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Projective Geometry Designs

Notation

PGs(m, q) is the design having as points and blocks the points and
s-dimensional subspaces of the projective geometry.

Parameters

PGs(m, q) is a 2-(v , k , λ) design where v =
qm+1 − 1

q − 1
, k =

qs+1 − 1

q − 1
, and

λ =

[
m − 1
s − 1

]
q

.

Gaussian Coefficient[
m
i

]
q

=
(qm − 1)(qm−1 − 1)...(qm−i+1 − 1)

(qi − 1)(qi−1 − 1)...(q − 1)
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Affine Geometry Designs

Notation

AGs(m, q) is a 2-(v , k , λ) design having as points and blocks the points
and s-dimensional subspaces of the m-dimensional affine geometry
AG (m, q).

Parameters

The design AGs(m, q) has parameters v = qm, k = qs , and

λ =

[
m − 1
s − 1

]
q

.

AGs(m, 2)

When q = 2 and s ≥ 2, AGs(m, 2) is also a 3-design, with every set of

three points contained in λ3 =

[
m − 2
s − 2

]
2

blocks.
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Codes from Geometries

Definition

A geometric code is a linear code being the null space of the incidence
matrix of a geometric design AGs(m, q) or PGs(m, q).

Properties

The codes over the field of p elements where q = pt for some t
correspond to subfield subcodes of generalized Reed-Muller codes.

In the binary case, the code corresponding to AGs(m, 2) is equivalent to
the Reed-Muller code R(m − s,m) of length 2m and order m − s.

It is well known that the finite geometry codes admit majority-logic
decoding.
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Polarity Designs

Jungnickel and Tonchev used polarities in projective geometry to find a
class of designs with the same parameters as the projective geometry
design PGs(2s, q), s ≥ 2, but are not isomorphic to PGs(2s, q).

When q = p is a prime, the p-rank of the incidence matrix of the polarity
design D is equal to that of PGs(2s, p).

This provides an infinite class of counterexamples to Hamada’s conjecture.
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Polarity Designs

Clark and Tonchev proved that a code obtained from a polarity design can
correct by majority-logic decoding the same number of errors as the
projective geometry code from PGs(2s, q).

When q = 2, the minimum distance of the code from the polarity design
obtained from PG (2s, 2) is 2s+1.

All errors guaranteed by the minimum distance may be corrected.

Extending the binary code spanned by the blocks of a polarity design
obtained from PG (2s, 2) is a self-dual binary code of the same length,
dimension, and minimum distance as the Reed-Muller code R(s, 2s + 1).

This code can correct the same number of errors as R(s, 2s + 1) of length
22s+1 and order s.
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The Smallest Case

When s = 2, the extended code of the polarity design from PG (4, 2) is a
doubly-even self-dual [32, 16, 8] code.

This code has the same parameters and corrects the same number of
errors as the Reed-Muller code R(2, 5).

It also has the same weight distribution as R(2, 5).

Both codes are extremal doubly-even self-dual codes, and thus must have
the same weight distribution.
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Goals for PG3(6, 2)

Consider the next case when s = 3.

Investigate the extended code of the polarity design obtained from
PG (6, 2).

Demonstrate that this doubly-even self-dual [128, 64, 16] code has the
same weight distribution as the third order Reed-Muller code R(3, 7).
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PG3(6, 2)

The polarity design D obtained from PG (6, 2) is a 2-(127, 15, 155) design.

D has the same parameters as the projective geometry design PG3(6, 2).

D has the same block intersections (sizes 1, 3, and 7) as PG3(6, 2).

D also has the same 2-rank as PG3(6, 2). Namely, 64.

These properties imply that the binary linear code C spanned by the block
by point incidence matrix of D has minimum distance ≤ 15, and the
extended code C ∗ is a doubly-even self-dual [128, 64] code of minimum
distance d ≤ 16.

From bounds on the minimum distance found by Clark and Tonchev, it
follows that d = 16, and C ∗ admits majority-logic decoding that corrects
up to 7 errors.
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Finding the Weight Distribution

Now we demonstrate that C ∗ and R(3, 7) share the same weight
distribution.

The weight distribution of R(3, 7) was computed by Sugino, Ienaga,
Tokura, and Kasami in 1971.

Find the weight distribution of the code C ∗ generated by the first k rows
of the generator matrix.

1 Considering 33 rows requires 2.14 minutes.
2 Considering 34 rows requires 4.3 minutes.
3 Considering 35 rows requires 8.6 minutes.
4 ...
5 Considering 64 rows would require approximately 8750 years.

This is not feasible, so we use another approach.
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Finding the Weight Distribution

Since C ∗ is a doubly-even self-dual [128, 64, 16] code, we can find the
weight distribution from the values of a16 and a20 using Gleason’s
Theorem.

The weight enumerator W (x) =
128∑
i=0

aix
i can be expressed entirely in

terms of a16 and a20.

a16 = 94488 and a20 = 0 were computed quickly using Magma.

Computing a24 = 74078592 took several days.
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Table of Weights

The Weight Distribution of C∗ and R(3, 7)
a0 = a128 1
a16 = a112 94488
a20 = a108 0
a24 = a104 74078592
a28 = a100 3128434688
a32 = a96 312335197020
a36 = a92 18125860315136
a40 = a88 552366841342848
a44 = a84 9491208609103872
a48 = a80 94117043084875944
a52 = a76 549823502398291968
a56 = a72 1920604779257215744
a60 = a68 4051966906789380096

a64 5193595576952890822

The weight distribution of the
doubly-even, self-dual code
C ∗ was computed from
a16 = 94488 and a20 = 0
using Gleason’s Theorem and
is identical to that of R(3, 7)
computed in 1971.
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Conclusion

Theorem

The weight distribution of the extended [128, 64, 16] code C ∗ of the code
C spanned by the incidence vectors of the blocks of the polarity design D
obtained from PG (6, 2) is identical with the weight distribution of the 3rd
order Reed-Muller code R(3, 7).
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Conjecture

The extended code of the polarity design from PG (4, 2) is a doubly-even
self-dual code with the same weight distribution as R(2, 5).

The extended code of the polarity design from PG (6, 2) is a doubly-even
self-dual code with the same weight distribution as R(3, 7).

Conjecture

Professor Tonchev conjectures that the extended code of the polarity
design obtained from PG (2s, 2) has the same weight distribution as the
Reed-Muller code R(s, 2s + 1) for every s ≥ 2.

Verifying the next case (s = 4) is currently computationally infeasible.
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Thank you!

Thank you for your time and attention!
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