kK’ belong to the same orbit O, C Z, and the sequence X is as defined
above, then

PSDx (k) = PSDx (k).
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New D-optimal matrix for v = 241 (order

482) Consider the subgroup
H = {1,15,24,54,87,91,94, 98,100, 119, 160, 183, 205, 225,231} of order 15, of Z3,;.
Enumerate the 16 orbits. Find SDS(241; 120, 105;105)

X=|JH-j, Y=|JH &k
jed keK

J =1{3,4,5,6,7,10,13,38}, K = {3,5,7,11,19,35,38}

Acknowledgement: This work was made possible by the facilities of the Shared
Hierarchical Academic Research Computing Network, SHARCNET,

www.sharcnet.ca and Compute/Calcul Canada.

computing

tomorrow's
solutions
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Interactions with Coding Theory

e Grobner Bases, Coding, and Cryptography
M. Sala, T. Mora, L. Perret, S. Sakata, C. Traverso (Editors)

Open problem: Does there exists a binary linear [72,36, 16] code?
The answer lies in being able to construct an ample supply of skew-Hadamard matrices
of order 72.

e Information security, coding theory and related combinatorics. Information
coding and combinatorics
Dean Crnkovic and Vladimir Tonchev (Editors)
NATO Science for Peace and Security Series D:
Information and Communication Security, 29.
IOS Press, Amsterdam, 2011.
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Interactions with Quantum Computing

Weighing matrices are generalizations of Hadamard matrices.

W .- W' = kI,

e “Weighing matrices and optical quantum computing” S. Flammia and S. Severini, J.
Phys. A: Math. Theor. 42 (2009) 065302

e “Quantum Algorithms for Weighing Matrices and Quadratic Residues” W. van Dam,
Algorithmica 34, (2002) pp. 413428.
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Future work

e achieve further progress on the algebraic front, especially exploiting symmetries

e explore the applicability of new HPC paradigms: FPGA, GPU etc

e improve and further optimize algorithms implementations

e intensify our study of connections with Coding Theory and Quantum Computing

e deepen our understanding of meta-heuristic methods, especially using landscape theory

e systematize the use of compression, both at the theoretical and practical levels
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