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An Analytical Representation of
Chip Area for Corner-Radiused
Tools Under Both Depth-of-Cut
and Feed Variations
The operation of corner-radiused tools under both depth-of-cut and feed variation
situation that occurs for many processes (e.g., straight turning, contour turning, bo
and face-milling) and under many practical conditions. A new chip-area expressio
formulated by applying a rotational transformation to the chip-area geometry. Res
obtained with this new representation are compared to an exact area computation
rithm based on geometric shapes. The new representation and its associated expre
are far more simple than those of the exact area representation. The errors introduc
the new representation have been analyzed and found to be very small. To increa
accuracy of the expressions for numerical applications, numerical and analytical er
compensation functions have been developed. The latter makes the expressions e
the expense of increased algorithmic content, whereas the former is less algorithmic
negligible errors even under extreme conditions.
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1 Introduction
Since the early days of metal cutting research, researchers

observed the machining force to be proportional to the cro
sectional area of the uncut chip being removed. Thischip areais
defined as that area bounded by the tooth edge profiles c
sponding to two tooth passes. The theoretical analysis of mac
ing processes, dating back to the early 1940s or before, has
sidered this fact and modeled the machining force componen
proportional to the chip area@1#. However, in the presence o
vibration, runout or certain special cutter designs~e.g., step mill
cutters!, as well as contour turning applications, establishing
analytical chip-area expression is no trivial matter when work
with processes used by industry, i.e., those that exhibit com
tooth forms.

The most common tooth form seen in turning, boring, and f
milling processes consists of a straight major~lead! cutting edge,
a straight minor~end/trail! cutting edge, and a corner~radiused!
edge that connects/blends together the two straight edges. S
the presence of two straight edges~major and minor! implies that
there exists a corner, and since it is the radius of the corner th
primarily responsible for the complexity of this geometry, w
have termed the ensuing chip-area representation and analy
be for corner-radiused tools.

1.1 Background and Motivation. A traditional graphical
representation of the chip area is shown in Fig. 1, wherer e is the
corner radius andc r is the lead angle. Shown here is the simp
situation, which is often considered, where feed direction~and
feed f! is defined to be parallel to the uncut surface and a de
direction~and depth of cutd! is defined to be perpendicular to th
feed direction. The depth of cut is measured from the uncut
face with positive values directed into the workpiece. Since
current- and previous-pass profiles are equally spaced by a
tancef in the feed direction, at all points down to the profile tip
they are parallel. This fact has been recognized and exploited
years to obtain the commonly seen chip area expression
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a5 f d2ac . (1)

Here, ac is the area of the cusp left on the cut surface at
intersection of the current-pass and previous-pass profiles, w
must be subtracted since it is excessively included in the sim
product fd. Though the cusp area becomes negligibly small
comparison tofd as the depth increases, it can introduce noti
able error at high feed and low depth of cut.

The feed typically consists of the nominal feed per toothf t and
the profile-to-profile variation in the feed directionD f :

f 5 f t1D f . (2)

The area model of Eqs.~1! and~2! is attractive sincefd is a simple
product involving the set depth of cut, the set feed per tooth an
well defined feed variation, whileac is a fairly simple function of
feed, corner radius and sometimes, in extreme cases, the lea
trail ~end-cutting! edge angles. However, ‘‘realities’’ of machin
ing introduce profile-to-profile variation in the depth direction
well. Depth-direction variation may come from a variety
sources, such as vibration, runout, special cutter designs,
contour turning.

Numerous investigators have addressed, to a varying deg
feed and depth variations in their modeling efforts. Feed variat
can be handled in a straightforward manner~Eq. ~2!! in static
models, such as that of Young et al.@2#. Zhang et al.@3# devel-
oped a dynamic boring process model where the corner radius
taken to be zero, which is a good approximation when the de
of cut is substantially larger than the corner radius. DeVor et
@4# acknowledged both radial~feed-direction! and axial ~depth-
direction! throw, and accounted for the former in their mechan
tic force model for face milling. Enhanced dynamic models
face milling @5# and cylinder boring@6# included both tooth throw
and vibration-induced variations in both directions. They ma
use of four geometric shapes, two of which exhibited areas
were computed through direct integration. The simulation
proach of Tansel@7# used to study turning stability relies solely o
numerical area integration and as such is very computation
expensive and obviously not suited to analytical methods.

Given the numerous sources of depth-direction variation
the fact that the general case of corner-radiused cutting repres

e
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many tooth geometries seen in practice, a simple analytical
pression for chip area in the presence ofboth depth and feed
variation has widespread use. Furthermore, the simple analy
representation presented here provides far superior computat
speed as compared to the highly algorithmic and/or numer
integration-based schemes, which are employed for each too
each time step in time-domain simulations. This analytical rep
sentation also opens the door to accounting for depth-direc
vibration in analytical machining dynamics, where one seeks a
lytical solutions for stability limit and vibration level.

1.2 Comparative Representations. Some of the most re-
cent advances in characterizing the effect of depth-direction va
tion on chip area for corner-radiused tools include works by E
dres et al. @8#, Radulescu @9#, and Gu @10#. A previously
unpublished approach developed by Endres, which is based
geometric shapes, will be presented in the Error Analysis sect
which was chosen for its simplicity and computational efficienc
The analytical representation presented and analyzed for erro
the remainder of the paper is substantially more simple from
algorithmic standpoint, exhibits negligible computational com
plexity, and is suitable for application in analytical machinin
dynamics.

Other simple approximations can be considered as alternat
to the representation presented here. Those considered her
comparison are simple products of feed and 1! the current-pass
depth of cutd0 , 2! the previous-pass depth of cutd1 , and 3! the
mean of the current- and previous-pass depths of cut. It will
shown that the new representation, given the end result prov
here, is far superior to these three oversimplified alternatives.

1.3 The New Analytical Representation. Irrespective of
the source of depth-direction variation, the variation can be id
tified as someDd so that a single analysis can be conducted
cover all the aforementioned practical situations. Here,Dd is

Fig. 1 Traditional simple representation of the corner-
radiused chip area

Fig. 2 Chip-area geometry with depth-direction variation Dd ,
where DdÄDd 0ÀDd 1
Journal of Manufacturing Science and Engineering
ex-

tical
onal
ical
h at
re-
tion
na-

ria-
n-

on
ion,
y.
rs in
an
-

g

ives
e for

be
ded

en-
to

measured from the tip of the nominal profile and is positive in
direction into the workpiece so that a positiveDd increases the
depth of cut. Figure 2 depicts the geometry of two tooth profiles
the presence of variations in both depth and feed~captured inf
through Eq.~2!!. Recognizing that the profiles are equally spac
in an ‘‘equivalent’’ feed direction, they can be considered para
when traversed along an equivalent depth. Hence, the same si
approach of Eq.~1! may be used wheref is replaced by an equiva
lent feed andd is replaced by an equivalent depth of cut. Indica
ing the equivalent variables with a star subscript, the result
new chip area representation is

a5 f * d* 2ac* . (3)

This representation is basically a rotational transformation of
~1!.

2 Chip-Area Derivation
Derivation of the chip-area expressions requires classifica

of the tooth-profile pair into two cases—small depth and large
depth—depending on the values of lead angle, corner radius,
depth of cut. The transition between the two cases occurs
transition depth of cutdt . The transition depth of cut is refer
enced to a~virtual! mid-profile that is shown in Fig. 2 as a thick
dashed line between the current- and previous-pass profiles.
centered, in the equivalent feed direction, between those two
files. The transition depth is defined as that for which the l
segmentA1A0 passes through pointR—the point on the mid-
profile where the corner arc transitions into the straight lead ed
SegmentA1A0 lies at the uncut surface and extends from t
previous-pass profile to the current-pass profile. From the ge
etry of Fig. 2,

dt5r e~12sinc r !2
Dd01Dd1

2
, (4)

where Dd0 and Dd1 are the variations of the current- an
previous-pass depths of cut, respectively, relative to the nom
depth of cutd. Having only one condition (d,dt ,?) separating
two cases is desirable for both analytical and numerical appl
tions as compared to having multiple conditions with addition
cases, which introduces algorithmic complexity.

2.1 Large Depth Case. The geometry for the large dept
case (d>dt) is illustrated in Fig. 2. In this figure, a numeri
subscript on any symbol indicates that it is associated with
many tooth passes prior to the current pass (0→current, 1→one
previous!. The equivalent feed vector,f* , is defined as the vecto
stretching from the center (C1) of the corner arc for the previous
pass to that of the current-pass (C0). The equivalent depth-of-cu
vector is defined to be the vector perpendicular tof* , and
stretches from pointB to the common tangentof the two corner
arcs, which is parallel tof* , by definition.

Defining the location of pointB dictates the accuracy of th
chip-area expressions since it represents the definition of
‘‘equivalence’’ approximation. PointB identifies the intersection
of the line segmentA1A0 and the equivalent feed segmentF1F0 ,
the latter of which is drawn in thef * direction such that it con-
nects the current- and previous-pass profiles. As mentioned ab
the location ofA1A0 is fixed at the uncut surface. Hence, definin
the location ofF1F0 , which must intersectA1A0 , is analogous to
locating pointB. In reference to Fig. 2, the chip area represen
tion of Eq. ~3! includes the area of triangleA0BF0 whereas the
actual chip area includes the area of triangleA1BF1 instead.
Therefore, the location ofF1F0 ~the equivalency! should be cho-
sen such that the areas of these two triangles are as close to
as possible. The closer they are to equal, the better their can
lation will be, which leads to a reduced error in the equivale
representation compared to the actual/exact chip area.

In the case shown, pointB falls in the middle ofA1A0 and
makes the areas of the two triangles equal. Consequently, at
NOVEMBER 2000, Vol. 122 Õ 661
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glance, locatingF1F0 so that pointB bisectsA1A0 seems to be the
‘‘best’’ choice. However, when considering the small depth ca
whereA0BF0 andA1BF1 are no longer triangles, and after inve
tigating numerous possibilities, the best definition of the equi
lency is that for which pointB is located on the mid-profile. In this
way, pointB is always located at the mid-point ofF1F0 , which is
equivalent to the middle ofA1A0 for the large depth case, but no
for the small depth case.

The area solution begins by setting the origin of thex-y-zCar-
tesian coordinate frame to be atC0 . Physically,x, y, andz label
the depth-of-cut, cutting and feed directions, respectively. T
vectorb locates pointB and a vectorr e is defined to be orthogona
to f* and to stretch fromC0 to the common tangent. Given thes
definitions,f* and r e can be expressed as

f* 5Ddi1 f k (5)

and

r e5
r e

ADd21 f 2
~ f i2Ddk!, (6)

where i and k are the unit vectors in thex- and z-directions,
respectively, andDd5Dd02Dd1 is the total depth variation. Us
ing vector algebra,d* can be computed as

d* 5r e2
r e•b

r e
2

r e5r eS 12
r e•b

r e
2 D . (7)

Recalling thatd* and f* are orthogonal

a5i f* 3d*
i2ac* 5i f* iid*

i2ac* , (8)

where i•i determines the length of the vector on which it ope
ates. From the geometry of Fig. 2,b can be derived as

b5~r e2d0!i1F r e~12sinc r !

cosc r

2
f

2
2S Dd

2
1d0D tanc r Gk,

whered05d1Dd0 , and likewise,d15d1Dd1 .
Using this expression forb along with Eqs.~5!–~8!, the chip-

area expression for the large depth case, after some manipula
reduces to

aL f dm1r e~ f * 2 f !1Dd~cc1dm tanc r !2ac* (9)

where

cc5
r e~12sinc r !

cosc r

(10)

anddm5
1
2(d01d1) is the mean depth of cut.

In summary, use of the definitions off* andr e are given in Eq.
~5! and Eq.~6!, respectively, leads to the derivation ofd* , result-
ing in Eq.~7!. Then, deriving thecase-specificb from the profile-
pair geometry, substituting it into thed* expression, and substi
tuting d* into Eq. ~8! leads to the area expression of Eq.~9!.

2.2 Small Depth Case. The same derivation method a
above applies for the small depth case, which is shown in Fig
The difference lies only in computing the case-specific vectob.
From the geometry in Fig. 3,

b5~r e5d0!i1SAdm~2r e2dm!2
f

2D k.
662 Õ Vol. 122, NOVEMBER 2000
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Using thisb together with Eqs.~5!–~8!, the chip-area expressio
for the small depth case eventually reduces to

as5 f dm1r e~ f * 2 f !1DdAdm~2r e2dm!2ac* . (11)

2.3 Cusp Area Expression. The expression for the cus
areaac is well known to be

ac5 f r e2
f

2
Ar e

22
f 2

4
2r e

2 arcsinS f

2r e
D . (12)

Comparing the cusp region of Fig. 1, viewed in thef 2d coordi-
nates, to that of Figs. 2 and 3, viewed in thef * 2d* coordinates,
clearly indicates an equivalent shape. Thus, the equivalent c
area can be established by substitutingf * for f in Eq. ~12!.

The equivalent cusp area expression given above is valid w
the two profiles intersect on their corner arcs. However, for
treme values of depth variation and feed, the intersection can
that of the current-pass trail~end-cutting! edge and the previous
pass corner arc, the current-pass corner arc and the previous
lead edge or the current-pass trail edge and the previous-pass
edge. Investigation of these less common cases is simply an a
braic exercise; hence, it is left as an implementation exercise

2.4 Validity Constraints. Though chip-area expression
may produce negative values, only non-negative values m
physical sense. The chip area becomes zero when the current
profile completely disengages the workpiece. In practice, this
curs in the presence of large tooth throws and/or when the ch
condition is reached due to excessive vibrations. For the c
when only a feed direction variation is considered, zero chip a
translates into either the feed or the depth being zero. Howe
when both the depth and feed variations are non-zero, the t
engagement ceases causing the chip area to become zero fo
configuration where the current-pass profile is located ‘‘insid
the previous-pass profile. This physical limitation can be e
pressed as

f 1Dd tanc r.0 and f 2
Dd

tank r8

.0,

Fig. 3 Small depth geometry

Fig. 4 Finite-positive validity constraints
Transactions of the ASME
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wherek r8
is the trail~end cutting! edge angle. Figure 4 shows th

dimensions corresponding to the left-hand sides of th
constraints.

The first condition assures tooth engagement so that the
area is positive. The second condition assures that the chip ar
finite, i.e., a bounded region. The fact thatk r8

always assumes a
value between 0 deg and 90 deg is considered when writing
second condition. Should tank r8

be zero, this condition become
f .Dd•`. This implies that whenDd>0 no acceptable finite
value off will result in the chip-area being bounded. On the oth
hand, a finite chip area would exist for allDd,0. In other words,
when the second condition is not met, meaning the previous-
profile does not intersect the current-pass profile to form/close
chip area, there must exist, in practice, some earlier tooth pro
for which the condition is satisfied. This is an implementati
issue that exists for any chip-area computation algorithm.

In addition to satisfying the above constraints, there exist
nominal depth constraint for the new chip-area representation.
imposed so that the cusp area is always completely below
nominal depth of cut. Figures 5 and 6 illustrate the three candid
minimum depth values. The first two are of interest whenDd
.0, with the first arising from the intersection of the previou
and current-pass corner arcs at pointP. From the geometry in the
figure, the first candidate value can be written as

dmin15r e

f

f *
Ar e

22
f
*
2

4
2

1

2
~Dd01Dd1!.

Defining pointQ to be the intersection of the common tangent a
the previous-pass corner arc, the second candidate value is w
as

dmin25r e2
f

f *
2Dd1 .

Consequently, whenDd.0, the minimum depth value is th
larger of the two candidate values, i.e., max@dmin1 ,dmin2#.

Figure 6 shows the case forDd,0. Here, a minimum equiva
lent depth,d* min , can be defined as the distance between
common tangent and a line that is parallel to the common tan
and passes through pointP. Thus, the minimum depth forDd
,0 can be expressed as

Fig. 5 Minimum depth for DdÌ0

Fig. 6 Minimum depth for DdË0
Journal of Manufacturing Science and Engineering
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dmin35r e2
f

f *
Ar e

22
f
*
2

4
2Dd0 .

To minimize the algorithmic complexity~number of intermediate
conditions and corresponding cases!, we wish to avoid different
expressions forDd,0 and Dd.0; hence, a single minimum
depth is computed as

dmin5max@dmin1 ,dmin2 ,dmin3#.

Of course, at depths belowdmin , the chip area is simply that of an
arc segment, the exact value of which is easily computed
desired.

3 Error Analysis
Since the presented chip area is an approximation, it mus

analyzed in terms of the errors it introduces. Comparison is m
to the exact area and to the three alternate, highly simplified
pressions mentioned in the introduction.

When conducting the error analysis and later formulating
compensation term it is advantageous to remove the corner ra
as a variable by nondimensionalizing depths (d,d* ,Dd, etc.! and
feeds(f and f * ) by r e . Uppercase symbols to follow represe
nondimensional variations of their respective lowercase symb
that is, that lowercase variable divided byr e for all variables
exceptA andAc* , which are their respective variable divided b
r e

2. Note that all the above results can be nondimensionalize
well.

3.1 Comparison to Exact and Simplified Representations.
A method to compute the exact chip area, in the presence of d
and feed variations, has been developed by Endres based o
dition and subtraction of geometric shapes. Figure 7 illustrates
geometric shapes for the large depth case. Subtracting the c
hatched area, a circular segment, from the shaded area comp
of three triangles and a circular segment, the exact area is
tained. This exact result is very computationally complex a
fairly algorithmic since it includes many cases with several co
ditions, and requires the coordinates of each of the five point
Fig. 7 to be computed. Such complexity is typical of and in so
cases worse in the other methods cited earlier@8–10#.

In the ensuing error analysis, ranges of variables have b
chosen to encompass some of the most extreme conditions
countered in practice:20.6<DD<0.6, 0.15<F<0.9, and
245 deg<c r<30 deg. The analysis is performed consideri
DD to be evenly distributed about the nominal profiles, i.
DD052DD1 . If DD is not evenly distributed about the nomin
depth, one would simply observe the same errors, only shi
along the depth axis.

For a given uDDu, the percent errors forDD,0 are much
larger in magnitude than forDD.0. This is a result of the exac
area,relative to which the percent error is computed, being much

Fig. 7 Exact area calculation using geometric shapes
NOVEMBER 2000, Vol. 122 Õ 663
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smaller whenDD,0 than whenDD.0. Additionally, all errors
approach zero asD increases, and more specifically, becomes z
for

D>Dz5max@~12sinc r2DD0!, ~12sinc r2DD1!#.
(13)

As a consequence of the exact area getting larger with increa
feed as well, the percent errors decrease, in the absolute v
with increasing feed.

Figure 8 shows a comparison, in terms of percent errors, to
three highly simplified chip-area expressions noted in the in
duction. Clearly, the new chip-area representation results in m
smaller percent errors. In addition, while the percent error of
new expression becomes zero for the large-depth case, the
native expressions still exhibit large errors. The conditions use
generate this comparison yield some of the smallest errors in
alternate expressions that were observed across all conditions
sidered here.

3.2 Error Compensation. For use in analytical stability so
lutions, since infinitesimal displacements about equilibrium
considered (Dd;0), the error is virtually zero. Compensating fo
the error, however, is of interest for implementation in numeri
time-domain simulations where the new representation can
nificantly enhance computational efficiency.

3.2.1 Analytical Error Compensation.The source of errors
can be clearly seen in Fig. 9. The actual chip area isA(A0PA1),
whereas the chip area computed via the above representati
A(F0PA0). Therefore, the chip-area expression presented h
includes the areaA(BA1F1) in place ofA(A0F0B). Due to the
way the pointB is chosen, the two triangular areasA(S0F0B) and
A(BS1F1) are identical~which is precisely why the chip are

Fig. 8 Comparison of the percent errors with those of the al-
ternate expressions

Fig. 9 Source of errors
664 Õ Vol. 122, NOVEMBER 2000
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expression is exact for large depths!. Hence, the difference be
tween the areas,A(A0F0S0) andA(F1S1A1) would be the error
associated with the chip-area expressions. This area can be c
lated exactly and directly through the geometry of Fig. 9. Th
shapes change based on the depth of cut and the sign ofDd,
which should be considered when calculating these areas.
compensation areas for positive lead angles are

aaec15
r e

2

2
~u12u0!2Ddsm

1
1

2
~s1l 12s0l 0! for d<dt2

uDdu
2

,

aaec25
l 1r e

cosc r

2Ddsm1
r e

2

2
~c r2tanc r2u0!

1
1

2
~2 l 0s02 l 1

2 tanc r !

for dt>d.dt2
uDdu

2
and Dd,0,

aaec352
l 0r e

cosc r

2Ddsm1
r e

2

2
~2c r1tanc r1u1!

1
1

2
~ l 1s12 l 0

2 tanc r !

for dt>d.dt2
uDdu

2
and Dd.0,

aaec45
l 0r e

cosc r

1Ddlm tanc r1
r e

2

2
~c r2tanc r1u0!

1
1

2
~2 l 0s02 l 1

2 tanc r !

for dt1
uDdu

2
>d.dt and Dd,0,

aaec552
l 1r e

cosc r

1Ddlm tanc r1
r e

2

2
~2c r1tanc r1u1!

1
1

2
~ l 1s12 l 0

2 tanc r !

for dt1
uDdu

2
>d.dt and Dd.0,

where

l •5r e2d• , s•5Ar e
22d• and u •5arcsinS l •

r e
D .

Adding to the appropriate~small or large depth! chip area expres-
sion given in Eqs.~9! and~11!, the compensation term associate
with the condition at hand makes the resulting expressions ex
Although more involved and algorithmic, analytical error com
pensation terms for negative lead angles can be established i
same way.

3.2.2 Numerical Error Compensation.Although the analyti-
cal error compensation introduced above makes the chip-area
pressions exact, it increases the algorithmic content of the exp
sions. A numerical and less algorithmic error compensation te
can be derived as well with the intent being to achieve a ne
exact result with little additional algorithmic complexity. Its de
velopment is based on the trends of the non-dimensional er
Transactions of the ASME
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with respect toDD ~Fig. 10! and lead angle~Fig. 11!. As seen in
Fig. 10, the trends at depths of cut well below the transition de
(Dt) are even functions of normalized depth,D, being symmetric
aboutD51 and mirrored about an error value of zero for positi
and negative levels of eachuDDu. Figure 11 shows that the lea
angle affects the depth of cut at which the decaying depar
occurs from the even, symmetric curves shown in Fig. 10 for
extreme lead angle of245 deg. These observations lead to
two-part error compensation function that provides a superp
tion of these two trends. The resulting error compensation term
Anec5Anec11Anec2 , whereAnec1 represents the symmetric po
tion of the error curves andAnec2 represents thec r-dependent
departures from the symmetric curves. The first term has the f

Anec15H b2@11b1~D21!4#DD3, for D,Dt

0 for D>Dt
,

whereb1527.524 andb2524.42131022. The second term ha
the form

Anec25
2c1c2 sgn~DD~D2Dt!!

@Ac11c1Ac2uD2Dtu#2
,

wherec1523105 andc25c201c22c r
21c24c r

4. Here,c r is mea-
sured in radians and

Fig. 10 Non-dimensional errors for crÄÀ45°

Fig. 11 Effect of the lead angle „labeled À45° to 30° … on abso-
lute error
Journal of Manufacturing Science and Engineering
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c2054.3431023DD212.2731022DD4

c2251.5131023DD212.0731022DD4

c2452.1331023DD217.7831022DD4.

Including the error compensation terms reduces the errors
stantially. For the case ofDD520.4 andc r50 deg, which ex-
hibits some of the worst errors across allDD that were consid-
ered, the maximum absolute value of the percent error for
case is decreased from 28 percent to 1.8 percent forF50.15 and
from 24 percent to 1.2 percent forF50.3. Since the data used t
formulate this numerical error compensation expression w
based onDD052DD1 , the mean nondimensionalized dep
(Dm5dm /r e) should be used forD in these expressions.

4 Summary and Conclusions
A new analytical chip-area representation for corner-radiu

tools under both depth-of-cut and feed variation was presen
Based on this representation, chip-area expressions were de
for ‘‘small’’ and ‘‘large’’ depth cases using a vectorial approac
The resulting errors were analyzed across wide ranges of co
tions within the validity constraints. The percent errors of the n
representation are far better than those of three alternate repr
tations introduced for comparison purposes. Analytical error co
pensation functions have been derived, addition of which ma
the chip area expressions exact, but at the expense of incre
algorithmic content. An alternative, less algorithmic, numeric
compensation function was also derived, which reduces the er
to near zero for all conditions surveyed without introducing a
significant complexity in the computations or algorithms.
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