

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Codes from orbit matrices and extended orbit matrices of symmetric designs

(a joint work with Dean Crnković)

Sanja Rukavina sanjar@math.uniri.hr Department of Mathematics University of Rijeka, Croatia

Algebraic Combinatorics and Applications August 26 - August 30, 2015, Houghton

Supported by CSF under the project 1637.

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

1 Introduction

Orbit matrices of symmetric designs Codes

2 Codes from orbit matrices of symmetric designs

3 Self-dual codes from extended orbit matrices

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

A $t - (v, k, \lambda)$ design is a finite incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ satisfying the following requirements: $|\mathcal{P}| = v$,

- 2 every element of \mathcal{B} is incident with exactly k elements of \mathcal{P} ,
- **3** every *t* elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B} .

Every element of \mathcal{P} is incident with exactly r elements of \mathcal{B} . The number of blocks is denoted by b.

If $|\mathcal{P}| = |\mathcal{B}|$ (or equivalently k = r) then the design is called symmetric.

The **incidence matrix** of a design is a $b \times v$ matrix $[m_{ij}]$ where b and v are the numbers of blocks and points respectively, such that $m_{ij} = 1$ if the point P_j and the block x_i are incident, and $m_{ij} = 0$ otherwise.

Symmetric designs

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Tactical decomposition

Let A be the incidence matrix of a design $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$. A **decomposition** of A is any partition B_1, \ldots, B_s of the rows of A (blocks of \mathcal{D}) and a partition P_1, \ldots, P_t of the columns of A (points of \mathcal{D}).

For $i \leq s$, $j \leq t$ define

$$\alpha_{ij} = |\{P \in P_j | PIx\}|, \text{ for } x \in B_i \text{ arbitrarily chosen}, \beta_{ij} = |\{x \in B_i | PIx\}|, \text{ for } P \in P_j \text{ arbitrarily chosen}.$$

We say that a decomposition is **tactical** if the α_{ij} and β_{ij} are well defined (independent from the choice of $x \in B_i$ and $P \in P_j$, respectively).

Automorphism group

Codes from orbit matrices and extended orbit matrices of symmetric designs

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices An isomorphism from one design to other is a bijective mapping of points to points and blocks to blocks which preserves incidence. An isomorphism from a design \mathcal{D} onto itself is called an **automorphism of** \mathcal{D} . The set of all automorphisms of \mathcal{D} forms a group called the full automorphism group of \mathcal{D} and is denoted by $Aut(\mathcal{D})$.

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a symmetric (v, k, λ) design and $G \leq Aut(\mathcal{D})$. The group action of G produces the same number of point and block orbits. We denote that number by t, the G-orbits of points by $\mathcal{P}_1, \ldots, \mathcal{P}_t$, G-orbits of blocks by $\mathcal{B}_1, \ldots, \mathcal{B}_t$, and put $|\mathcal{P}_r| = \omega_r$, $|\mathcal{B}_i| = \Omega_i$, $1 \leq i, r \leq t$.

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices The group action of *G* induces a tactical decomposition of the incidence matrix of \mathcal{D} . Denote by γ_{ij} the number of points of \mathcal{P}_j incident with a representative of the block orbit \mathcal{B}_i . For these numbers the following equalities hold:

$$\sum_{j=1}^{t} \gamma_{ij} = k, \qquad (1)$$

$$\sum_{i=1}^{t} \frac{\Omega_i}{\omega_j} \gamma_{ij} \gamma_{is} = \lambda \omega_s + \delta_{js} \cdot \mathbf{n}, \qquad (2)$$

where $n = k - \lambda$ is the order of the design \mathcal{D} .

Orbit matrix

Codes from orbit matrices and extended orbit matrices of symmetric designs

Definition 1

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

A $(t \times t)$ -matrix $M = (\gamma_{ij})$ with entries satisfying conditions (1) and (2) is called an **orbit matrix** for the parameters (v, k, λ) and orbit lengths distributions $(\omega_1, \ldots, \omega_t)$, $(\Omega_1, \ldots, \Omega_t)$.

Orbit matrices are often used in construction of designs with a presumed automorphism group. Construction of designs admitting an action of the presumed automorphism group consists of two steps:

- Construction of orbit matrices for the given automorphism group,
- 2 Construction of block designs for the obtained orbit matrices.

Codes

Codes from orbit matrices and extended orbit matrices of symmetric designs

Introduction Orbit matrices of symmetric designs

Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices Let \mathbf{F}_q be the finite field of order q. A **linear code** of **length** n is a subspace of the vector space \mathbf{F}_q^n . A *k*-dimensional subspace of \mathbf{F}_q^n is called a linear [n, k] code over \mathbf{F}_q .

For $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbf{F}_q^n$ the number $d(x, y) = |\{i \mid 1 \le i \le n, x_i \ne y_i\}|$ is called a Hamming distance. A **minimum distance** of a code *C* is $d = min\{d(x, y) \mid x, y \in C, x \ne y\}$. A linear [n, k, d] code is a linear [n, k] code with minimum distance *d*.

The **dual** code C^{\perp} is the orthogonal complement under the standard inner product (,). A code *C* is **self-orthogonal** if $C \subseteq C^{\perp}$ and **self-dual** if $C = C^{\perp}$.

Introduction Orbit matrices of symmetric

Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Codes from orbit matrices of symmetric designs

Theorem 1 [M. Harada, V. D. Tonchev, 2003]

Let \mathcal{D} be a 2- (v, k, λ) design with a **fixed-point-free** and **fixed-block-free automorphism** ϕ of order q, where q is prime. Further, let M be the orbit matrix induced by the action of the group $G = \langle \phi \rangle$ on the design \mathcal{D} . If p is a prime dividing r and λ then the **orbit matrix** M generates a **self-orthogonal code** of length b|q over \mathbf{F}_p .

Introduction Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices Let a group G acts on a symmetric (v, k, λ) design with $t = \frac{v}{\Omega}$ orbits of length Ω on the set of points and set of blocks.

Theorem 1a

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the sets of points and blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . Further, let M be the orbit matrix induced by the action of the group G on the design \mathcal{D} . If p is a prime dividing k and λ , then the rows of the matrix M span a self-orthogonal code of length t over \mathbf{F}_p .

Introduction Orbit matrices of symmetric

Codes Codes fr

orbit matric of symmetri designs

Self-dual codes from extended orbit matrices

Self-dual codes from extended orbit matrices

In the sequel we will study codes spanned by orbit matrices for a symmetric (v, k, λ) design and orbit lengths distribution (Ω, \ldots, Ω) , where $\Omega = \frac{v}{t}$. We follow the ideas presented in:

- E. Lander, Symmetric designs: an algebraic approach, Cambridge University Press, Cambridge (1983).
- R. M. Wilson, Codes and modules associated with designs and *t*-uniform hypergraphs, in: D. Crnković, V. Tonchev, (eds.) Information security, coding theory and related combinatorics, pp. 404–436. NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur. 29 IOS, Amsterdam (2011).

(Lander and Wilson have considered codes from incidence matrices of symmetric designs.)

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Theorem 2

Let p be a prime. Suppose that C is the code over \mathbf{F}_p spanned by the incidence matrix of a symmetric (v, k, λ) design.

1 If $p \mid (k - \lambda)$, then $dim(C) \leq \frac{1}{2}(v + 1)$.

2 If
$$p \nmid (k - \lambda)$$
 and $p \mid k$, then $\dim(C) = v - 1$.

3) If
$$p \nmid (k - \lambda)$$
 and $p \nmid k$, then $dim(C) = v$.

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Theorem 3 [D. Crnković, SR]

Let a group G acts on a symmetric (v, k, λ) design \mathcal{D} with $t = \frac{v}{\Omega}$ orbits of length Ω , on the set of points and the set of blocks, and let M be an orbit matrix of \mathcal{D} induced by the action of G. Let p be a prime. Suppose that C is the code over \mathbf{F}_p spanned by the rows of M.

1 If
$$p \mid (k - \lambda)$$
, then $dim(C) \le \frac{1}{2}(t + 1)$.
2 If $p \nmid (k - \lambda)$ and $p \mid k$, then $dim(C) = t - 1$.

3 If $p \nmid (k - \lambda)$ and $p \nmid k$, then dim(C) = t.

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices Let a group G acts on a symmetric (v, k, λ) design with $t = \frac{v}{\Omega}$ orbits of length Ω on the set of points and set of blocks.

Theorem 1a

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the sets of points and blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . Further, let M be the orbit matrix induced by the action of the group G on the design \mathcal{D} . If p is a prime dividing k and λ , then the rows of the matrix M span a self-orthogonal code of length t over \mathbf{F}_p .

Introduction

Orbit matrice of symmetric designs Codes

Codes from orbit matrice of symmetric designs

Self-dual codes from extended orbit matrices Let V be a vector space of finite dimension n over a field **F**, let $b: V \times V \rightarrow \mathbf{F}$ be a symmetric bilinear form, i.e. a scalar product, and (e_1, \ldots, e_n) be a basis of V. The bilinear form b gives rise to a matrix $B = [b_{ij}]$, with

$$b_{ij} = b(e_i, e_j).$$

The matrix *B* determines *b* completely. If we represent vectors x and y by the row vectors $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$, then

$$b(x,y)=xBy^{T}.$$

Since the bilinear form b is symmetric, B is a symmetric matrix. A bilinear form b is nondegenerate if and only if its matrix B is nonsingular.

Introduction

Orbit matrice of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices We may use a symmetric nonsingular matrix U over a field \mathbf{F}_p to introduce a scalar product $\langle \cdot, \cdot \rangle_U$ for row vectors in \mathbf{F}_p^n , namely

$$\langle a,c
angle_U=aUc^ op.$$

For a linear *p*-ary code $C \subset F_p^n$, the *U*-dual code of *C* is

$$C^U = \{ a \in \mathbf{F}_p^n : \langle a, c \rangle_U = 0 \text{ for all } c \in C \}.$$

We call *C* self-*U*-dual, or self-dual with respect to *U*, when $C = C^{U}$.

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices Let a group G acts on a symmetric (v, k, λ) design \mathcal{D} with $t = \frac{v}{\Omega}$ orbits of length Ω , on the set of points and the set of blocks, and let M be the corresponding orbit matrix.

If p divides $k - \lambda$, but does not divide k, we use a different code. Define the extended orbit matrix

$$M^{ext} = \begin{bmatrix} & & 1 \\ M & \vdots \\ \hline & & 1 \\ \hline \lambda \Omega & \cdots & \lambda \Omega & k \end{bmatrix},$$

and denote by $C^{e\times t}$ the extended code spanned by $M^{e\times t}$.

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices Define the symmetric bilinear form ψ by

$$\psi(\bar{x},\bar{y})=x_1y_1+\ldots+x_ty_t-\lambda\Omega x_{t+1}y_{t+1},$$

for $\bar{x} = (x_1, \ldots, x_{t+1})$ and $\bar{y} = (y_1, \ldots, y_{t+1})$. Since $p \mid n$ and $p \nmid k$, it follows that $p \nmid \Omega$ and $p \nmid \lambda$. Hence ψ is a nondegenerate form on \mathbf{F}_p . The extended code C^{ext} over \mathbf{F}_p is self-orthogonal (or totally isotropic) with respect to ψ .

Introduction

Orbit matrice of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices The matrix of the bilinear form ψ is the (t+1) imes (t+1) matrix

$$\Psi = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & -\lambda\Omega \end{bmatrix}$$

٠

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Theorem 4 [D. Crnković, SR]

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . Further, let M be the orbit matrix induced by the action of the group G on the design \mathcal{D} , and $C^{e\times t}$ be the corresponding extended code over F_p . If a prime p divides $(k - \lambda)$, but $p^2 \nmid (k - \lambda)$ and $p \nmid k$, then $C^{e\times t}$ is **self-dual with respect to** ψ .

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Theorem 5

If there exists a self-dual *p*-ary code of length *n* with respect to a nondegenerate scalar product ψ , where *p* is an odd prime, then $(-1)^{\frac{p}{2}}det(\psi)$ is a square in **F**_{*p*}.

A direct consequence of Theorems 4 and 5 is the following theorem.

Theorem 6

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . If an odd prime p divides $(k - \lambda)$, but $p^2 \nmid (k - \lambda)$ and $p \nmid k$, then $-\lambda \Omega (-1)^{\frac{t+1}{2}}$ is a square in \mathbf{F}_p .

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices If $p^2 | (k - \lambda)$ we use a chain of codes to obtain a self-dual code from an orbit matrix.

Given an $m \times n$ integer matrix A, denote by $row_{\mathbf{F}}(A)$ the linear code over the field \mathbf{F} spanned by the rows of A. By $row_p(A)$ we denote the *p*-ary linear code spanned by the rows of A. For a given matrix A, we define, for any prime p and nonnegative integer i,

$$\mathcal{M}_i(A) = \{x \in \mathbb{Z}^n : p^i x \in row_{\mathbb{Z}}(A)\}.$$

We have $\mathcal{M}_0(A) = \mathit{row}_\mathbb{Z}(A)$ and

 $\mathcal{M}_0(A) \subseteq \mathcal{M}_1(A) \subseteq \mathcal{M}_2(A) \subseteq \ldots$

Introduction Orbit matrices of symmetric designs

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

$$C_i(A) = \pi_p(\mathcal{M}_i(A))$$

where π_p is the homomorphism (projection) from \mathbb{Z}^n onto \mathbf{F}_p^n given by reading all coordinates modulo p. Then each $C_i(A)$ is a p-ary linear code of length n, $C_0(A) = row_p(A)$, and

$$C_0(A) \subseteq C_1(A) \subseteq C_2(A) \subseteq \ldots$$

Introduction Orbit matrices of symmetric designs

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Theorem 7

Suppose A is an $n \times n$ integer matrix such that $AUA^T = p^e V$ for some integer e, where U and V are square matrices with determinants relatively prime to p. Then $C_e(A) = \mathbf{F}_n^n$ and

$$C_j(A)^U = C_{e-j-1}(A), \text{ for } j = 0, 1, \dots, e-1.$$

In particular, if e = 2f + 1, then $C_f(A)$ is a self-U-dual p-ary code of length n.

In the next theorem the above result is used to associate a self-dual code to an orbit matrix of a symmetric design.

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Theorem 8 [D. Crnković, SR]

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . Suppose that $n = k - \lambda$ is exactly divisible by an odd power of a prime p and λ is exactly divisible by an even power of p, e.g. $n = p^e n_0$, $\lambda = p^{2a}\lambda_0$ where e is odd, $a \ge 0$, and $(n_0, p) = (\lambda_0, p) = 1$. If $p \nmid \Omega$, then there exists a self-dual p-ary code of length t + 1with respect to the scalar product corresponding to $U = diag(1, \ldots, 1, -\lambda_0\Omega)$.

If λ is exactly divisible by an odd power of p, we apply the above case to the complement of the given symmetric design, which is a symmetric (v, k', λ') design, where k' = v - k and $\lambda' = v - 2k + \lambda$.

Introduction Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Theorem 9

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . Suppose that $n = k - \lambda$ is exactly divisible by an odd power of a prime p and λ is also exactly divisible by an odd power of p, e.g. $n = p^e n_0$, $\lambda = p^{2a+1}\lambda_0$ where e is odd, $a \ge 0$, and $(n_0, p) = (\lambda_0, p) = 1$. If $p \nmid \Omega$, then there exists a self-dual p-ary code of length t + 1with respect to the scalar product corresponding to $U = diag(1, \ldots, 1, \lambda_0 n_0 \Omega)$.

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices As a consequence of Theorems 5, 8 and 9, we have

Theorem 10

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . Suppose that p is an odd prime such that $n = p^e n_0$ and $\lambda = p^b \lambda_0$, where $(n_0, p) = (\lambda_0, p) = 1$, and $p \nmid \Omega$. Then

- $-(-1)^{(t+1)/2}\lambda_0\Omega$ is a square (mod p) if b is even,
- $(-1)^{(t+1)/2} n_0 \lambda_0 \Omega$ is a square (mod p) if b is odd.

. . .

Codes from orbit matrices and extended orbit matrices of symmetric designs

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices An incidence structure with v points, b blocks and constant block size k in which every point appears in exactly r blocks is a (group) divisible design (GDD) with parameters (v, b, r, k, λ_1 , λ_2 , m, n) whenever the point set can be partitioned into m classes of size n, such that two points from the same class appear together in exactly λ_1 blocks, and two points from different classes appear together in exactly λ_2 blocks.

A GDD is called a *symmetric* GDD (SGDD) if v = b (or, equivalently, r = k). It is then denoted by $D(v, k, \lambda_1, \lambda_2, m, n)$. A SGDD D is said to have the *dual property* if the dual of D (that is, the design with the transposed incidence matrix) is again a divisible design with the same parameters as D.

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Theorem

Let $D(v, k, \lambda_1, \lambda_2, m, n)$ be a *SGDD* with the dual property, and let *N* be the incidence matrix of *D*. If *p* is a prime such that $p \mid \lambda_1, p \mid k$ and $p \mid \lambda_2$, then the rows of *N* span a self-orthogonal code of length v over \mathbb{F}_p .

Theorem

. . .

Let $D(v, k, \lambda_1, \lambda_2, m, n)$ be a *SGDD* with the dual property. Suppose that $k^2 - v\lambda_2$ is exactly divisible by an odd power of a prime p and λ_2 is exactly divisible by an even power of p, e.g. $k^2 - v\lambda_2 = p^e n_0, \lambda_2 = p^{2a}\lambda_0$, where e is odd, $a \ge 0$ and $(n_o, p) = (\lambda_0, p) = 1$. If $p \nmid n$ then there exists a self-dual p-ary code of length m + 1 with respect to the scalar product corresponding to $U = diag(1, ..., 1, -n\lambda_0)$.

Introduction

Orbit matrices of symmetric designs Codes

Codes from orbit matrices of symmetric designs

Self-dual codes from extended orbit matrices

Thank you for your attention!