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Abstract

In theoretical models of material response, rigid/ideally plastic behavior is
often viewed as as special limiting case of power-law materials. In this work,
we examine another constitutive relation which also has rigid /ideally plastic
behavior as a limiting case. In particular, our analysis deals with the over-
all properties of a class of composites where the stress/strain(rate) relation is
piecewise linear in each constituent material (“bilinear” response).

When comparing our work to previous analysis of power-law materials in the
rigid /ideally plastic limit, the results can be strikingly different. For example,
adding a small amount of stronger material to a weaker one can actually result
in a composite with a lower yield stress than the original (weaker) material. We
will discuss the discrepancies between the two limits and the circumstances in
which the limits agree.



The Materials — Bilinear

e Incompressible, isotropic:
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The Materials — Power-Law

e T'wo incompressible, isotropic power-law materials

e parameters (050), m = 1/n) and (050), m=1/n)
K same exponent “m” in both materials **
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Yield limit: n — oo (m — 0)



The Geometries

X
Spherical Inclusions ’

spherical inclusions

randomly distributed

inclusions stiffer than matrix

overall isotropic .

X1

Laminate

-

e Layers perpendicular to n =

e overall transversely isotropic

Ellipsoids

e aligned ellipsoids with circular cross-
section perpendicular to 7

e Space-filling ellipsoids of both phases
(no contiguous matrix material)

e Materials statistically interchangeable

e Aspect ratio “z”: x3/x; axis ratio
Disks: z =0
Spheres: © =1
Needles: z = o0

e overall transversely isotropic



The Variational Method

In a mixture, the average stress < o > depends on the average applied strain

€y =< € > through ®(e€y), the overall potential of the bilinear mixture:

<o>= ¥(g).
We consider two possible boundary conditions,
(0 10) (0 01)
ec=af 100 or €=a| 000
000 100
“in-plane strain” and  “anti-plane strain.”

We use the Ponte Castanieda variational inequality [Pon91]:
P(eg) < Poleg)+ < Sup [p(z, A) — go(z, A)] >

with an inhomogeneous linear comparison material:

3111(Aeg)? in material 1

¢0($7 A) -

3115(Aeg)? in material 2

to compute an UPPER BOUND on the overall potential ®(e).

For bilinear materials:

For small applied strain (o << 1), the upper bound on the potential is

quadratic and the stress-strain relation is linear. We increase the applied strain,

a, until this ceases to be the case.

Define O * X

the first point of nonlinearity in the upper bound.

In the yield limit (a1, a2 — 00), ¢* is an upper bound on the yield stress.
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Results — Spherical Inclusions

Using the linear bound of Hashin [Has83] for ®y(€y) = €y - C*€p:

o o< M2 ((5f1 +2f2) (1 — p2) + Spa)
- 2fo(p1 — pa) + gt

) M1 < U2,

we obtain

01 02

o = (2+3f1+3%f2)-min o
1

57 J2+32) +6(1— 2)*fi

(7)

a; < am.
o If 09 > 01, 0" is a decreasing function of Z—f when
ay _ 6(fi = Vo1 +5v32fi(05 — oF) + 303
aq 3(2f1 —+ 3)0’1
and increasing otherwise.
o Spher es
a2/al

e If uy < a1, 0™ is an increasing function of f;, even when g9 > a1 (!!).
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E Results — Laminate E

Using the potential for a laminate of linear materials (see [Suq93] or [Mil02])

we obtain
* a . a
o = (f1 + f2—2> min {0'1, —10'2} for (60)12 7é 0, (8)
ai a2
and
c* = min{oy, 09} for (e9)13 # 0. (9)
010
For e =a| 1 0 0 [, notice:
000

e Classical yield strength is the arithmetic mean:
(as is the limit of power-law material [Suq93])

O-:kququet — flO_l + f202
e The bilinear bound is tighter

* *
o < Og uquet

with equality only when g—% = %

a o * o
olfa—i<<a—f,0 ~ fioq

ag 02 * o~
[ Ifa—l >> 0—1,0' Nf202

e Consider 01 < 09. If 2 < 1 and & < 22 we have
al a o1’

o" = (f1+ f2z—j)01

so that
o* < oy.

e With the above conditions, ¢* is an increasing function of f;.
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Using the results of Eshelby [Esh57] to evaluate the linear bound of Willis
[Wil81] for ®y(€y) = €y - C*ep:

* H2 Eshy—1
€' < (1= AT - ps™ ) (14

we obtain

o = ((f1+f23>+z—if2(1_5>)'

i {(”’ Fr—9(@r—(- Zf)szs))} )

s = 255;} (twice the {ijij} component of Eshelby’s tensor)

Disks, (€g)12 # 0: s =0, Spheres: s =
Disks, (€)13 # 0: s =1, Needles: s =

N —OT o

e Identical to laminate result as  — 0 (disks)
e Identical to spherical inclusions result as x — 1
e Always tighter than classical yield result [Ols98], with equality only when

ar _ —fs  (L=5) (L= fos)03 — fiso?)
aq 1 — fQS (1 — S)(l — fgS)O’l

(16)
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Oeq Bil i near Constituents
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