List of Publications
by Vladimir D. Tonchev

* Books: [1146], [147], [148], [170].

** Book Chapters: [55], [98], [104].

*** Volumes edited: [13], [31], [81] [105].

1. Cunsheng Ding, Hao Liu, and Vladimir D. Tonchev, All binary linear codes that are invariant under $PSL_2(n)$, IEEE Transactions on Information Theory, 64, No. 8, August 2018, 5769-5775.

38. M. Harada, C. Lam, A. Munemasa and V.D. Tonchev, Classification of generalized Hadamard matrices H(6,3) and quaternary hermitian self-dual codes of length 18, Electronic J. Combinatorics, 17 (2010), #R171.

40. D. Jungnickel and V.D. Tonchev, Polarities, quasi-symmetric designs, and Hamada’s conjecture, Designs, Codes and Cryptography, 51 (2009), 131-140.

47. V. D. Tonchev, Quantum Codes from Caps, Discrete Math 308 (2008), 6368-6372.

52. V.D. Tonchev, A class of $2-(3^n7,3^{n-1}7,(3^{n-1}7 - 1)/2)$ designs, *J. Combinatorial Designs*, **15** (2007), 460-464.

70. V.D. Tonchev, A formula for the number of Steiner quadruple systems on 2^n points of 2-rank $2^n - n$, Journal of Combinatorial Designs, 11 (2003), 260-274.

85. Maximal arcs and disjoint maximal arcs in projective planes of order 16 J. Geometry 67 (2000), 117-126 (with N. Hamilton and S. Stoichev)

87. Corrigendum to “Classification of affine resolvable 2-(27,9,4) designs”, J. Statistical Planning and Inference 86 (2000) 277-278. (with Clement Lam)

92. Linear perfect codes and a characterization of the classical designs, Designs, Codes and Cryptography 17 (1999), 121-128.

133. Exponential number of quasi-symmetric SDP designs and codes meeting the Grey-Rankin bound, Designs, Codes and Cryptography, **1** (1991), 247-253 (with D. Jungnickel).

139. Extremal doubly-even codes of length 64 derived from symmetric designs, Discr. Math. 83(1990), 285-289 (with S. Kapralov).

147. * “Combinatorial configurations”, Visha Shckola, Kiev 1988 (Russian translation of [107]).

153. Embedding of the Witt-Mathieu system S(3,6,22) in a symmetric 2-(78,22,6) design, Geometriae Dedicata 22 (1987) 49-75.

166. The symmetric 2-(36,15,6) designs derived from Latin squares of order 6, Compt. rend. Acad. bulg. Sci., 39 (1986), No. 6, 27-29.

185. Embeddability of 2-(9,6,10) designs without repeated blocks, Mathematics and Education in Mathematics (1982) 300-306 (in Bulgarian).

191. On the mutual embeddability of (2k,k,k-1) and (2k-1,k,k) designs, J. Combin. Theory, A 29 (1980) 329-335.

195. Permutation groups and block designs, Mathematics and Education in Math., (1979) 552-564. (in Bulgarian).

