On the Hamilton Waterloo Problem for Complete Equipartite Graphs.

Adrián Pastine Joint Work with Melissa Keranen Michigan Technological University Houghton, MI 49931, U.S.A.

08/28/2015

A (10) F (10)

08/28/2015

1 / 26

The Oberwolfach Problem ask whether we can sit v conference attendees at t round tables over $\frac{v-1}{2}$ nights, such that each attendee sits next to each other attendee exactly once.

.

The Oberwolfach Problem ask whether we can sit v conference attendees at t round tables over $\frac{v-1}{2}$ nights, such that each attendee sits next to each other attendee exactly once.

Originally v was supposed to be odd, but later the problem was extended to allow v even, and having it so that attendees would never sit next to their spouses.

The Oberwolfach Problem ask whether we can sit v conference attendees at t round tables over $\frac{v-1}{2}$ nights, such that each attendee sits next to each other attendee exactly once.

Originally v was supposed to be odd, but later the problem was extended to allow v even, and having it so that attendees would never sit next to their spouses.

In Graph Theory language this is equivalent to decomposing K_v (or $K_v - Q$, where Q is a 1-factor if v is even) into 2-factors, where K_v is the complete graph on v vertices and each 2-factor is isomorphic to a given 2-factor F.

(日) (周) (日) (日)

The Hamilton-Waterloo Problem is an extension of the Oberwolfach problem. In this versions dinners are at two different venues, Hamilton and Waterloo. The attendees will spend r nights in Hamilton, where the sizes of the tables are $m_1, m_2, ..., m_k$, and s nights in Waterloo, where the sizes of the tables are $n_1, n_2, ..., n_p$.

(日) (四) (日) (日) (日)

The Hamilton-Waterloo Problem is an extension of the Oberwolfach problem. In this versions dinners are at two different venues, Hamilton and Waterloo. The attendees will spend r nights in Hamilton, where the sizes of the tables are $m_1, m_2, ..., m_k$, and s nights in Waterloo, where the sizes of the tables are $n_1, n_2, ..., n_p$.

In our language this means that we have two 2-factors, F_1 and F_2 , and we are trying to decompose K_v (or $K_v - Q$) into r copies of F_1 and s copies of F_2 .

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

The Problem for Complete Equipartite Graphs

The problem that we work with is when instead of just trying to avoid our spouses, we try to avoid all the people from our university.

The Problem for Complete Equipartite Graphs

The problem that we work with is when instead of just trying to avoid our spouses, we try to avoid all the people from our university. In Graph theoretical language, we want to decompose a complete equipartite graph, with m parts of size v each, into r copies of F_1 and s copies of F_2 .

The Problem for Complete Equipartite Graphs

The problem that we work with is when instead of just trying to avoid our spouses, we try to avoid all the people from our university. In Graph theoretical language, we want to decompose a complete equipartite graph, with m parts of size v each, into r copies of F_1 and s copies of F_2 .

This type of problem has been studied in the Oberwolfach case. Nevertheless, it has not been studied in the Hamilton-Waterloo case.

(日) (四) (日) (日) (日)

Definition

 $K_{(x:n)}$ will denote the complete equipartite graph with *n* parts of size *x*,i.e. two vertices are neighbors if and only if they are in different parts.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Definition

 $K_{(x:n)}$ will denote the complete equipartite graph with *n* parts of size *x*,i.e. two vertices are neighbors if and only if they are in different parts.

$$G = \mathcal{K}_{(2:3)}$$

Definition

 $K_{(x:n)}$ will denote the complete equipartite graph with *n* parts of size *x*,i.e. two vertices are neighbors if and only if they are in different parts.

$$G = K_{(2:3)}$$

Definition

 $K_{(x:n)}$ will denote the complete equipartite graph with *n* parts of size *x*,i.e. two vertices are neighbors if and only if they are in different parts.

Definition

 $K_{(x:n)}$ will denote the complete equipartite graph with *n* parts of size *x*,i.e. two vertices are neighbors if and only if they are in different parts.

$$G = K_{(2:3)}$$

Definition

 $K_{(x:n)}$ will denote the complete equipartite graph with *n* parts of size *x*,i.e. two vertices are neighbors if and only if they are in different parts.

$$G=K_{(2:3)}$$

Definition

 $K_{(x:n)}$ will denote the complete equipartite graph with *n* parts of size *x*,i.e. two vertices are neighbors if and only if they are in different parts.

$$G=K_{(2:3)}$$

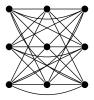
(日) (四) (日) (日) (日)

Definition Parts

Definition

Given a multipartite graph G with n parts, we will denote the parts $G_0, G_1, \ldots, G_{n-1}$.

$$G=K_{(3:3)}$$

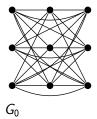


Definition Parts

Definition

Given a multipartite graph G with n parts, we will denote the parts $G_0, G_1, \ldots, G_{n-1}$.

$$G=K_{(3:3)}$$

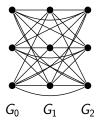


Definition Parts

Definition

Given a multipartite graph G with n parts, we will denote the parts $G_0, G_1, \ldots, G_{n-1}$.

$$G=K_{(3:3)}$$



イロト イヨト イヨト イヨ

Product

Definition

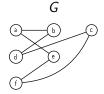
Let G and H be multipartite graphs with parts G_i and H_i respectively. Then we define the partite product of G and H, $G \otimes H$ as follows:

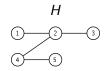
(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

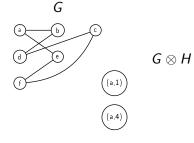
08/28/2015

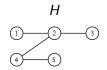
7 / 26

- $V(G \otimes H) = \{(g, h) | g \in G_i \text{ and } h \in H_i, \text{ for some } i\}.$
- $E(G \otimes H) = \{\{(g_1, h_1), (g_2, h_2)\} | \{g_1, g_2\} \in E(G) \text{ and } \{h_1, h_2\} \in E(H)\}.$

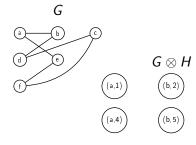


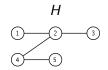


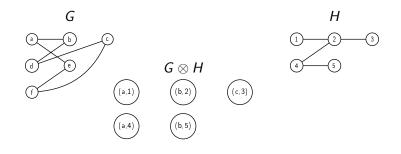


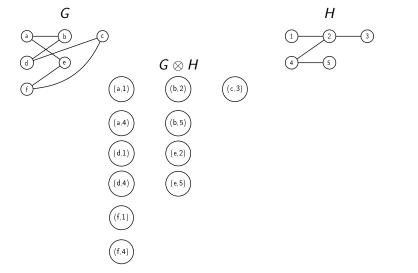


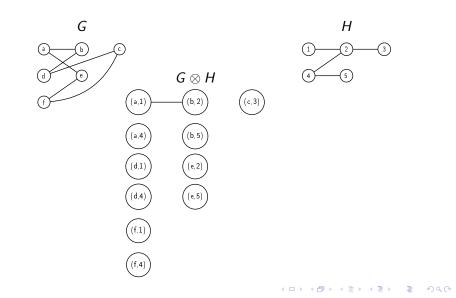
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

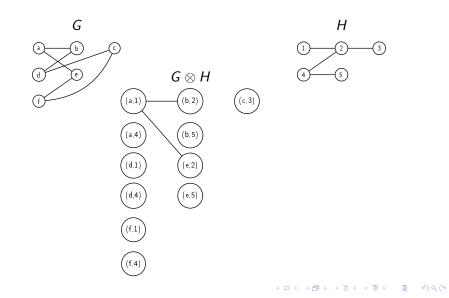


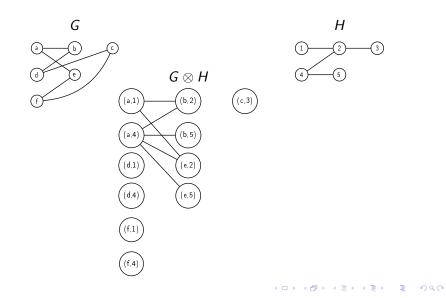


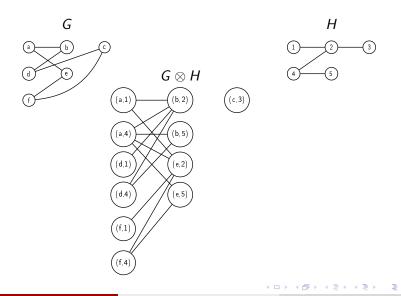












Definition Direct Sum

Definition

If $V(G_1) = V(G_2)$ then $G = G_1 \oplus G_2$ is the Graph on the same set of vertices, having as edges the symmetric difference between the edges of G_1 and G_2 . This is:

$$V(G) = V(G_1) = V(G_2)$$

 $E(G) = E(G_1) \cup E(G_2) \setminus (E(G_1) \cap E(G_2))$

Definition Direct Sum

Definition

If $V(G_1) = V(G_2)$ then $G = G_1 \oplus G_2$ is the Graph on the same set of vertices, having as edges the symmetric difference between the edges of G_1 and G_2 . This is:

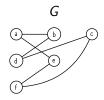
$$V(G) = V(G_1) = V(G_2)$$

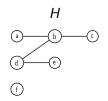
 $E(G) = E(G_1) \cup E(G_2) \setminus (E(G_1) \cap E(G_2))$

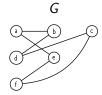
Remark

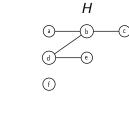
Notice that if there is a decomposition of a graph G into subgraphs F_1, \ldots, F_s , then

$$G = \bigoplus_{i=1}^{J} F_i$$





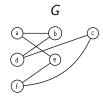


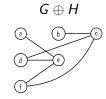


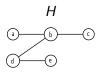
a)
b)
d)
e)
f)

 $G \oplus H$

 \odot







・ロト ・御ト ・ヨト ・ヨト

■ のへで

Some Results on the Product and the Sum

Lemma

$$K_{(x:n)} \otimes K_{(y:n)} = K_{(xy:n)}$$

Lemma

Let \mathfrak{G}_n be the set of n-partite graphs (where some vertices may be isolated). Then $(\mathfrak{G}_n, \oplus, \otimes)$ is a commutative ring with unity, where the 0 is the empty graph, and the 1 is $K_{(1:n)}$. More specifically:

- $G \oplus H = H \oplus G$.
- $G \oplus 0 = G$, where 0 is the empty graph (a graph without any edges).

・ロト ・聞ト ・ヨト ・ヨト

3

11 / 26

08/28/2015

- $G \otimes H = H \otimes G$.
- $G \otimes (H \oplus F) = (G \otimes H) \oplus (G \otimes F).$
- $G \otimes K_{(1:n)} = G$.

Definition of $C_{(x:n)}$

Definition

The complete cyclic multipartite graph $C_{(x:n)}$ is the graph with *n* parts of size *x*, where two vertices $g \in G_i$ and $h \in G_j$ are neighbors if and only if |i-j| = 1, with this subtraction being done modulo *n*.

< □ > < □ > < □ > < □ > < □ > < □ >

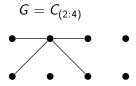
Definition

The complete cyclic multipartite graph $C_{(x:n)}$ is the graph with *n* parts of size *x*, where two vertices $g \in G_i$ and $h \in G_j$ are neighbors if and only if |i-j| = 1, with this subtraction being done modulo *n*.

$$G = C_{(2:4)}$$

Definition

The complete cyclic multipartite graph $C_{(x:n)}$ is the graph with *n* parts of size *x*, where two vertices $g \in G_i$ and $h \in G_j$ are neighbors if and only if |i-j| = 1, with this subtraction being done modulo *n*.



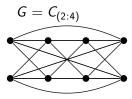
Definition

The complete cyclic multipartite graph $C_{(x:n)}$ is the graph with *n* parts of size *x*, where two vertices $g \in G_i$ and $h \in G_j$ are neighbors if and only if |i-j| = 1, with this subtraction being done modulo *n*.

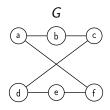
$$G = C_{(2:4)}$$

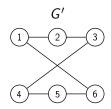
Definition

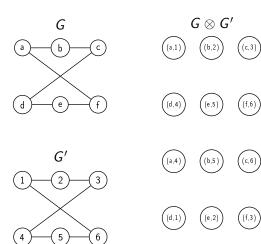
The complete cyclic multipartite graph $C_{(x:n)}$ is the graph with *n* parts of size *x*, where two vertices $g \in G_i$ and $h \in G_j$ are neighbors if and only if |i-j| = 1, with this subtraction being done modulo *n*.

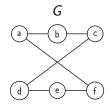


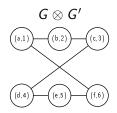
< □ > < □ > < □ > < □ > < □ > < □ >

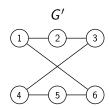






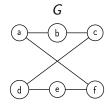


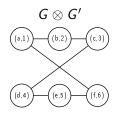


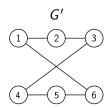


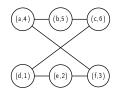
((f,3)) (d,1) ((e,2)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで





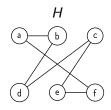


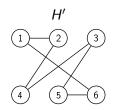


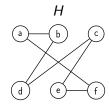
08/28/2015 13 / 26

3

イロト イヨト イヨト イヨト







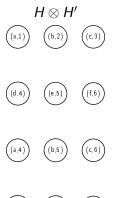
H'

2

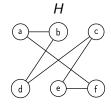
5

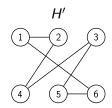
3

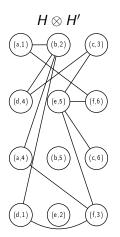
6



((f,3)) (d,1) ((e,2)







イロト イヨト イヨト イヨト

Definition n-balanced C_k -factor

Definition

Let G be a subgraph of $C_{(x:n)}$. We will say that G is a n – balanced C_k -factor if:

- G is a union of cycles of size k.
- If $v \in G_j$, then v has a neighbor in G_{j-1} and a neighbor in G_{j+1} .

08/28/2015

Definition n-balanced C_k -factor

Definition

Let G be a subgraph of $C_{(x:n)}$. We will say that G is a n – balanced C_k -factor if:

- G is a union of cycles of size k.
- If $v \in G_j$, then v has a neighbor in G_{j-1} and a neighbor in G_{j+1} .

Products of Balanced Factors

Lemma

Let G and H be a n-balanced C_k -factor and a n-balanced C_m -factor, respectively. Then $G \otimes H$ is a n-balanced C_l -factor, where $I = \frac{km}{\gcd(k,m)}$.

Lemma

The complete cyclic multipartite graph is the product of the complete multipartite graph by the cycle. This is: $K_{(x:n)} \otimes C_{(1:n)} = C_{(x:n)}$.

08/28/2015

Construction Theorem

Lemma

Let m, n, x, y and v be positive integers. Suppose the following conditions are satisfied:

- There exists a decomposition of K_m into C_n -factors.
- There exists a decomposition of $C_{(v:n)}$ into $s_p C_{xn}$ -factors and $r_p C_{yn}$ -factors.

Let

$$s = \sum_{p=1}^{rac{(m-1)}{2}} s_p$$
 and $r = \sum_{p=1}^{rac{(m-1)}{2}} r_p$

Then there exists a decomposition of $K_{(v:m)}$ into s $C_{(xn)}$ -factors and r C_{yn} -factors.

э

Needed Known Result + Basic Construction

Theorem (Alspach, Haggkvist [1] Alspach, Schellenberg, Stinson, Wagner[2]) There exists a decomposition of K_m into C_n -factors if and only if $m \equiv 0 \pmod{n}$, $(m, n) \neq (6, 3)$ and $(m, n) \neq (12, 3)$.

Theorem (Not enough room in the slides to prove)

Let x, y and n be odd. Let $s \neq 1$. We have the following decompositions:

08/28/2015

18 / 26

 C_(4x:n) can be decomposed into s k-balanced C_{2xn}-factors and r k-balanced C_n-factors.

More Basic Constructions

Theorem (Not enough room in the slides to prove)

Let x, y and n be odd. Let s, $r \neq 1$. We have the following decompositions:

- C_(xy:n) can be decomposed into s k-balanced C_{xn}-factors and r k-balanced C_{yn}-factors.
- C_(4x:n) can be decomposed into s k-balanced C_{xn}-factors and r k-balanced C_{2n}-factors.
- C_(4xy:n) can be decomposed into s k-balanced C_{2xn}-factors and r k-balanced C_{yn}-factors.

イロト イ理ト イヨト イヨ

Theorem

Let v be odd and x be an odd divisor of v. Then there is a decomposition of $C_{(v:n)}$ into s C_{xn} -factors and v C_n -factors, for any $s_p \neq 1$.

・ 一下・ ・ モト・

08/28/2015

20 / 26

Proof.

Theorem

Let v be odd and x be an odd divisor of v. Then there is a decomposition of $C_{(v:n)}$ into s C_{xn} -factors and v C_n -factors, for any $s_p \neq 1$.

Proof.

$$C_{(v:n)} = C_{(x:n)} \otimes C_{\left(\frac{v}{x}:n\right)}$$

08/28/2015

Theorem

Let v be odd and x be an odd divisor of v. Then there is a decomposition of $C_{(v:n)}$ into s C_{xn} -factors and v C_n -factors, for any $s_p \neq 1$.

Proof.

$$C_{(v:n)} = C_{(x:n)} \otimes C_{\left(\frac{v}{x}:n\right)}$$

 $s \not\equiv 1 \pmod{x}$

$$C_{(x:n)} \otimes C_{\left(\frac{v}{x}:n\right)} = C_{(x:n)} \otimes \left(\bigoplus_{i=1}^{\frac{v}{x}} H_{\frac{v}{x}}(i,i) \right) = \bigoplus_{i=1}^{\frac{v}{x}} \left(H_{\frac{v}{x}}(i,i) \otimes C_{(x:n)} \right)$$

Theorem

Let v be odd and x be an odd divisor of v. Then there is a decomposition of $C_{(v:n)}$ into s C_{xn} -factors and v C_n -factors, for any $s_p \neq 1$.

Proof.

$$C_{(v:n)} = C_{(x:n)} \otimes C_{\left(\frac{v}{x}:n\right)}$$

 $s \not\equiv 1 \pmod{x}$

$$C_{(x:n)} \otimes C_{\left(\frac{v}{x}:n\right)} = C_{(x:n)} \otimes \left(\bigoplus_{i=1}^{\frac{v}{x}} H_{\frac{v}{x}}(i,i) \right) = \bigoplus_{i=1}^{\frac{v}{x}} \left(H_{\frac{v}{x}}(i,i) \otimes C_{(x:n)} \right)$$
$$\bigoplus_{i=1}^{\frac{v}{x}} \left(H_{\frac{v}{x}}(i,i) \otimes C_{(x:n)} \right) = \left(\bigoplus_{i=1}^{t} \left(H_{\frac{v}{x}}(i,i) \otimes C_{(x:n)} \right) \right)$$
$$\bigoplus \left(H_{\frac{v}{x}}(t+1,t+1) \otimes C_{(x:n)} \right) \oplus \left(\bigoplus_{i=t+2}^{\frac{v}{x}} \left(H_{\frac{v}{x}}(i,i) \otimes C_{(x:n)} \right) \right)$$

08/28/2015 21 / 26

Theorem

Let v be odd and x be an odd divisor of v. Then there is a decomposition of $C_{(v:n)}$ into s C_{xn} -factors and v C_n -factors, for any $s_p \neq 1$.

Proof.

$$C_{(v:n)} = C_{(x:n)} \otimes C_{\left(\frac{v}{x}:n\right)}$$
$$s \equiv 1 \pmod{x}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

Let v be odd and x be an odd divisor of v. Then there is a decomposition of $C_{(v:n)}$ into s C_{xn} -factors and v C_n -factors, for any $s_p \neq 1$.

Proof.

$$C_{(v:n)} = C_{(x:n)} \otimes C_{\left(\frac{v}{x}:n\right)}$$
$$s \equiv 1 \pmod{x}$$

э

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Let x, y, z, n, v and m be integers, with n|m, xyz|v and $x, y, z \neq 0$ (mod 4), gcd(x, z) = gcd(y, z) = 1.

<**A**₽ ► < **B** ►

э

• Let x, y, z, n, v and m be integers, with n|m, xyz|v and $x, y, z \neq 0$ (mod 4), gcd(x, z) = gcd(y, z) = 1.

<**A**₽ ► < **B** ►

08/28/2015

23 / 26

• Decompose K(v : m) into copies of $C_{(v:n)}$.

• Let x, y, z, n, v and m be integers, with n|m, xyz|v and $x, y, z \neq 0$ (mod 4), gcd(x, z) = gcd(y, z) = 1.

<**A**₽ ► < **B** ►

08/28/2015

23 / 26

• Decompose K(v : m) into copies of $C_{(v:n)}$.

• Write
$$C_{(v:n)} = C_{(xy:n)} \otimes C_{(zw:n)}$$
.

• Let x, y, z, n, v and m be integers, with n|m, xyz|v and $x, y, z \neq 0$ (mod 4), gcd(x, z) = gcd(y, z) = 1.

08/28/2015

- Decompose K(v : m) into copies of $C_{(v:n)}$.
- Write $C_{(v:n)} = C_{(xy:n)} \otimes C_{(zw:n)}$.
- Decompose $C_{(xy:n)}$ into C_{xn} -factors and C_{yn} -factors.

• Let x, y, z, n, v and m be integers, with n|m, xyz|v and $x, y, z \neq 0$ (mod 4), gcd(x, z) = gcd(y, z) = 1.

08/28/2015

- Decompose K(v : m) into copies of $C_{(v:n)}$.
- Write $C_{(v:n)} = C_{(xy:n)} \otimes C_{(zw:n)}$.
- Decompose $C_{(xy:n)}$ into C_{xn} -factors and C_{yn} -factors.
- Decompose $C_{(zw:n)}$ into C_{zn} -factors.

• Let x, y, z, n, v and m be integers, with n|m, xyz|v and $x, y, z \neq 0$ (mod 4), gcd(x, z) = gcd(y, z) = 1.

08/28/2015

- Decompose K(v : m) into copies of $C_{(v:n)}$.
- Write $C_{(v:n)} = C_{(xy:n)} \otimes C_{(zw:n)}$.
- Decompose $C_{(xy:n)}$ into C_{xn} -factors and C_{yn} -factors.
- Decompose $C_{(zw:n)}$ into C_{zn} -factors.
- Multiply and add up.

Main Theorem

Theorem

Let v, m and n be odd, such that $m \equiv 0 \pmod{n}$. Let s and r be such that s, $r \neq 1$ and $s + r = v \frac{m-1}{2}$. Let x, y, z and w be such that:

•
$$gcd(x,z) = gcd(y,z) = 1$$
,

- w ∉ {2,6},
- 2 divides at most one of x, y and z,
- v = xyzw if 2 divides none of x, y, z,
- v = 2xyzw if 2 divides one of x, y, z.

Then there is a decomposition of $K_{(v:m)}$ into s C_{xzn} -factors and r C_{vzn} -factors.

- [1] B. Alspach and R. Haggkvist, Some observations on the Oberwolfach problem, *Journal of Graph Theory* **9** (1985), 177-187.
- [2] B. Alspach, P. Schellenberg, D.R. Stinson, and D. Wagner, The Oberwolfach problem and factors of uniform length, *Journal of Combinatorial Theory, Ser. A* 52 (1989), 20-43.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thank you!!

08/28/2015 26 / 26

Ξ.

イロト イヨト イヨト イヨト