The Weight Distribution of the Self-Dual [128, 64] Polarity Design Code

Masaaki Harada, Ethan Novak*, and Vladimir D. Tonchev

August 27, 2015

Masaaki Harada, Ethan Novak^{*}, and VladimiThe Weight Distribution of the Self-Dual [128

Projective Geometry Designs

Notation

 $PG_s(m,q)$ is the design having as points and blocks the points and s-dimensional subspaces of the projective geometry.

Projective Geometry Designs

Notation

 $PG_s(m,q)$ is the design having as points and blocks the points and s-dimensional subspaces of the projective geometry.

Parameters

$$PG_s(m,q)$$
 is a 2- (v, k, λ) design where $v = \frac{q^{m+1}-1}{q-1}$, $k = \frac{q^{s+1}-1}{q-1}$, and $\lambda = \begin{bmatrix} m-1\\ s-1 \end{bmatrix}_q$.

Projective Geometry Designs

Notation

 $PG_s(m,q)$ is the design having as points and blocks the points and s-dimensional subspaces of the projective geometry.

Parameters

$$PG_s(m,q)$$
 is a 2- (v, k, λ) design where $v = \frac{q^{m+1}-1}{q-1}$, $k = \frac{q^{s+1}-1}{q-1}$, and $\lambda = \begin{bmatrix} m-1\\ s-1 \end{bmatrix}_q$.

. 1

Gaussian Coefficient

$$\left[\begin{array}{c}m\\i\end{array}\right]_{q}=\frac{(q^{m}-1)(q^{m-1}-1)...(q^{m-i+1}-1)}{(q^{i}-1)(q^{i-1}-1)...(q-1)}$$

Affine Geometry Designs

Notation

 $AG_s(m,q)$ is a 2- (v, k, λ) design having as points and blocks the points and *s*-dimensional subspaces of the *m*-dimensional affine geometry AG(m,q).

Affine Geometry Designs

Notation

 $AG_s(m,q)$ is a 2- (v, k, λ) design having as points and blocks the points and *s*-dimensional subspaces of the *m*-dimensional affine geometry AG(m,q).

Parameters

The design $AG_s(m,q)$ has parameters $v = q^m$, $k = q^s$, and $\lambda = \begin{bmatrix} m-1 \\ s-1 \end{bmatrix}_q$.

Affine Geometry Designs

Notation

 $AG_s(m,q)$ is a 2- (v, k, λ) design having as points and blocks the points and *s*-dimensional subspaces of the *m*-dimensional affine geometry AG(m,q).

Parameters

The design $AG_s(m,q)$ has parameters $v = q^m$, $k = q^s$, and $\lambda = \begin{bmatrix} m-1 \\ s-1 \end{bmatrix}_q$.

 $AG_s(m,2)$

When q = 2 and $s \ge 2$, $AG_s(m, 2)$ is also a 3-design, with every set of three points contained in $\lambda_3 = \begin{bmatrix} m-2\\ s-2 \end{bmatrix}_2$ blocks.

Definition

A geometric code is a linear code being the null space of the incidence matrix of a geometric design $AG_s(m, q)$ or $PG_s(m, q)$.

Definition

A geometric code is a linear code being the null space of the incidence matrix of a geometric design $AG_s(m, q)$ or $PG_s(m, q)$.

Properties

The codes over the field of p elements where $q = p^t$ for some t correspond to subfield subcodes of generalized Reed-Muller codes.

Definition

A geometric code is a linear code being the null space of the incidence matrix of a geometric design $AG_s(m, q)$ or $PG_s(m, q)$.

Properties

The codes over the field of p elements where $q = p^t$ for some t correspond to subfield subcodes of generalized Reed-Muller codes.

In the binary case, the code corresponding to $AG_s(m, 2)$ is equivalent to the Reed-Muller code R(m - s, m) of length 2^m and order m - s.

Definition

A geometric code is a linear code being the null space of the incidence matrix of a geometric design $AG_s(m, q)$ or $PG_s(m, q)$.

Properties

The codes over the field of p elements where $q = p^t$ for some t correspond to subfield subcodes of generalized Reed-Muller codes.

In the binary case, the code corresponding to $AG_s(m, 2)$ is equivalent to the Reed-Muller code R(m - s, m) of length 2^m and order m - s.

It is well known that the finite geometry codes admit majority-logic decoding.

・ 何 ト ・ ヨ ト ・ ヨ ト

Jungnickel and Tonchev used polarities in projective geometry to find a class of designs with the same parameters as the projective geometry design $PG_s(2s, q)$, $s \ge 2$, but are not isomorphic to $PG_s(2s, q)$.

ヘロト 人間ト イヨト イヨト

Jungnickel and Tonchev used polarities in projective geometry to find a class of designs with the same parameters as the projective geometry design $PG_s(2s, q)$, $s \ge 2$, but are not isomorphic to $PG_s(2s, q)$.

When q = p is a prime, the *p*-rank of the incidence matrix of the polarity design *D* is equal to that of $PG_s(2s, p)$.

Jungnickel and Tonchev used polarities in projective geometry to find a class of designs with the same parameters as the projective geometry design $PG_s(2s, q)$, $s \ge 2$, but are not isomorphic to $PG_s(2s, q)$.

When q = p is a prime, the *p*-rank of the incidence matrix of the polarity design *D* is equal to that of $PG_s(2s, p)$.

This provides an infinite class of counterexamples to Hamada's conjecture.

Clark and Tonchev proved that a code obtained from a polarity design can correct by majority-logic decoding the same number of errors as the projective geometry code from $PG_s(2s, q)$.

イロト 不得下 イヨト イヨト

Clark and Tonchev proved that a code obtained from a polarity design can correct by majority-logic decoding the same number of errors as the projective geometry code from $PG_s(2s, q)$.

When q = 2, the minimum distance of the code from the polarity design obtained from PG(2s, 2) is 2^{s+1} .

Clark and Tonchev proved that a code obtained from a polarity design can correct by majority-logic decoding the same number of errors as the projective geometry code from $PG_s(2s, q)$.

When q = 2, the minimum distance of the code from the polarity design obtained from PG(2s, 2) is 2^{s+1} .

All errors guaranteed by the minimum distance may be corrected.

- 本間下 本臣下 本臣下 三臣

Clark and Tonchev proved that a code obtained from a polarity design can correct by majority-logic decoding the same number of errors as the projective geometry code from $PG_s(2s, q)$.

When q = 2, the minimum distance of the code from the polarity design obtained from PG(2s, 2) is 2^{s+1} .

All errors guaranteed by the minimum distance may be corrected.

Extending the binary code spanned by the blocks of a polarity design obtained from PG(2s, 2) is a self-dual binary code of the same length, dimension, and minimum distance as the Reed-Muller code R(s, 2s + 1).

▲日▼ ▲□▼ ▲目▼ ▲目▼ ■ ●のの⊙

Clark and Tonchev proved that a code obtained from a polarity design can correct by majority-logic decoding the same number of errors as the projective geometry code from $PG_s(2s, q)$.

When q = 2, the minimum distance of the code from the polarity design obtained from PG(2s, 2) is 2^{s+1} .

All errors guaranteed by the minimum distance may be corrected.

Extending the binary code spanned by the blocks of a polarity design obtained from PG(2s, 2) is a self-dual binary code of the same length, dimension, and minimum distance as the Reed-Muller code R(s, 2s + 1).

This code can correct the same number of errors as R(s, 2s + 1) of length 2^{2s+1} and order s.

◆□ ▶ ◆冊 ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ の Q @

When s = 2, the extended code of the polarity design from PG(4, 2) is a doubly-even self-dual [32, 16, 8] code.

- 4 同 6 4 日 6 4 日 6

When s = 2, the extended code of the polarity design from PG(4, 2) is a doubly-even self-dual [32, 16, 8] code.

This code has the same parameters and corrects the same number of errors as the Reed-Muller code R(2,5).

When s = 2, the extended code of the polarity design from PG(4, 2) is a doubly-even self-dual [32, 16, 8] code.

This code has the same parameters and corrects the same number of errors as the Reed-Muller code R(2,5).

It also has the same weight distribution as R(2,5).

When s = 2, the extended code of the polarity design from PG(4, 2) is a doubly-even self-dual [32, 16, 8] code.

This code has the same parameters and corrects the same number of errors as the Reed-Muller code R(2,5).

It also has the same weight distribution as R(2,5).

Both codes are extremal doubly-even self-dual codes, and thus must have the same weight distribution.

くほと くほと くほと

Goals for $PG_3(6,2)$

Consider the next case when s = 3.

<ロ> (日) (日) (日) (日) (日)

Goals for $PG_3(6,2)$

Consider the next case when s = 3.

Investigate the extended code of the polarity design obtained from PG(6,2).

イロト 不得下 イヨト イヨト

Goals for $PG_3(6,2)$

Consider the next case when s = 3.

Investigate the extended code of the polarity design obtained from PG(6,2).

Demonstrate that this doubly-even self-dual [128, 64, 16] code has the same weight distribution as the third order Reed-Muller code R(3,7).

- 4 同 6 4 日 6 4 日 6

The polarity design D obtained from PG(6,2) is a 2-(127, 15, 155) design.

・ロン ・四 ・ ・ ヨン ・ ヨン

$PG_{3}(6,2)$

The polarity design D obtained from PG(6,2) is a 2-(127, 15, 155) design.

D has the same parameters as the projective geometry design $PG_3(6,2)$.

イロト イポト イヨト イヨト

$PG_{3}(6,2)$

The polarity design D obtained from PG(6,2) is a 2-(127, 15, 155) design. D has the same parameters as the projective geometry design $PG_3(6,2)$. D has the same block intersections (sizes 1, 3, and 7) as $PG_3(6,2)$.

イロト イポト イヨト イヨト

$PG_{3}(6,2)$

The polarity design D obtained from PG(6,2) is a 2-(127, 15, 155) design. D has the same parameters as the projective geometry design $PG_3(6,2)$. D has the same block intersections (sizes 1, 3, and 7) as $PG_3(6,2)$. D also has the same 2-rank as $PG_3(6,2)$. Namely, 64.

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The polarity design D obtained from PG(6,2) is a 2-(127, 15, 155) design.

D has the same parameters as the projective geometry design $PG_3(6,2)$.

D has the same block intersections (sizes 1, 3, and 7) as $PG_3(6,2)$.

D also has the same 2-rank as $PG_3(6,2)$. Namely, 64.

These properties imply that the binary linear code *C* spanned by the block by point incidence matrix of *D* has minimum distance ≤ 15 , and the extended code *C*^{*} is a doubly-even self-dual [128, 64] code of minimum distance $d \leq 16$.

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The polarity design D obtained from PG(6,2) is a 2-(127, 15, 155) design.

D has the same parameters as the projective geometry design $PG_3(6,2)$.

D has the same block intersections (sizes 1, 3, and 7) as $PG_3(6,2)$.

D also has the same 2-rank as $PG_3(6,2)$. Namely, 64.

These properties imply that the binary linear code *C* spanned by the block by point incidence matrix of *D* has minimum distance ≤ 15 , and the extended code *C*^{*} is a doubly-even self-dual [128, 64] code of minimum distance $d \leq 16$.

From bounds on the minimum distance found by Clark and Tonchev, it follows that d = 16, and C^* admits majority-logic decoding that corrects up to 7 errors.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Now we demonstrate that C^* and R(3,7) share the same weight distribution.

イロト イポト イヨト イヨト

- 3

Now we demonstrate that C^* and R(3,7) share the same weight distribution.

The weight distribution of R(3,7) was computed by Sugino, lenaga, Tokura, and Kasami in 1971.

イロト イポト イヨト イヨト

Now we demonstrate that C^* and R(3,7) share the same weight distribution.

The weight distribution of R(3,7) was computed by Sugino, lenaga, Tokura, and Kasami in 1971.

Find the weight distribution of the code C^* generated by the first k rows of the generator matrix.

イロト イポト イヨト イヨト 二日

Now we demonstrate that C^* and R(3,7) share the same weight distribution.

The weight distribution of R(3,7) was computed by Sugino, lenaga, Tokura, and Kasami in 1971.

Find the weight distribution of the code C^* generated by the first k rows of the generator matrix.

Considering 33 rows requires 2.14 minutes.

くほと くほと くほと

Now we demonstrate that C^* and R(3,7) share the same weight distribution.

The weight distribution of R(3,7) was computed by Sugino, lenaga, Tokura, and Kasami in 1971.

Find the weight distribution of the code C^* generated by the first k rows of the generator matrix.

- Considering 33 rows requires 2.14 minutes.
- Onsidering 34 rows requires 4.3 minutes.

・ 同 ト ・ 三 ト ・ 三 ト

Now we demonstrate that C^* and R(3,7) share the same weight distribution.

The weight distribution of R(3,7) was computed by Sugino, lenaga, Tokura, and Kasami in 1971.

Find the weight distribution of the code C^* generated by the first k rows of the generator matrix.

- Considering 33 rows requires 2.14 minutes.
- ② Considering 34 rows requires 4.3 minutes.
- Onsidering 35 rows requires 8.6 minutes.

Now we demonstrate that C^* and R(3,7) share the same weight distribution.

The weight distribution of R(3,7) was computed by Sugino, lenaga, Tokura, and Kasami in 1971.

Find the weight distribution of the code C^* generated by the first k rows of the generator matrix.

- Considering 33 rows requires 2.14 minutes.
- Onsidering 34 rows requires 4.3 minutes.
- Onsidering 35 rows requires 8.6 minutes.
- **④** ...
- Sonsidering 64 rows would require approximately 8750 years.

- 4 同 6 4 日 6 4 日 6

Now we demonstrate that C^* and R(3,7) share the same weight distribution.

The weight distribution of R(3,7) was computed by Sugino, lenaga, Tokura, and Kasami in 1971.

Find the weight distribution of the code C^* generated by the first k rows of the generator matrix.

- Considering 33 rows requires 2.14 minutes.
- Onsidering 34 rows requires 4.3 minutes.
- Onsidering 35 rows requires 8.6 minutes.
- **④** ...
- Sonsidering 64 rows would require approximately 8750 years.

This is not feasible, so we use another approach. $(\square) (\square) ($

= > = • • < · ·

Since C^* is a doubly-even self-dual [128, 64, 16] code, we can find the weight distribution from the values of a_{16} and a_{20} using Gleason's Theorem.

イロト 不得下 イヨト イヨト 三日

Since C^* is a doubly-even self-dual [128, 64, 16] code, we can find the weight distribution from the values of a_{16} and a_{20} using Gleason's Theorem.

The weight enumerator
$$W(x) = \sum_{i=0}^{128} a_i x^i$$
 can be expressed entirely in terms of and and

terms of a_{16} and a_{20} .

Since C^* is a doubly-even self-dual [128, 64, 16] code, we can find the weight distribution from the values of a_{16} and a_{20} using Gleason's Theorem.

The weight enumerator
$$W(x) = \sum_{i=0}^{128} a_i x^i$$
 can be expressed entirely in terms of a_{16} and a_{20} .

 $a_{16} = 94488$ and $a_{20} = 0$ were computed quickly using Magma.

Since C^* is a doubly-even self-dual [128, 64, 16] code, we can find the weight distribution from the values of a_{16} and a_{20} using Gleason's Theorem.

The weight enumerator
$$W(x) = \sum_{i=0}^{128} a_i x^i$$
 can be expressed entirely in terms of a_{16} and a_{20} .

 $a_{16} = 94488$ and $a_{20} = 0$ were computed quickly using Magma.

Computing $a_{24} = 74078592$ took several days.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Table of Weights

The Weight Distribution of C^* and $R(3,7)$	
$a_0 = a_{128}$	1
$a_{16} = a_{112}$	94488
$a_{20} = a_{108}$	0
$a_{24} = a_{104}$	74078592
$a_{28} = a_{100}$	3128434688
$a_{32} = a_{96}$	312335197020
$a_{36} = a_{92}$	18125860315136
$a_{40} = a_{88}$	552366841342848
$a_{44} = a_{84}$	9491208609103872
$a_{48} = a_{80}$	94117043084875944
$a_{52} = a_{76}$	549823502398291968
$a_{56} = a_{72}$	1920604779257215744
$a_{60} = a_{68}$	4051966906789380096
a ₆₄	5193595576952890822

The weight distribution of the doubly-even, self-dual code C^* was computed from $a_{16} = 94488$ and $a_{20} = 0$ using Gleason's Theorem and is identical to that of R(3,7) computed in 1971.

Conclusion

Theorem

The weight distribution of the extended [128, 64, 16] code C^* of the code C spanned by the incidence vectors of the blocks of the polarity design D obtained from PG(6,2) is identical with the weight distribution of the 3rd order Reed-Muller code R(3,7).

The extended code of the polarity design from PG(4,2) is a doubly-even self-dual code with the same weight distribution as R(2,5).

A (10) F (10)

The extended code of the polarity design from PG(4, 2) is a doubly-even self-dual code with the same weight distribution as R(2, 5).

The extended code of the polarity design from PG(6,2) is a doubly-even self-dual code with the same weight distribution as R(3,7).

くほと くほと くほと

The extended code of the polarity design from PG(4, 2) is a doubly-even self-dual code with the same weight distribution as R(2, 5).

The extended code of the polarity design from PG(6,2) is a doubly-even self-dual code with the same weight distribution as R(3,7).

Conjecture

Professor Tonchev conjectures that the extended code of the polarity design obtained from PG(2s, 2) has the same weight distribution as the Reed-Muller code R(s, 2s + 1) for every $s \ge 2$.

・ 同 ト ・ 三 ト ・ 三 ト

The extended code of the polarity design from PG(4,2) is a doubly-even self-dual code with the same weight distribution as R(2,5).

The extended code of the polarity design from PG(6,2) is a doubly-even self-dual code with the same weight distribution as R(3,7).

Conjecture

Professor Tonchev conjectures that the extended code of the polarity design obtained from PG(2s, 2) has the same weight distribution as the Reed-Muller code R(s, 2s + 1) for every $s \ge 2$.

Verifying the next case (s = 4) is currently computationally infeasible.

- 4 同 6 4 日 6 4 日 6

References

D. Clark, D. Jungnickel, and V. D. Tonchev, Affine geometry designs, polarities, and Hamada's conjecture, *J. Combin. Theory Ser. A* **118** (2011), 231-239.

D. Clark and V. D. Tonchev, A new class of majority-logic decodable codes derived from polarity designs, *Adv. Math. Commun.* **7** (2013), 175-186.

- 4 同 6 4 日 6 4 日 6

Thank you for your time and attention!

(日) (同) (三) (三)

3