Non-existence of strongly regular graphs with feasible block graph parameters of quasi-symmetric designs

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

August 22, 2015

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Abstract

A quasi-symmetric design(QSD) is a (v, k, λ) design with two intersection numbers x, y, where 0 < x < y < k. The block graph of QSD is a strongly regular graph(SRG). It is known that there are SRGs which are not block graphs of QSDs. We derive necessary conditions on the parameters of a SRG to be feasible as the block graph of a QSD. We apply these condtions to rule out many infinite families such SRGs

Outline of talk

- Preliminary concepts
- Preliminary results needed
- Main method
- Some results obtained

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Strongly regular graph (SRG)

- A regular graph Γ is an SRG with parameters (n, a, c, d)
- n =#vertices of Γ , a =valency of Γ
- c = # of vertices adjacent to two adjacent vertices
- d = # vertices adjacent to two non-adjacent vertices

・ 同 ト ・ ヨ ト ・ ヨ ト

3

$\boldsymbol{\Gamma}$ is assumed to be non-null, non-complete, connected

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Quasi-symmetric design (QSD)

A QSD is a 2-(v, k, λ) design D = (X, β) with two block intersection numbers x, y, where x < y

э

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Block graph of QSD

- The block graph Γ of a QSD D = (X, β) has vertices the b blocks of D, where two distinct blocks B, B' are adjacent iff |B ∩ B'| = y
- The block graph Γ is an SRG with parameters
 (b, a, c, d)
- result due to S.S. Shrikhande & Bhagwandas (1965) and Goethals & Seide(1970)

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Is SRG the block graph of a QSD?

- Goethals and Seidel proved that the SRG lattice graph L₂(n) is not the block graph of a QSD
- Deciding which SRGs are block graphs of QSDs appears to be a difficult open problem Coster & Haemers DCC (1995)

(過) (ヨ) (ヨ)

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Some previous non-existence results

- S.S. Shrikhande & Jain (1962),
- S.S. Shrikhande, Raghavarao,& Tharthare(1963)
- considered duals of PBIBDs (= SRGs) & using Hasse-Minkowski Theory

・ 同 ト ・ ヨ ト ・ ヨ ト

 Haemers (1992), Coster & Haemers (1995) used quadratic forms theory

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Preliiminary results need

Lemma (1)

Let **D** be a QSD, with the standard parameter set $(v, b, r, k, \lambda; x, y)$. Then the following relations hold:

▲□ → ▲ 三 → ▲ 三 →

э

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Preliminary results need

Lemma (2)

1. Let Γ be a connected SRG (b, a, c, d), Then Γ has three distinct eigenvalues, $\theta_0 = a$ with multiplicity 1, θ_1 with multiplicity f, and θ_2 with multiplicity g, where θ_1, θ_2 ($\theta_1 > \theta_2$) are the roots of the quadratic equation

$$ho^2-(c-d)
ho-(a-d)=0,$$

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

statement of lemma contd.

2. the multiplicities f and g are positive integers given by

$$f,g = \frac{1}{2} \left(b - 1 \pm \frac{(b-1)(c-d) + 2a}{\sqrt{(c-d)^2 + 4(a-d)}} \right)$$
 and

$$c = a + \theta_1 + \theta_2 + \theta_1 \theta_2, d = a + \theta_1 \theta_2.$$

э

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Krein Conditions

Let Γ be a connected SRG (b, a, c, d), with three distinct eigenvalues, $\theta_0 = a$, θ_1, θ_2 $(\theta_1 > \theta_2)$. Then

\$\$(\theta_1+1)(a+\theta_1+2\theta_1\theta_2) \le (a+\theta_1)(\theta_2+1)^2\$;
\$\$(\theta_2+1)(a+\theta_2+2\theta_1\theta_2) \le (a+\theta_2)(\theta_1+1)^2\$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Lemma (3)

Let **D** be a $(v, b, r, k, \lambda; x, y)$ QSD. Form the block graph Γ of **D**. Assume Γ is connected. Then, Γ is a SRG with parameters (b, a, c, d), where the eigenvalues of Γ are given by $a = \theta_0 = \frac{k(r-1)+(1-b)x}{y-x}, \theta_1 = \frac{r-\lambda-k+x}{y-x}$ and $\theta_2 = \frac{-(k-x)}{y-x}$.

3

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Lemma (4)

• The eigenvalues $\theta_0, \theta_1, \theta_2$ are integers, with $\theta_0 > 0, \theta_1 \ge 0$, and $\theta_2 < 0$; • $a = \frac{k(r-1)+(1-b)x}{y-x}$ (1); • $c = \frac{(x-k+r-\lambda)(x-k)}{(y-x)^2} + \frac{x-k}{y-x} + \frac{x-k+r-\lambda}{y-x} + \frac{k(r-1)+(1-b)x}{y-x}$ (2); • $d = \frac{k(r-1)+(1-b)x}{y-x} + \frac{(x-k)(-k+r+x-\lambda)}{(y-x)^2}$ (3)

・ロト ・回ト ・ヨト ・ヨト

3

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Lemma [4] contd.

•
$$\frac{r-\lambda}{y-x} \geq \frac{k-x}{y-x}$$
,

- y x divides both r λ and k x, so we take y = z + x, k = mz + x and r = nz + λ, for positive integers m and n, assuming m ≤ n.
- If $\lambda > 1$, then $\lambda \ge x + 1$.
- The block graph of **D** and block graph of **D**, the complement of the design **D**, are isomorphic.

イロト イポト イヨト イヨト

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Remarks on SRGs arisng in paper

- The block graph of a *Steiner graph* is a SRG.
- ❷ Given m 2 mutually orthogonal Latin squares of order n, the vertices of a Latin square graph $LS_m(n)$ are the n^2 cells; two vertices are adjacent if and only if they lie in the same row or column or they have same entry in one of the Latin squares. This graph is a SRG, denoted by $L_m(n)$.
- A Negative Latin square graph NL_m(n), is a SRG obtained by replacing m and n by their negatives in the parameters of LS_m(n).

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Main tool

Theorem (5)

Let **D** be a $(v, b, r, k, \lambda; x, y)$ QSD and Γ the (b, a, c, d) strongly regular block graph of **D**. Let v = z + x, k = mz + x and $r = nz + \lambda$, for positive integers m and n, assuming m < n. Then, 1. $n = \frac{m^2 - 2m + a - c}{m - 1}, c - d = n - 2m$ and a-d=m(n-m),2. $m = \frac{1}{2} \left(d - c + \sqrt{(d - c)^2 + 4(a - d)} \right)$,

ヘロン ヘロン ヘヨン ヘヨン

э

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Theorem 5 cont.

3.
$$z = \frac{(-a+c-d+m+b\,m)\,(b-s)\,s}{b\,(c-d+2\,m)\,(-a-m+b\,m)}$$
for some positive integer *s*
4.
$$0 \le b^2 - 4q,$$
where
$$q = \frac{b\,(c-d+2\,m)\,(-a-m+b\,m)}{\gcd(b\,(c-d+2\,m)\,(-a-m+b\,m), -a+c-d+m+b\,m)}.$$

<ロ> <同> <同> < 回> < 回>

2

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Proof: From (3) of Lemma 4, get $m^2 - (d - c)m - (a - d) = 0$ and note that m is a positive root of this guadratic. From (1) of Lemma 4, get $\lambda = \frac{bx + az + mz - nxz - mnz^2}{x + mz}$. Observe that $(bx+az+mz-nxz-mnz^{2})-(a+m-bm)z =$ (x + mz) (b - nz). Hence x + mz divides (-a - m + b m) z. Taking (-a - m + b m) z = s (x + m z) for positive integer s, we get $x = \frac{-(a+m-b\,m+m\,s)\,z}{c}$. Substitute these values with n = c - d + 2m in (3) of Lemma to get desired expression for z.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

From expression of z, q divides (b - s)s. Hence (b - s)s = pq for some positive integer p. The discriminant of this quadratic in $s = b^2 - 4pq$ is non-negative. Observe that $0 \le b^2 - 4pq \le b^2 - 4q$. Thus, $0 \le b^2 - 4q$,

э

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Algorithm

Let Γ be a (b, a, c, d) strongly regular graph. To find feasible parameters of a QSD whose block graph is Γ , the following steps are followed. (1) m is obtained using (2) of the Theorem 1 and then n by (1). (2) If $b^2 - 4q < 0$, then there is no QSD, whose block graph parameters are (b, a, c, d). (3) If $b^2 - 4q \ge 0$, then for each integer p, $1 \le p \le b^2/4q$, we take integer $s = \frac{b+\sqrt{b^2-4pq}}{2}$.

イロト イポト イヨト イヨト

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

$$x = \frac{-(a+m-b\ m+m\ s)\ z}{s}, \ z = \frac{(-a+c-d+m+b\ m)\ (b-s)\ s}{b\ (c-d+2\ m)\ (-a-m+b\ m)}.$$

(4) Other feasible parameters of design can be obtained from Lemma , satisfying all known necessary conditions.

Designs associated with different values of s satisfying expression (3) of Theorem 1, are complements of each others.

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Theorem (6)

The following SRGs (b, a, c, d) are not block graphs of QSDs.

 $\begin{array}{ll} 1(a) & (t^3, (t-1)(t+2), t-2, t+2), t \geq 2\\ 1(b) & (t^3, (t-1)^2(t+1), t^3 - 2t^2 - t + 4, (t-2)(t-1)(t+1)), t \geq 2\\ 2(a) & (t^2(t+2), t(t+1), t, t), t \geq 2\\ 2(b) & ((t^2(t+2), (t-1)(t+1)^2, t^3 - t - 2), (t-1)t(t+1)), t \geq 2 \end{array}$

(日) (同) (三) (三)

3

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

theorem contd.

$$\begin{array}{l} 3 \ ((t+1)(t^2+1),t^3,(t-1)t^2,(t-1)t^2), \ t\geq 3\\ 4(a) \ ((t+1)(t^3+1),t(t^2+1),(t-1),t^2+1), \ t\geq 2\\ 4(b) \ ((t+1)(t^3+1),t^4,(t-1)t(t^2+1),(t-1)t^3),\\ \ t\geq 2 \end{array}$$

・ロト ・回ト ・ヨト ・ヨト

2

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

theorem contd.

$$\begin{array}{c} 5 \ ((t^2+1)(t^3+1),t^5,t(t-1)(t^3+t^2-1),t^3(t-1)(t+1)),\ t\geq 2\\ \bullet\\ \bullet\\ 17 \ ((t^2+1)(t^3+1),t^5,(t-1)t(t^3+t^2-1),(t-1)t^3(t+1)),\ t\geq 2\end{array}$$

・ロト ・回ト ・ヨト ・ヨト

2

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

sketch of proof of Theorem 6

We use (4) of Main Tool (Theorem 3) to rule out the possibility of QSD whose block graph parameters are (b, a, c, d) given in theorem by observing that $\Delta = b^2 - 4p q < 0$

(過) (ヨ) (ヨ)

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Observe that $z = -\frac{s(t^2+2t-1)(s-t^3)}{2(t-1)t^3(t+1)(t+2)}$. Consider two cases, t even and t odd If t = 2e then $z = \frac{(4e^2 + 4e - 1)(8e^3 - s)s}{32e^3(e+1)(2e-1)(2e+1)}$. As $32e^{3}(e+1)(2e-1)(2e+1)$ and $(4e^{2}+4e-1)$ are relatively prime. $(8e^3 - s) s = 32e^3(e+1)(2e-1)(2e+1)p$ for some positive integer p. Observe that $\Delta = -64e^3 ((8p-1)e^3 + 8pe^2 - 2pe - 2p)$, the discriminant of this quadratic in s is negative.

(日) (同) (三) (三)

э

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

If t = 2e + 1 then $z = \frac{(2e^2+4e+1)(8e^3+12e^2+6e-s+1)s}{4e(e+1)(2e+1)^3(2e+3)}$. $(8e^3 + 12e^2 + 6e - s + 1) s =$ $4e(e+1)(2e+1)^3(2e+3)p$ for some positive integer p. $\Delta = -(2e +$ $1)^3 ((32p-8)e^3 + (80p-12)e^2 + (48p-6)e - 1)$, the discriminant of this quadratic in s is negative.

< 同 > < 三 > < 三 >

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Non-existence of some families of feasible block graph parameters in Hubaut's paper

Theorem (7)

There is no QSD whose block graph parameters are complement of the family C6 given in Hubaut [].

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Theorem (8)

There is no QSD whose block graph parameters are complement of the family C7 given in Hubaut [].

э

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Theorem (9)

There is no QSD whose block graph parameters are complement of the family C8 given in Hubaut [].

э

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Pawale et al [EJC] proved non-existence of QSD whose block graph is pseudo Latin square graph $L_3(n)$ or $L_4(n)$, or their complements.. In present paper, we show

Theorem (10)

There is no QSD whose block graph is the pseudo Latin square graph $L_5(n)$; $n \ge 5$, with parameters $(n^2, 5(n-1), n+10, 20)$.

- < 同 > < 三 > < 三 >

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Theorem (11)

There is no QSD whose block graph is the complement of pseudo Latin square graph $L_5(n), n \ge 5$ with parameters

$$(n^2, (n-4)(n-1), 28-10 n + n^2, (n-5)(n-4)).$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

In Cameron, Goethals and Seidel [1], characterized SRG's attaining Krein bounds in terms of Negative Latin square graph $NL_t(t^2 + 3t)$. In below, we rule out the possibility of QSD's whose block graph is $NL_t(t^2 + 3t)$, with $2 \le t$ or its complement.

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Non-existence of QSDs with Negative Latin square block graph parameters

Theorem (12)

There is no QSD whose block graph is the Negative Latin square graph $NL_e(e^2 + 3e)$; $e \ge 2$, with parameters $(e^2 (3 + e)^2, e (1 + 3e + e^2), 0, e (1 + e))$ or its complement.

イロン 不同 とくほう イロン

3

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Theorem (13)

There is no QSD whose block graph is the Negative Latin square graph $NL_e(e + 2)$; $e \ge 2$, with parameters $((2 + e)^2, e(3 + e), e^2 + 2e - 2, e(e + 1))$ or its complement.

э

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Some references

R.C. Bose.

Strongly regular graphs, partial geometries, and partially balanced designs. *Pacific J. Math.*, 13, (1963), 389–419.

A.E. Brouwer and J.H. van Lint. Strongly regular graphs and partial geometries, in: *Enumeration and Design*, 1984, 85–122.

A.E. Brouwer. Strongly Regular Graphs. In: Handbook of Combinatorial Designs, 2009.

• • = • • = •

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

- M.J. Coster and W.H. Haemers. Quasi-Symmetric Designs Related to the Triangular Graph. *Designs, Codes and Cryptography*, 5 (1995), 27-42.
- J.M. Goethals and J.J. Seidel. Strongly regular graphs derived from combinatorial designs. *Canad. J. Math.* 22 (1970), 597–614.

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

- P. J. Cameron, J.-M. Goethals and J. J. Seidel, Strongly regular graphs with strongly regular subconstituents, *J. Algebra* 55 (1978), 257280
- M.J. Coster and W.H. Haemers. Quasi-Symmetric Designs Related to the Triangular Graph. *Designs, Codes and Cryptography*, 5 (1995), 27-42.
- J.M. Goethals and J.J. Seidel. Strongly regular graphs derived from combinatorial designs. *Canad. J. Math.* 22 (1970), 597–614.

< 回 > < 三 > < 三 >

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

- X. Hubaut. Strongly regular graphs. *Discrete Math.*, 13 (1975), 357–381.
- R.M. Pawale; M.S. Shrikhande and S.M. Nyayate. Conditions for the parameters of the block graph of quasi-symmetric designs. *Elec.J.* of Combin., 22(1), (2015), #P 1.36
- S.S. Shrikhande and Bhagwandas. Duals of incomplete block designs. J. Indian Statist. Assoc., Bulletin, 3(1) (1965), 30-37.

・ 同 ト ・ 三 ト ・ 三

- S. S. Shrikhande and N. C. Jain. The non-existence of some p.b.i.b designs with Latin square type association scheme. *Sankhyā: The Indian Journal of Statistics*, Series A, 24(3) (Aug., 1962), 259-268
- S. S. Shrikhande, D. Raghavarao and S. K. Tharthare. Non-existence of some unsymmetrical designs. *Cand J. Math.*, 15 (1963), 686-701.

・ 同 ト ・ ヨ ト ・ ヨ

Wolfram. Mathematica: A computer algebra system. Version 5., 1988

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Thanks!

Rajendra M. Pawale, Mohan S. Shrikhande*, Shubhada M. Nyayate

Non-existence of strongly regular graphs with feasible block graph parameters of quasi-symmetric designs

<ロ> <同> <同> < 回> < 回>

2