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Abstract
A geometric model of the dynamic chip area for process-

es that employ corner-radiused tools is used to show how the
resulting mathematical expressions for overlap factor lead to
values outside the traditional range of zero to unity. The
mathematical expressions are geometrically interpreted
through schematics of the process geometry. The orthogonal
cutting stability solution shows that results are identical for
positive and negative overlap factors of the same magnitude.
The effects of overlap factor outside the traditional range are
shown; however, it is shown that coupling overlap factor to
other directional factors, through the depth of cut (the depen-
dent variable), makes it impossible to interpret stability
results based on the overlap factor concept alone. Specific
examples show that while overlap factor often exceeds unity
for corner-radiused tools, reaching extreme values that
approach infinity does not seem to occur due to the strong
dependence on the depth of cut—the dependent variable of
the stability analysis.
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Introduction
One of the major considerations in determining the

stability behavior of a machining operation is the
regenerative effect. This effect arises because at any
instant in time a tooth is removing a surface
machined by the previous tooth pass. Making use of
the idea of Merchant (1944) and others that the
machining force is proportional to the uncut chip
area, fundamental theories of machining stability
began to emerge in the 1950s. The early theoretical
developments focused on the straight-edged orthogo-
nal cutting process. This process is the type achieved
in tube-end turning and had been the focus of most of
the fundamental cutting mechanics work to that date.

Not long after the early explanations of the regenera-
tion concept offered by Tobias and Fishwick (1958),
it was recognized that the orthogonal cutting stability
theories were limited in their direct extension to more
commonly used processes, such as turning, milling,
and grinding.

Toward extending the basic theories to processes
of industrial interest, a parameter called overlap fac-
tor was conceived (Tobias and Fishwick 1958,
Gurney and Tobias 1961, Merritt 1965, Sweeney and
Tobias 1969, Moriwaki and Iwata 1976, Srinivasan
and Nachtigal 1978, Nigm 1981). The overlap factor
was introduced to reflect the fact that a cutting tooth
may only partially “overlap” the surface produced by
the preceding tooth pass. Those working on the prob-
lem at the time proposed that while the overlap fac-
tor would be unity for the orthogonal cutting process
they were studying, it would take on values of zero
for thread cutting and something between zero and
unity for other processes.

It is important to understand that overlap factor is
not a physically controllable parameter. It is a para-
meter introduced to extend the mathematics. For the
most part, researchers have not known what the over-
lap factor values should be for specific processes, not
to mention how overlap factor would relate to the
process parameters that are introduced by the geom-
etry of other processes. As such, overlap factor has
remained a mathematical concept that has little phys-
ical connection to the real processes that initiated its
introduction. Nevertheless, the early efforts to make
the theory extendible by introducing an overlap fac-
tor have made the theory more useful in the long run.

Introducing overlap factor creates some difficulty
in computationally evaluating an analytical stability
solution. Some of the early works employed graphi-
cal techniques (Gurney and Tobias 1961, Merritt
1965, Sweeney and Tobias 1969) where this compli-
cation was not as much of a hindrance. Since then,
many researchers have discussed overlap factor and
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included it in the derivation of their solution. While
many subsequently set it equal to unity to facilitate
computations, a few researchers (e.g., Nigm 1981,
Jensen and Shin 1997) have performed their compu-
tations for non-unity (constant) overlap factors in
order to study its effects. However, little has been
done to actually model the overlap factor as a function
of process parameters like depth of cut, feed, and edge
profile shape. Despite the common use of corner-
radiused tools in most turning, boring, and face
milling operations, only a few studies of overlap fac-
tor for the turning process can be found in the litera-
ture (Srinivasan and Nachtigal 1978, Moriwaki and
Iwata 1976).

The work presented here arose from the analytical
treatment of the turning stability problem when corner-
radiused tools are used and the structural dynamics are
not assumed to be solely in either the feed direction or
the depth-of-cut direction. The work of the authors
began by formulating an analytical expression for chip
area variation in the presence of both feed and depth
variations from one tooth pass to the next (Ozdoganlar
and Endres 2000). That effort laid the foundation for a
stability solution (Ozdoganlar and Endres 1998) that
accounts for the geometrical effects of corner radius,
lead angle, feed, depth of cut, and orientation of the
mode in the feed-depth plane. In fact, it is the mode ori-
entation that makes the problem very interesting and
leads to the new finding presented here—that overlap
factor may take on any value, not only those between
zero and unity. The latter has been the presumption
since the 1950s when overlap factor and its concept
were first introduced.

Dynamic Process Force for a 
Corner-Radiused Tool

The development of an analytical representation of
the process force acting on a corner-radiused tool that
experiences depth-direction vibration has been well
documented in a previous work by the authors
(Ozdoganlar and Endres 1998, 2000). The presence of
a corner radius and lead angle is explicitly accounted
for in the process force expressions. Their effects
become particularly important when the structural
dynamics of interest introduce vibration in the depth-
of-cut direction, not just the feed direction. A brief
review of how the overlap factor expression was
derived is presented here to facilitate later discussion.

The process geometry of interest is shown in Figure
1, where r� is the corner radius, �r is the lead angle, ft

is the feed per tooth, and de is the equilibrium depth of
cut. These are the four geometric parameters that
define the profile shapes and sizes and their relative
equilibrium positions. The figure shows two subse-
quent edge profiles of a corner-radiused tool that pos-
sesses single-dimensional dominant dynamics with
displacement q(t). The direction of the q mode is
defined relative to the feed direction by the mode ori-
entation angle �. The process force in this plane, the
thrust force component FT, is often modeled to be pro-
portional to the chip area and oriented at an equivalent
lead angle . Because it is the overlap factor that is of
interest at this point, and because the overlap factor is a
parameter within the chip area expression, the discus-
sion here will take place at the level of chip area, not
the process force. Issues related to the force-model
level will be noted later.

Of interest in the stability problem is the dynamic
force. The dynamic force is proportional to the dynam-
ic chip area, keeping in mind that other process dynam-
ics such as process damping are not considered here.
The dynamic chip area for orthogonal cutting is histor-
ically written as

(1)

where �f(t) is the dynamic variation in the feed, d is the
depth of cut, qf(t) is the displacement in the feed direc-
tion, and Tt is the tooth period—the regenerative delay.
In past works on turning stability, where it is assumed
there is no depth-direction component of vibration, this
formulation is sufficient as it captures the full effect of
vibration in this plane, qf(t). This would correspond to
�, as shown in Figure 1, being zero.

When the dynamics of interest are oriented in any
direction other than � = 0, depth-direction vibration
occurs and a more comprehensive form of the dynam-
ic chip area is needed, such as

∆ ∆a t d f t

d q t q t Tf f t
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Figure 1
Process Geometry Showing Mode Orientation
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(2)

This expression accounts for vibrations in both
process coordinates—qd in the depth direction and
qf. Associated with each coordinate is an overlap
factor, µd or µf. The dynamic chip area can also be
written in the traditional overlap form of final
interest, that relating to the q-direction:

(3)

Equating Eqs. (2) and (3) and introducing the
relations of the feed and depth directions to the q
direction (a rotational transformation) allows µq to
be written as

(4)

This is the overlap factor of ultimate interest as it is
the one that corresponds to the actual dynamic
mode. The parameters bf, bd, µf, and µd are derived
from the analytical representation of the chip area.

Derivation of Overlap Factor Expressions
Deriving expressions for bf, bd, µf, and µd evolves

from the first step of an analytic formulation for
chip area under the influence of depth-direction
variation (Ozdoganlar and Endres 2000). The chip
area expressions derived there are highly nonlinear
in �f, �d0, and �d1, where �d0 and �d1 are varia-
tions in depth of cut for the current and previous
tooth passes, respectively. These variables are relat-
ed to the displacement state variables, through the
variations in feed and depth of cut qf(t) and qd(t) 
of Eq. (2), as

(5)

The nonlinear chip area expressions were then
linearized in a subsequent work (Ozdoganlar and
Endres 1998) for use in deriving an analytical sta-
bility solution. Introducing the relations of Eq. (5)
and equating the dynamic part of the linearized
chip area expressions to the form of Eq. (2) result-

ed in fairly simple expressions for bf, bd, µf, and µd.
There are two sets of results, one for small depths
of cut that are less than the transition depth

and one for large depths of cut
that are greater than dt. Subscripts ‘S’ and ‘L’ are
used to differentiate the two results as needed. The
details of these derivations can be found in the 
two cited references; however, for discussion pur-
poses, the end results for the large-depth case are 
provided here:

(6)

(7)

As a side note, bfS
= bfL

= bf and µfS
= µfL

= µf =
1, always; this result will be interpreted later.
Substitution of the b and µ expressions into Eq. (4)
simplifies to

(8)

Special Overlap Factor Values
Equation (8) clearly highlights that the deviation

of µq from unity is driven by a single flip in sign, in
one term, from the numerator to the denominator.
The ft/2 term being subtracted in the numerator
provides a feel for the traditional interpretation that
the numerator would be less than the denominator,
yielding an overlap factor less than unity. While it
is clear that the overlap factor approaches the
often-assumed value of unity as the feed approach-
es zero, the more interesting and substantial effects
come from the other parameters, in particular the
mode orientation angle �. In other words, while the
feed can drive µq down from unity, that can occur
only when sin� is nonzero, unlike the often-studied
case of feed-direction dynamics in which sin� = 0.
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In fact, considering �, it is conceivable that µq could
not only reach the extreme of zero, when the numer-
ator equals zero, but could also approach infinity
when the denominator tends to zero, and could be
negative as well.

Without addressing any of the individual parame-
ters other than mode orientation angle, one may note
that the overlap factor can be written generically as

(9)

Given this, the following two situations could arise:

and

On the one hand, if these situations were to occur
only when the other parameters take on physically
unrealizable values, for example only for negative
depths of cut, then there would be nothing of physi-
cal interest to consider. However, because sin� and
cos� vary from �1 to +1 and furthermore they can
have either the same or opposite sign for a given �,
each of these situations must occur irrespective of
the signs and relative magnitudes of bf and bd, in
other words, irrespective of the signs and magni-
tudes of the other process parameters. The figures
discussed in the next section confirm this fact. The
mode orientation angle at which overlap factor
approaches infinity will be denoted ��.

Overlap Factor Values for 
Corner-Radiused Tools

Moriwaki and Iwata (1976) expressed the overlap
factor for corner-radiused tooling as the ratio of the
width of cut of the previous-pass profile to that of
the current-pass profile. It was stated that the over-
lap factor thus calculated would be bounded
between zero and unity. Their efforts focused on the
relative profiles while the dynamic mode was con-
sidered to lie solely in the depth direction.
Srinivasan and Nachtigal (1978) considered direc-

tion-specific overlap factors (µf and µd) and recog-
nized that the feed-direction overlap factor is always
unity for a traverse turning operation. These consid-
erations are in agreement with the findings present-
ed here. However, the depth-direction overlap factor
derived in their study is independent of the corner
radius. Like Moriwaki and Iwata (1976), they too
departed from the usual feed-direction dynamics by
considering the dynamics to be in the depth direc-
tion. Careful study of their formulation suggests that
they too would have found overlap factors outside
the traditional range [0, 1] if they had transformed
their equation of motion into a particular mode ori-
entation other than the depth-direction only.

Overlap Factor Variation with Process Variables
As the authors noted in a past work (Ozdoganlar

and Endres 2000), any geometrical characteristic of
the corner-radiused process geometry can be nondi-
mensional by the corner radius. Therefore, Eq. (8)
could have been written in terms of the nondimen-
sional feed (Ft = ft/r�) and depth (De = de/r�) with no
mention of corner radius. This removes one (r�) of
the five variables from the study, leaving the effects
of feed, depth of cut, lead angle, and mode orienta-
tion angle to be explored. Note that in terms of defin-
ing the mode orientation, angles from 180° to 360°
are equivalent to the range of 0° to 180°, and, there-
fore, would mirror the results shown in these figures.

Figure 2, as a general example, shows clearly how
the overlap factor extends outside the shaded “tradi-
tional range” of zero to unity and how it can
approach ±� (at ��). The figure is intended to focus
on the effects of feed, showing that feed has little
effect on ��, but strongly dictates the extent (by how
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Figure 2
Overlap Factor vs. Mode Orientation Angle for Six Different
Nondimensional Feeds per Tooth (Ft) at De = 1 and �r = 0°



much and over what range of �) to which overlap fac-
tor deviates from unity. Large deviation from unity
occurs over a large range of mode orientation angle,
even at very practical levels of feed (20-40% of
the corner radius).

In studying the effect of lead angle, some amount
of cutting must occur on the lead edge for the lead
angle to have any effect. This requires that the depth
of cut be greater than . Therefore,
a depth of twice the corner radius or greater is con-
sidered to assure that de > dt for any lead angle. The
depth of cut and lead angle are found to mainly cause
a shift in �� while having little effect on the extent of
deviation from unity, which is the primary effect of
feed. Figure 3a shows that the effect of lead angle is
pronounced (greater slope) at larger depths, while
Figure 3b shows that the effect of depth diminishes
quickly and exponentially as depth increases. To
summarize, the effect of lead angle on �� is greater
at larger depths, but mainly only when the lead angle
is on the smaller (becoming negative) side.

One might intuitively expect the aforementioned
interaction effect of lead angle and depth of cut, that
is, that the effect of lead angle would be stronger at
larger depths of cut because a larger depth of cut
increases the amount of cutting that occurs on the
lead edge. However, the pronounced effect of lead
angle at larger depths of cut occurs only for smaller
(becoming negative) lead angles, which are, in fact,
those where less cutting occurs on the lead edge

while more cutting occurs on the corner radius. This
counterintuitive twist occurs because the issue here is
not only the extent of cutting on the lead edge, but
also the location at which the lead edge intersects the
free surface, as measured relative to the point where
the edge profiles intersect at the tip of the cusp (see
Figure 1). This issue is clarified in the geometric
interpretation of the next subsection.

Interpretation of Extreme Values
The overlap factor solution presented here may be

interpreted by showing graphically how the terms in
the overlap factor expressions are affected by
changes in the process geometry. Recall the physical
meaning of overlap factor—the ratio, to the (current)
width of cut, of the width of the undulated, previous-
ly cut surface that is participating in the current cut.
These two quantities are, respectively, the numerator
and denominator of Eq. (9). From a process model-
ing perspective, the widths of cut are usually consid-
ered to be the curvilinear distances measured along
the portions of the edge profiles that bound the chip
area. From a dynamics and overlap factor perspective,
one must consider the dynamic widths. As concluded
from this study, the dynamic widths are simply the
lengths of the lines connecting the “ends” of the chip
area, which are shown as dashed lines in Figure 4.
The ends of the chip area are labeled in the figure, one
being the intersection of the corner radii of the two
tooth profiles (point I), and the other two correspond-

d rt r= −ε ψ1 sinb g
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Figure 3
Variation in �� with Lead Angle and Nondimensional Depth of Cut for Ft = 0.1



ing to the intersection of each tooth profile with the
free surface (S0 and S1). Here and to follow, the sub-
scripts 0 and 1 refer to the current and previous tooth
passes, respectively.

Once a particular direction is considered for an
overlap factor, i.e., depth-direction (µd) or feed-direc-
tion (µf) or mode-direction (µq), the distances of inter-
est are the projections of the dynamic widths onto the
line normal to the direction of interest. For instance,
for µd = bd/(bd � ft), the projections are made onto the
feed direction, as it is the normal to the direction of
interest—the depth direction. These projections are
shown in Figure 4 as bd0

(= bd) and bd1
(= bd � ft). For

µq, the projections are made onto the line oriented at
� + �/2. Therefore, µq [Eq. (9)] can be related to the
process geometry of Figure 4 in the following way.
The numerator of Eq. (9) (bfcos� + (bd � ft)sin�) is
the sum of the projections, into the q-normal direc-
tion, of the previous-pass dynamic width having first
been projected into the feed (bf1

= bf) and depth (bd1
=

bd � ft) directions. The denominator of Eq. (9) is
described in an analogous way. Each of these projec-
tion lengths is shown explicitly in Figure 4.

Viewing the overlap factors in this way explains
why µf is always unity—because the projections for
both the current and previous tooth passes are the
same, that is, bf1

/bf0
= bf/bf = 1. Such a perspective

also shows that µd, being equal to bd1
/bd0

= (bd � ft)/bd,
approaches unity only as the feed approaches zero,
as noted earlier. Regarding µq, Figure 4 shows the
four general situations that may arise. Figure 4a
shows a case where µq is positive and less than unity.
However, when the q direction intersects the free
surface between S0 and S1, µq is negative, as shown
in Figure 4b. The difference between the positive
and negative cases shown is simply a difference in
mode orientation, which causes a change in sign
from positive to negative in the numerator of µq,
bf1

cos� + bd1
sin�. The extremes of µq being infi-

nite and zero are shown in Figures 4c and 4d,
respectively. For the cases shown, the change
from negative to infinite (from Figure 4b to 4c)
results solely from an increase in depth of cut,
which causes bf0

cos� to equal �bd0
sin� so that

their sum, the denominator of µq, becomes zero.
For the same depth of cut as in Figure 4c, Figure
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Figure 4
“Ends” of Chip Area and Their Projections that Result in µf and µd and in µq Being: (a) Positive, (b) Negative, (c) Infinite, and (d) Zero



4d shows that a different mode orientation angle
causes bf1

cos� to equal �bd1
sin� so that their

sum, the numerator of µq, becomes zero. When the
q direction intersects the free surface to the feed
side (left) of S0, both the numerator and denomi-
nator of µq become negative, making µq positive
and greater than unity, becoming unity again
when � reaches �.

Effects of Overlap Factor on 
Stability Limits

The effect of overlap factor across the tradi-
tional range of zero to unity has been studied by
others (Nigm 1981, Moriwaki and Iwata 1976,
Srinivasan and Nachtigal 1978, Jensen and Shin
1997). Because none have conceived of overlap
factors outside that range, the effects of such have
not been explored. Here, the effects of nontradi-
tional overlap factor values on stability limit in
the spindle-speed domain are explored.

The overlap factor expressions [e.g., Eq. (8)]
are strongly dependent on the controllable process
inputs of corner radius, lead angle, feed, and
mode orientation. However, the overlap factor
itself is not controllable. To conduct this study of
overlap factor outside its traditional range, in a
controlled fashion, the case of straight-edged
orthogonal cutting is considered first where over-
lap factor may be set arbitrarily. Following that,
the effects of corner radius, lead angle, feed, and
mode orientation are explored with special atten-
tion paid to how their overall effects on stability
limit are or are not correlated to the overlap factor
by tracking overlap factor values along the stabil-
ity limit boundaries.

Straight-Edged Orthogonal Cutting
The general stability solution form is

(10)

and

(11)

where � and � are the real and imaginary parts of
the structure’s frequency response function, G(j�),
evaluated at the chatter frequency �c. To illustrate
here, second-order dynamics are assumed with
stiffness k, damping ratio 	, and natural frequency

�n. In Eqs. (10) and (11), Kq = KduTw is the
process stiffness, which is the product of a force
directional factor Kd, the specific thrust energy uT,
and the width of cut w. So as not to detract from
the issue at hand by introducing numeric values
for the specific energy, the stability limit (wlim) is
presented as Kqlim

instead. Furthermore, so that
specific values of structural parameters need not
be introduced, the stability limit is presented in a
nondimensional form as Kq|G(0)|, where |G(0)| is
the zero-frequency (static) magnitude of the fre-
quency response function, that is, the static com-
pliance, which is 1/k for the second-order dynam-
ics used here. Finally, the well-known speed axis
normalization of tooth frequency by natural fre-
quency, �t/�n, is used. These various normaliza-
tions allow all comparisons to have no dependence
on an arbitrary choice of structural dynamics para-
meters or specific energy values.

A quick observation of Eq. (10) is that overlap
factor shows up only in its square. Therefore, both
positive and negative values of µq that are the same
in magnitude will yield identical results. In evalu-
ating the stability equations here, Kqlim

is comput-
ed from Eq. (10) via the quadratic formula and
then substituted into Eq. (11) to compute the asso-
ciated chatter phase. Because the result for Kqlim
comes from the quadratic formula, results may be
positive real, negative real, or complex. Only real-
valued results with the same sign as Kd are physi-
cally sensible (valid), for only these results yield
positive real values for the limiting width of cut.
The stability diagram is constructed by increment-
ing the chatter frequency from zero to four times
the natural frequency and keeping only valid
results for Kqlim

. The frequency values less than the
natural frequency become active when the direc-
tional factor is positive or when |µq| > 1.

The effect of overlap factor on stability limit is
shown in Figure 5 for Kd = �1, which is the usual
case of orthogonal cutting where the thrust force
acts against the tool vibration into the workpiece.
For overlap factors less than unity (Figure 5a), as is
well known, the stability limit is higher than for
unity overlap. The left side of each lobe that
asymptotically goes to infinity at �t/�n = 1/1, 1/2,
1/3, ... for unity overlap, in this case, curves back
into the positive speed direction leaving relatively
wide and very high “peaks.” Based on the phase
plots, the downward shift of the stability limit is a

ε c
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result of Kq depending on µq, while the change in
shape is a result of the phase through its mapping
of chatter frequency to the speed domain.

What has not been explored before is the effect
of overlap factors with magnitude greater than
unity. Figure 5b shows a significant effect where
all the lobes converge to a single stability limit
value at zero speed. The fact that the lobes curve to
the left instead of to the right, or vertically as for |µq|
= 1, means that the peaks are diminished substantial-
ly relative to |µq| = 1. As one may expect, the tangen-
tial limit is reduced as well.

When the directional factor is positive, the results
change dramatically, as shown in Figure 6. Positive
directional factors occur for very large positive rake

angles where the thrust force pulls the tooth into the
workpiece, or in milling due to the tooth orienta-
tion changing with rotation. The geometry intro-
duced by corner radiused tooling may also intro-
duce a positive directional factor. For overlap fac-
tor magnitudes less than unity, the stability limit
boundaries curve back on themselves instead of
asymptotically approaching infinity at the shown
unity-overlap asymptotes of �t/�n = 2/1, 2/3, 2/5,
.... This creates only pockets of instability in the
union of their interiors. When the overlap factor
magnitude is greater than unity, there is not as dra-
matic a change in the shape of the stability bound-
aries as was seen for negative directional factors;
however, there is a consistent reduction in stability
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Figure 5
Effect of Overlap Factor on Nondimensional Stability Limit and Chatter Phase for Straight-Edged Orthogonal Cutting at |µq| of: (a) 0.25 and (b) 1.75

Figure 6
Effect of Overlap Factor on Nondimensional Stability Limit and Chatter Phase for Straight-Edged Orthogonal Cutting, with a Positive Force

Directional Factor, at |µq| of: (a) 0.25 and (b) 1.75



limit across all speeds, as compared to |µq| = 1. The
phase again seems to drive the shape changes; it
barely deviates below 360° as |µq| becomes small.

The discussion here must be taken with some
caution. Here, it was assumed that the process gain
Kq is independent of the overlap factor µq. However,
the discussion to follow shows that for corner-
radiused tools, Kq and µq are coupled and, in fact, as
|µq| approaches infinity, Kq is approaching zero.
Likewise, when |µq| is becoming smaller than unity,
Kq is increasing. The question is, are the
positive/negative effects of |µq| becoming
less/greater than unity offset by the opposite
change in Kq?

The Turning Process
The stability equations for turning are, in their

general form, the same as those given in Eqs. (10)
and (11), where µq is as given in Eq. (9) and the
process gain is

(12)

Here, is the direction of the modeled process
force (thrust force) in the feed-depth plane. The
directional factor (Kd) in this case is the product of

and , while the latter
term also embodies the measure of width of cut, in
this case the depth of cut. The term 
is also the denominator of µq [see Eq. (9)].
Therefore, the right-hand side of the equation of
motion (the dynamic process force �Fq), and its
representation in overlap factor form, evolves as

From these relations, it is clear that Kq and µq [see
Eq. (9)] are coupled through each being a function
of depth of cut (the usual measure of stability, a
dependent variable of the analysis), as is any model
of . As a result, it is impossible to look at a nor-
malized stability limit of a form like KduTw|G(0)| as
was done for the orthogonal cutting case. Therefore,
the traditional stability limit measure of limiting
depth of cut, dlim, is studied here. The computation of
stability limits here is done in the same way as was
described in the previous work that presented the
turning stability solution (Ozdoganlar and Endres
1998). The structural dynamics and process force
model coefficients from that work are used here
with a corner radius of 0.8 mm (1/32 inch) and a
feed of 0.15 mm (0.006 inch).

Figure 7 shows two examples of computed stabil-
ity limits and (in the upper plot) the associated over-
lap factor and thrust force projection onto the q-
direction. The thrust force projection is the term

. Each stability diagram shows the “nat-
ural” prediction, in which case both µq and (i.e.,
the thrust projection) are allowed to vary naturally
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Figure 7
Relative Effects of Overlap Factor and Thrust Force Projection in the q Direction for: (a) � = ��30° and � = 150°, and (b) � = 30° and � = 90°



with their dependence on depth of cut—the stability
limit. Also shown is the result for when the overlap
factor is constrained to unity as well as when the
thrust force projection is constrained to be constant at
its average value of the “natural” result. If the con-
stant thrust projection case deviates more from the
“natural” case than does the µq = 1 case, this indicates
that the variation in overlap factor and its deviation
from unity is masked by the other process geometry
effects in Kq, specifically the equivalent lead angle 
changing with depth of cut. This is the case in Figure
7a. Figure 7b shows that, in other cases, variation in
overlap factor and its deviation from unity does
indeed affect the results, dominating the effects of Kq

and , even in light of the complicated coupling
between µq and Kq.

The only conclusion that may be drawn is that the
interactions among µq and Kq through depth of cut are
complicated and vary significantly with other process
variables such as lead angle and mode orientation.
This means that the traditional notion of overlap fac-
tor being the mathematical remedy for generalizing
the stability problem must be considered with great
caution because in real processes, such as those with
corner-radiused tools, overlap factor (1) is not just a
number and (2) is tightly coupled to other aspects of
the problem.

Conclusions
The conclusions from this study are as follows:
• Overlap factor is not simply a number; 

it is mathematically dependent on process para-
meters, including the depth of cut, which is the
usual dependent variable of a stability solution.

• When using corner-radiused tooling, the overlap
factor can mathematically take on any value, not
only those between zero and unity.

• The trends seen when varying the overlap factor in
a straight-edged orthogonal analysis must be con-
sidered with caution, as corner-radiused process
geometry involves directional issues as well,
which in some cases mask the effects of overlap
factor variation across the stability diagram.

• It seems unlikely that extreme overlap values
toward infinity would ever occur because there is
strong dependence on depth of cut, which is the
solution result in stability analysis, not a set value.

• To assess stability of corner-radiused processes,
one must resort to the complete solution, not qual-
itative overlap-based assessments.
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