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1 INTRODUCTION 
Machining stability, or instability, is a product of 

the coupling of the machine-tool system structure 
and the machining process.  Efforts to avoid 
instability/chatter problems during the design of a 
machine tool often focus on the structure by 
increasing stiffness and or damping in its various 
elements, such as the machine tool, fixturing and 
tooling.  Increasing dynamic stiffness, which is 
affected by both static stiffness and damping, is 
the main strategy with the spindle, slide 
interfaces and tool-clamping interfaces as 
primary targets.  However, increased dynamic 
stiffness usually comes at increased expense 
through a larger machine-tool structure and 
subsequently larger spindles and slides, and 
consequently larger drives to accelerate those 
higher-mass components.  For that reason, there 
is much to gain by scientifically selecting tooling, 
at the design stage, that will enhance stability 
toward relaxing the demands on the structural 
requirements. 

Despite efforts made during design, the 
existence of stability problems in practice are 
typically not known until the machine tool, 
fixturing and tooling have been built and 
integrated in the tryout phase.  At that point, a 
solution must be found quickly and at the least 

out-of-pocket cost.  Changing structural elements 
of the machine tool and fixturing is not an 
attractive option due to the high cost and lead-
time.  A more attractive option is to adjust the 
machine settings.  For instance, it is well known 
that spindle speed can be set, in the high-speed 
regime, to take advantage of stability peaks.  
There is also a general rule of thumb that 
increasing feed will improve stability [1], which is 
supported by process mechanics through what is 
known as the ‘size effect’ [2]. 

However, there are some caveats to relying on 
adjustment of machine settings to solve stability 
problems.  For instance, in transfer-line settings 
the drives on some stations are not even capable 
of such adjustments.  And, for stations where 
spindle speed and federate can be adjusted, any 
changes must keep the station within the system 
cycle time.  For machining centers, on the other 
hand, increasing cycle time on one tool can 
possibly be made up by decreasing cycle time on 
another.  In this case, adjustment of machine 
settings may be a viable approach, in which case 
it is advantageous to understand the sensitivity of 
stability to changes in feed and speed and their 
interaction with tooling parameters. 

Despite the aforementioned methods to solve 
stability problems, it is well accepted that it is 
typically easier and less costly to replace tooling.  
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As a result, practicing engineers most often 
target ‘tooling’ as a solution to chatter problems 
[3].  Reducing tool overhangs and stiffening the 
tool-chuck interfaces may be a strategy when 
dynamic testing suggests those as weak links.  
However, the gross geometry of the tool — lead 
angle, corner radius and rake angles, for 
example — is the more typical target as a means 
to solve instability problems [3].  On the other 
hand, the small-scale geometry like edge 
preparation is rarely considered to solve such 
problems [3]. 

To scientifically target tool geometry towards 
solving or avoiding instability problems, process 
force models must accurately capture the effects 
that tooth geometry and machine settings have 
on the process attributes that affect stability.  The 
effects of gross tool geometry, like corner radius 
and lead angle, are well understood to affect the 
directions of forces.  Some recent studies have 
formulated geometrical models that capture the 
contribution of these parameters to average 
uncut chip thickness and subsequently to the 
nonlinear size effect [4].  Various forms of 
process force models, including the power-law 
form used by Ozdoganlar and Endres [4], have 
demonstrated consistently to provide a force-
prediction accuracy of 10% error across ranges 
of uncut chip thickness [5, 6, 7].  However, the 
stability problem is not affected by the force itself, 
but rather by the gradient of the force relative to 
the dynamic displacements as manifested 
through their effects on process geometry, such 
as uncut chip thickness.  Therefore, from the 
perspective of stability analysis, it is more critical 
to accurately model the force gradients than it is 
to accurately model the force level. 

The work presented here studies the capability 
of existing process force models to accurately 
capture the gradient of the force with respect to 
uncut chip thickness toward proposing an 
alternate model form that more consistently 
captures this gradient while also providing 
equivalently good predictions of force level.  It is 
well known that small-scale tooth geometry — 
edge preparation — and its size relative to the 
uncut chip thickness, is explicitly related to the 
nonlinear size effect.  Therefore, while it is not 
the intent of this work to model the effect of edge 
preparation, it is varied in the experiments as a 
means to exercise the models beyond varying 
uncut chip thickness alone as motivated by 
selecting improved tooling for valve-seat 
machining.  As will be seen, though based on 

less data than desired in hindsight, some 
materials appear to exhibit a very interesting and 
counterintuitive gradient characteristic when 
using edge-radiused (honed) tools. 

2 ASSESSMENT OF TRADITIONAL FORCE 
MODELING FOR STABILITY ANALYSIS 

Early work on the application of stability 
analysis led to the concept of Dynamic Cutting 
Force Coefficients (DCFCs).  This approach 
intended to provide a complete characterization 
of the coupled process and machine-tool 
dynamics into four coefficients [8, 9, 10].  The 
four coefficients account for process stiffness 
and damping related to both the primary and 
regenerative displacement effects.  Each set of 
coefficients is specific to not only the work 
material at hand, but also the machine tool and 
tooling at hand.  The approach has the potential 
of very comprehensively accounting for the 
dynamics of the machine-tool system.  However, 
it requires not only substantial testing, but also 
an existing machine tool and tooling. 

Another approach taken by many more recent 
efforts is to decouple the machine tool and 
process.  The approach makes use of frequency 
response testing of machine tools or beam 
theory predictions of tool dynamics along with 
static process force models [11, 12, 13].  Static 
force models are extended to the dynamics 
problem by replacing the static chip area with the 
dynamic or modulated chip area.  To take that a 
step further, the effect of dynamic displacements 
that enter through the specific energy portion of 
the force model has been introduced as well [2, 
4].  In the valve-seat machining problem at hand, 
though a specific machine tool may exist, the 
specific tooling does not.  Therefore, decoupling 
the tooling and machine-tool characteristics is 
particularly important — the intent is to select the 
tooling that will enhance stability irrespective of 
the machine tool. 

To better understand the effect of edge 
preparation on process nonlinearity and hence 
stability, tests were conducted using four levels 
of edge radius, up-sharp (5 µm), 13 µm, 25 µm 
and 50 µm.  Edge radius levels were measured 
under an optical microscope in the region of the 
lead edge where the cuts would be made.  
Uncoated carbide, zero-lead, zero-rake tooling 
was used to machine a powder metallurgy 
material at two hardness levels.  The materials 
are used for valve seats and are referred to as 
Material A (softer) and Material B (harder).  



  

Valve-seat blanks of 25-mm length were 
mounted in the chuck of a CNC lathe for end-
turning under straight-edged orthogonal cutting 
conditions with the blank’s 2-mm wall thickness 
being the width of cut.  Tests at five levels of 
uncut chip thickness (h-levels) were conducted in 
random order and replicated three times using a 
fresh cutting edge for each replication.  Forces 
were measured via a Kistler three-component 
dynamometer in a typical force-testing 
arrangement.  The charge amplifier ranges were 
set to 500 N/volt so that the low forces being 
measured (20 N minimum) consumed most of 
the range, ultimately maximizing the analog-to-
digital conversion resolution (< 0.02 N, or 1/1000 
of the minimum measurement).  No chatter was 
observed, based on inspection of the machined 
surface at the end of each test.  Any elastic 
spring-back or work hardening under the edge is 
experienced in the subsequent revolution and 
are natural occurrences in machining as the tool 
feeds to remove a previously cut surface from 
one revolution/tooth-pass in the past. 
2.1 Force Prediction 

It is well accepted that the machining force 
components vary proportionally with the chip 
area a as 

F u a• •= , (1) 

where u• is the specific energy for the cutting (• = 
‘C’) or thrust (• = ‘T’) direction.  The specific 
energy is typically modeled to include the 
nonlinear effects of cutting speed V, uncut chip 
thickness h, as well as normal rake angle, γn.  A 
model form that has gained some popularity is 

0 (1 sin ) , ,h Vb b b
nu b h V C Tγγ• • •

•• = − • = . (2) 

The uncut chip thickness nonlinearity is the 
mathematical representation of size effect.  The 
power-law form was suggested by Sabberwal 
[14] and has been used by many since.  For 
dynamic analysis, it is common to directly extend 
this static force model so that the dynamic or 
modulated force is modeled to be proportional to 
the dynamic or modulated chip area, i.e., 

( ) ( ) ( )F t u t a t• •= . (3) 

The dynamic chip area embodies one of the 
primary effects of the dynamic displacements.  
Other effects of dynamic displacements enter 
through the specific energy; hence, it is written in 
Eq. (3) as u(t) — an explicit function of time 

(actually, state).  For instance, the uncut chip 
thickness, being one of the dimensions of the 
chip area, introduces an additional effect of 
dynamic displacements through the specific 
energy (Eq. (2)).  The cutting speed can be 
affected by dynamic displacements in that 
direction while the rake angle can be affected by 
rotational displacements; however, these effects 
are typically small (second order) relative to 
those that enter through the uncut chip thickness 
and chip area.  Therefore, for dynamic analysis it 
is possible and customary to group the cutting 
speed and rake angle effects of Eq. (2) into a 
leading constant uc• as 

( ) ( ) hbcu t u h t •
•• = , (4) 

where 

0 (1 sin ) , ,Vb b
c nu b V C Tγγ• •

• •
= − • = . 

Another approach used by Hanna and Tobias 
[15] directly modeled the unit force (force per unit 
width of cut) versus uncut chip thickness as a 
second-order polynomial.  They too (implicitly) 
lumped the speed and rake angle effects into a 
leading constant due to their relative 
unimportance in the dynamics/stability problem. 

The effect of uncut chip thickness on the unit 
process force is shown in Figures 1-21 for the up-
sharp tools and the largest edge radius (50 µm).  
Included with the experimental data is the unit 
force obtained using a least-square fit of the 
power-law form of specific energy given in Eq. 
(4) and a second-order polynomial for the unit 
force, like that used by Hannah and Tobias [15].  
The model fits were made using the minimum 
number of h-levels required for the fit, i.e., two 
levels for the power law, being linear in the log 
space, and three levels for the second-order 
polynomial.  In most cases, either model does 
fairly well to predict the forces, exhibiting errors 
of ±20% at most, and typically closer to ±10%.  In 
particular, the traditional specific-energy power 
law does well considering only the lowest and 
highest h-levels were used to fit the model, 
compared to the second-order polynomial that 
requires four of the five h-levels in the data set.  

                                                
1  In these and subsequent figures, ‘SE’ indicates that 
the empirical portion of the force model is the specific 
energy, from which the unit force is computed by 
multiplying by the uncut chip thickness, and ‘UF’ 
indicates that the empirical portion of the force model 
constitutes the entire model, i.e., the unit force itself. 



  

These error percentages are on par with model 
predictions noted in a variety of past studies that 
have applied the specific-energy power-law 
model to various processes. 
2.2 Stability Prediction 

As noted earlier, many have studied the 
stability of machining for numerous types of 
processes.  Consider the basic case of straight-
edged orthogonal cutting often considered as 
representative of turning or boring with a zero 
corner radius.  A schematic of this classical case 
is shown in Figure 3, and on a tooth-wise basis is 
quite representative of valve-seat machining.  To 
avoid distraction from the focus on force 
modeling, stability analysis is restricted here to 
this case.  It is considered to be an approximate 
representation of the valve-seat machining 
process that provides for a good relative 

assessment of force model alternatives and, 
later, tooling alternatives. 
Stability Limit Solution 

The dominant dynamic mode q is oriented at 
angle θ relative to the feed direction and the 
cutting edge is oriented relative to the feed-
normal direction by the lead angle ψr.  In this 
case the cutting force FC acts perpendicular to 
the chip area plane and, hence, has no 
substantive effect on the modal displacement.  
The thrust force component, FT, lies in the chip 
area plane and, hence, has a direct effect on the 
modal displacement.  For this case the equation 
of motion for the closed-loop system is 

( )( )( ), ( ),..., ( )m
qS q t q t q t F= , (5) 

where ( )(m)S q t ,q t ,q t …,q t( ) ( ) ( ) ( )  is an mth-order 
differential equation representing the structure’s 
dynamics.  For example, 

( )( )( ), ( ), ( ),..., ( ) ( ) ( ) ( )mS q t q t q t q t mq t cq t kq t= + +  

for a second-order system.  The modal force 
acting in the q direction is 

( ) ( ) cos( )q T rF t F t θ ψ= − − . (6) 

Introducing the process force as computed via 
the specific energy model of Eq. (4), where the 
uncut chip thickness, being measured in the chip 
area plane and normal to the cutting edge is 

( )( ) ( ) ( ) cos( )t rh t q t q t T θ ψ= − − − , (7) 

Eq. (5) becomes 

( )( )

2

( ), ( ),..., ( )

cos ( )hT
T

m

b
c r

S q t q t q t

u h wh θ ψ= − ⋅ − , (8) 

 
Figure 1: Unit force vs. uncut chip thickness for 
Material A — up-sharp (left) and 50 µm edge 
radius (right).   
 

 
Figure 2: Unit force vs. uncut chip thickness for 
Material B — up-sharp (left) and 50 µm edge 
radius (right). 

 
Figure 3: Basic dynamics of straight-edged 
orthogonal machining. 



  

where Tt is the regenerative delay. 
To apply linear frequency-domain stability 

techniques, Eq. (8) must be linearized with 
respect to the state variable(s).  A strict and 
formal linearization of this equation of motion 
with respect to the state variable q(t), and 
likewise q(t – Tt), due to the delay term, would 
evolve to an infinite order in the system.  
However, it has been shown that linearization of 
the process force alone with respect to h(t) as 
opposed to q(t) and q(t – Tt) provides the 
appropriate stability result.  This was confirmed 
through comparison of analytical results to 
nonlinear numerical time-domain simulations 
(Endres, 1996).  The result of the linearization, 
after ignoring the resulting static or zero-h force 
is 

( )( )

2

( ), ( ),..., ( )

( 1) cos ( )hT
T T

m

b
c h r

S q t q t q t

u b h w θ ψ= − + ⋅ − , (9) 

where the equilibrium uncut chip thickness he is 
ftcosψr, ft being the nominal feed per tooth. 

Now, applying the usual harmonic response 
presumption, rearranging and solving for the 
limiting width of cut, the final result is 

2
1

2 ( 1) cos ( )

1
Re ( )

hT
T T

lim b
c h e r

c

w
u b h

G j

θ ψ

ω

=
− + −

× , (10) 

where G(jωc) is the frequency-response function 
of the structure evaluated at the chatter 
frequency ωc. 
Force Model Gradient Assessment 

The term ( )rθ ψ−hT
T T

b
c h eu (b )h cos+1  in the 

denominator of Eq. (10) is clearly the slope of the 
linearization introduced in Eq. (9), or rather the 
gradient of the unit force Fq/w with respect to 
uncut chip thickness.  This is where the 
traditional process force models, shown above to 
fair well in terms of force prediction, break down.  
As shown in Figures 4 and 5, these model forms 
do poorly in terms of representing the unit-force 
gradient with respect to uncut chip thickness.  In 
most cases, the power-law specific energy form 
does better, but still exhibits errors ranging from 
±25% at best to more typical ones around 50-
100% and even some in excess of 200%. 

Some of the very extreme errors arise at the 
lower uncut chip thicknesses as a result of a 

characteristic seen here that is both 
counterintuitive and not previously noted.  
Specifically, the larger edge radius case (right 
plot) of Figure 4 shows that the gradient, though 
increasing with decreasing uncut chip thickness 
as we would expect from the traditional size 
effect concept, actually drops at the lowest h-
level.  While more data is needed to assure that 
this is neither a fluke nor experimental error, it 
does consistently occur for many of the edge-
radiused tools, as well as for chamfered tools, for 
the softer Material A.  On the other hand, cases 
of higher edge radius for the harder Material B 
exhibit an exorbitant increase in unit force 
gradient at the lowest h-level (see right plot of 
Figure 5). 

Neither model form can be expected to capture 
these characteristics at low uncut chip thickness.  

 
Figure 4: Unit-force gradient vs. uncut chip 
thickness for Material A, via derivative of 
traditional unit force models of Figure 1.444 

 

 
Figure 5: Unit-force gradient vs. uncut chip 
thickness for Material B, via derivative of 
traditional unit force models of Figure 2. 



  

However, one could argue that these values of 
uncut chip thickness are very small and 
machining typically does not take place at such 
small feeds.  But, such situations are in fact seen 
in ultra-precision and hard machining that often 
exhibit an edge preparation that is substantial in 
size relative to the uncut chip thickness.  These 
conditions are also seen at conventional feeds 
and in conventional processes.  For instance, 
small uncut chip thicknesses are also seen with 
the high lead angles (h = ftcosψr) inherent to 
valve-seat machining as well as when dwells are 
imposed at the end of a cut to meet tight 
dimensional tolerances, such as in valve-seat 
machining, among others. 

To summarize, there is clearly room for 
improvement in the area of semi-empirical force 
modeling to better characterize the unit-force 
gradient that embodies the main effect of the 
process force on the stability problem.  The 
power-law specific energy-based model, which 
was developed to predict forces while accounting 
for size effect — the nonlinear dependence of 
force on uncut chip thickness — falters mainly at 
low uncut chip thicknesses and exhibits errors in 
the range of ±30-40% at moderate uncut chip 
thicknesses.  The second-order polynomial form, 
which was in fact proposed by Hanna and Tobias 
[15] to represent the size effect for use in stability 
analysis, performs even worse for these data and 
additional tests for Materials A and B using 
chamfered tools. 

3 A MODIFIED SEMI-EMPIRICAL FORCE 
MODEL 

With the above findings as motivation, it is 
desired to formulate a semi-empirical model form 
that better represents the low-h surge, the 
moderate-h decay, and high-h asymptote as 
general characteristics of the unit-force gradient.  
The true existence of a low-h drop-off, as seen 
for Material A, is in question due to an insufficient 
amount of data, i.e., only one h-level being on 
the downside of the peak.  Therefore, this 
characteristic is left as an observation and no 
attempt is made to accommodate it in the 
proposed model.  Therefore the remainder of the 
paper will address Material B and its low-h surge, 
moderate-h decay, and high-h asymptote. 

The above results show that models able to 
represent the force to reasonable levels of 
accuracy are not assured to well characterize the 
gradient.  However, a model fit to the gradient 
should well represent its integral.  For that 

reason and the fact that the gradient graphs 
show much more sensitivity to changes in uncut 
chip thickness than does the unit force, a new 
model is proposed/formulated as a gradient 
model from which a unit-force model can be 
derived through its integration. 

In assessing the model, it will be fit in its 
gradient form (to computed/derived gradient 
data) as well as in its integrated unit-force form 
(to measured force data) to see which manner of 
fitting is preferred.  This exercise is important 
since the model is formulated for the gradient, 
whereas fitting it to measured forces would likely 
be preferred since it is the force that is measured 
in testing, not the gradient.  Computing the 
gradient could well require more h-levels and 
replications to make the results robust to effects 
of noise in the force measurements that are 
amplified upon differentiation, as is the case 
when differentiating any ‘real’ signal that contains 
noise. 
3.1 The Model Form 

One might expect the low-h surge to be well 
modeled via the derivative of the power-law 
specific energy model, that is 

( ) ( 1) , ,hbc h e
d F u b h C Twdh

•
• •

• = − + • = , 

or any power-law form for that matter.  The data 
show that is not the case.  There are three 
consequences to the fact that in order to achieve 
the moderate-h decay, the uncut chip thickness 
exponent must be negative.  They are: 
1. As uncut chip thickness approaches zero, the 

gradient of the power law does become large; 
in fact, it approaches infinity.  However, to 
match the moderate-h decay rate, the 
gradient more abruptly approaches infinity 
than the actual data.  Furthermore, unlike 
specific energy by definition, there is no 
reason to expect the force gradient to be 
infinite at zero uncut chip thickness. 

2. The high-h asymptote is prescribed to be 
zero.  However, this is easily overcome by 
adding a constant as a third parameter in the 
model to alleviate this. 

3. As a side note in the case that the low-h 
drop-off is later shown to truly exist, since the 
power-law model approaches infinity in the 
low-h regime, there is no function that could 
successfully scale it down to produce the low-
h drop-off. 



  

Another candidate is a log function.  It has a 
non-zero large-h asymptote to which a constant 
could be added to get the appropriate value, but 
it too approaches infinity at zero uncut chip 
thickness and, hence, suffers the same 
shortcomings described in points 1 and 3 above. 

The chosen candidate is an exponential with an 
added constant to obtain a non-zero high-h 
asymptote.  It also provides more flexibility in 
controlling the decay rate.  Finally, since the 
exponential of zero is finite, it both makes more 
physical sense than an infinite zero-h gradient, 
and exhibits the potential to be scaled down to 
achieve the low-h drop-off if it exists.  The 
resulting gradient/model function used here has 
three parameters: 

( ) 1 2 3exp( )d F b b b hwdh
= + . (11) 

The parameters provide the following 
characteristics to the function: 
• b1 is the high-h asymptote. 
• b2, along with b1, is the low-h surge height. 
• b3 is the moderate-h decay rate. 
The unit-force function is then found by 
integrating the gradient function.  The result is 

[ ]1 2 3

2
1 3 4

3

exp( )

exp( )

F b b b h dhw
b

b h b h b
b

= +

= + +

∫
, (12) 

where b4 is the constant of integration. 
3.2 Force Gradient 

Unit-force gradients were computed from the 
measured unit force data as follows.  For Nh h-
levels in the force data, there are Nh – 1 h-levels 
in the gradient data.  The gradient at 
h = (hi + hi+1)/2 is (Fi+1 – Fi)/(hi+1 – hi), where Fi 
and Fi+1 are the forces, averaged over all 
replications, at uncut chip thickness hi and hi+1, 
respectively.  Averaging the force over 
replications provides for some averaging out of 
natural experimental error/noise in the force 
measurements. 

Models were fit using Microsoft Excel® and its 
Solver add-in taking care to start with sensible 
initial values for the parameters to assure a 
sensible converged set of parameters.  Results 
are shown in Figure 6.  The solid curves are 
obtained by inserting into the gradient function 
the parameters computed by fitting the gradient 
function (Eq. (11)) to the computed gradient data.  
The dashed curves are obtained by inserting into 

the gradient function the parameters computed 
by fitting the unit-force function (Eq. (12)) to the 
measured force data.  There is no advantage to 
having one more h-level in the force data since 
the unit-force function has one more parameter 
(the integration constant) than does the gradient 
function.  The graphical display in the figures is 
evidence that the curves are consistent with the 
trends, and much improved in comparison to 
Figure 5.  In comparing the two fits, the gradient 
fits (solid curves) are indeed better. 

The next step is to see how well the gradient 
and unit force fits compare in terms of predicting 
the force. 
3.3 Force Level 

In this case, the curves are switched compared 
to the gradient evaluation above.  That is, the 
solid curves are obtained by inserting into the 
unit-force function the parameters computed by 
fitting the unit-force function (Eq. (12)) to the 
measured force data; the dashed curves are 
obtained by inserting into the unit-force function 
the parameters computed by fitting the gradient 
function (Eq. (11)) to the computed gradient data.  
When using the gradient-fit parameters, the 
fourth parameter of Eq. (12), the integration 
constant, is computed as the average offset/error 
between the measured force data and the 
respective forces computed using the gradient-fit 
parameters b1 through b3.  The observation here, 
seen in Figure 7, is that both approaches do very 
well in predicting the forces.    While the 
parameters of the unit-force fit work better to 
predict unit force, they work more poorly for the 

 
Figure 6: Unit-force gradient vs. uncut chip 
thickness for Material B; model being fit to both 
the unit force (UF) and the unit-force gradient 
(UF-Grad).   



  

gradient predictions than the gradient-fit 
parameters do for the unit-force predictions.  This 
supports a preference to fit the gradient model to 
computed gradient data. 

4 APPLICATION TO STABILITY OF VALVE-
SEAT MACHINING 

One of the primary factors that affect machining 
stability is the direction of the machining force 
relative to the dynamic modes, which is 
characterized as directional factors [16, 17] or 
included directly as part of the oriented transfer 
function [18].  These directional factors, the 
cos(θ – ψr) in Eq. (6), are not adjustable by 
selecting tool geometry (ψr) in the valve-seat 
machining problem since the lead angle is 
dictated by the faceted part geometry, as shown 
in Figure 8.  Therefore, valve-seat machining 
presents a challenging stability problem, leaving 
only secondary process parameters to be 
adjusted. 

Past studies [19] have helped to qualitatively 
understand the machine-tool dynamics part of 
this problem, including the spindle dynamics and 
to some degree the tool-clamping dynamics.  
Realizing further improvements through 
increased stiffness can become very costly, 
coming with motor/spindle powers that are 100-
200 times the required process cutting power.  
The reported work was motivated by the 
prospect of further improving stability through the 
controllable cutting-tool geometry parameters 
and machine settings.  By focusing on the 
process rather than the machine tool (spindle, 

etc.), improvement may be realized for existing 
processes at a reasonable cost. 

With the above as motivation, and the unit-
force gradient characteristics identified and 
modeled above, the gradient model can be used 
to compare a variety of edge preparations toward 
selecting one that should maximize stability.  
Using representative lead angles of 70°, 45° and 
15° for teeth 1, 2 and 3, Figure 9(left) shows the 
inverse of the gradient computed with the 
proposed model for an up-sharp tool, two edge-
radiused tools and two chamfered tools.  The 
heavy curve is the “baseline” tool over which 
improvement is desired.  The lines labeled as 1, 
2 and 3 indicate the uncut chip thickness 
experienced by that respective tooth as 
influenced by the lead angle. 

 
Figure 7 Unit force vs. uncut chip thickness for 
Material B; model being fit to both the unit force 
(UF) and the unit-force gradient (UF Grad). 

 
Figure 8: Valve seat cross-section geometry 
showing tooth that creates each facet.8 

 
Figure 9: Effect of edge preparation on stability 
(inverse gradient) for each tooth. 



  

Based on Figure 9, stability would be lowest on 
tooth 1, the one that cuts the throat region of the 
seat (see Figure 8) since the chip is heavily 
thinned due to its 70° lead angle.  This is in 
agreement with the traditional size effect 
mindset.  Since tooth 1 exhibits the lowest 
stability measure, it should be the target for 
improvement.  However, there is more to the 
stability problem — the directional factor (see Eq. 
(10)) 

2
1

cos ( )rθ ψ−
. 

If the dominant dynamic mode is in the radial 
direction (θ = 90°), then tooth 1 becomes an 
even greater target since it is also the one that 
directs most of its thrust force into the radial 
(modal) direction.  In other words, to get the 
complete stability picture one needs to scale the 
curves of Figure 9 by 1/cos2(90° – ψr), which 
provides a scaling of only 1.13 for tooth 1 
compared to scaling values of 2 and 14.9 for 
teeth 2 and 3 with their respective 45° and 15° 
lead angles.  On the other hand, if the dominant 
dynamic mode is in the axial direction, the curves 
of Figure 9 should be scaled by 1/cos2(0 – ψr) to 
see the full stability picture.  These scaling 
factors are 8.55, 2 and 1.07 for teeth 1, 2 and 3, 
respectively. 

It turns out that the directional factor dominates 
matters so that the worst tooth remains tooth 1 
for θ = 90° but becomes tooth 3 for θ = 0°, as 
shown graphically in Figure 10 (tooth 3 stability 
for θ = 90° ranges from 45 to 110, so it is not 
shown).  The percent improvement in stability 
gained with each edge preparation, relative to 
the baseline tool (solid circles in the plots), is 
independent of directional factor (i.e., θ) since 
each tooth experiences the same directional-
factor scaling, independent of the edge prep.  
Based on these results (see right-hand plot of 
Figure 10 for convenience), the stability 
contributions of teeth 2 and 3 can each be 
improved by more than 100% by switching to a 
100 µm x 10° chamfer.  Switching to that same 
edge prep for tooth 1 would provide only a 50% 
improvement to the tooth-1 stability contribution.  
On the other hand, the stability contribution of 
tooth 1 could be increased by about 80% by 
switching to a 25 µm edge radius. 

For comparison purposes, Figure 11 shows the 
stability measure as computed using the 
traditional power-law specific energy model.  
Here one would choose either a 5 µm or 25 µm 

edge radius for tooth 1, expecting an 80% 
improvement over the baseline.  Since the 25 µm 
edge radius provides better edge chipping 
resistance, as long as it does not produce 
unacceptable surface finish or residual stresses, 
it would be the preferred of the two.  It turns out 
that for this particular feed rate, the uncut chip 
thickness on tooth 1 falls in a region of good 
accuracy for the 25-µm edge radius specific 
energy model, so that this recommendation and 
expected improvement are correct.  By correct it 
is meant that this result matches the result 
derived from Figure 10, which is known to better 
represent the unit-force gradient and its effects 
on stability.  However, the specific-energy model 
would misguide one into choosing that same 25 
µm edge radius for teeth 2 and 3 expecting 
improvements of about 90% on each.  On the 
contrary, the results derived from Figure 10 

 
Figure 10 Stability measure for Material B, 
including directional factor:  θ = 90° (left) and θ = 
0° (right).   
 

 
Figure 11 Stability measure for Material B, 
including directional factor, using the traditional 
specific energy power-law model:  θ = 90° (left) 
and θ = 0° (right). 



  

indicate that only a 40% improvement would be 
realized with the 25 µm edge radius as opposed 
to 2.5 times that improvement (> 100%) that 
would in fact be realized choosing the 100 µm x 
10° chamfer. 

5 CONCLUSIONS AND CONTINUING WORK 
5.1 Conclusions 

From the acquired force data, analysis of the 
computed gradients, and an exploration of 
candidate gradient models, the following hard 
conclusions can be drawn: 
• The force gradient decays toward some finite 

positive value as uncut chip thickness 
becomes large.  Some tool and work material 
combinations exhibit, based on the limited 
data here, a low-h drop-off in the unit-force 
gradient. 

• The force gradient is not well captured using 
traditional model forms such as a power-law 
specific energy or second-order polynomial 
unit force, even for gradients that exhibit a 
simple decay with increasing uncut chip 
thickness.  For simple decays, even at more 
‘conventional’ (moderate to large) uncut chip 
thicknesses, gradient errors are ±25% at 
best and up to 100%, whereas force levels 
are typically predicted to within ± 20% at 
worst. 

• A three-parameter exponential unit-force 
model provides a force-gradient fit that is 
consistently good, and improved compared to 
traditional model forms. 

• Unit force is well predicted using the integral 
of the gradient model by identifying the 
integration constant from the force data as 
described. 

• Tooling used for testing at a given edge 
preparation should be chosen (e.g., grade) so 
that a single edge can be used for all tests.  
Here, the carbide tooling was wearing 
extremely quickly compared to the CBN 
tooling used in production, requiring tool 
changes between each set of five h-levels.  
Slight changes in edge radius from edge to 
edge, not to mention wear progression, is an 
added source of noise in the replications. 

One caveat of the exponential model proposed 
here does exist.  That is, it requires substantially 
more than the two levels of uncut chip thickness 
commonly used to ‘calibrate’ the power-law 
specific energy model.  Since increased testing is 
not desirable from a practical perspective, this 
need would further motivate the ongoing efforts 

to model edge preparation effects on forces 
using more sophisticated slip-line, upper-bound 
or FEA models.  These more computational and 
complex models could then be used to rapidly 
generate many, many h-levels of force data to 
then be used to fit the semi-empirical model 
proposed here.  The model proposed here, due 
to its relative simplicity and analytical form, is 
well suited to the analytical treatment of stability 
solutions whereas the more sophisticated 
mechanics-based models are not. 
5.2 Continuing Work 

The following is offered as an observation:  the 
low-h drop-off in the unit-force gradient appears 
to be more prevalent when the edge radius 
becomes larger and for softer work materials.  
This statement is offered only as an observation.  
To raise this to a conclusion, further testing with 
more data in the low-h regime and for additional 
work materials would be needed for the following 
reasons: 
• Despite the replication in the data here, the 

mere presence of the low-h drop-off could still 
be an artifact of experimental error, the effect 
of which being enhanced by the limited 
number of low-h levels (only 2 on each side 
of the drop off). 

• The low-h drop-off, if it in fact does exist, 
would require more than two (hard and soft) 
materials to be tested to conclude a 
material-hardness effect. 

Despite the obvious need for further testing, 
based on the intent of the study, it is considered 
successful and contributory as motivation to 
better understand the effects of edge preparation 
not only on force, but also on force gradient 
(stability).  To reiterate, the intent of this work 
was to seek improved selection of edge 
preparation based on improving stability, all other 
process performance attributes such as surface 
finish and dimensional accuracy aside.  Clearly, 
all performance attributes must be considered in 
selecting edge preparation and any other 
process condition.  This study is intended to fill 
the ‘stability performance’ gap in that other 
efforts have focused on other performance 
attributes, such as force (dimensional accuracy), 
surface finish, tool wear, etc. 
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