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situation that occurs for many processes (e.g., straight turning, contour turning, boring,
Department of Mechanical Engineering and and face-milling) and under many practical conditions. A new chip-area expression is
Applied Mechanics, formulated by applying a rotational transformation to the chip-area geometry. Results
University of Michigan, obtained with this new representation are compared to an exact area computation algo-
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are far more simple than those of the exact area representation. The errors introduced by
the new representation have been analyzed and found to be very small. To increase the
accuracy of the expressions for numerical applications, numerical and analytical error-
compensation functions have been developed. The latter makes the expressions exact, at
the expense of increased algorithmic content, whereas the former is less algorithmic with
negligible errors even under extreme conditions.
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1 Introduction a=fd—a,. 1)

Since the early days of metal cutting research, researchers hﬁl\é?e a, is the area of the cusp left on the cut surface at the

observed the machining force to be proportional to the CTOSKtersection of the current-pass and previous-pass profiles, which

sec_tional area of the uncut chip being removed. Thip ar_eais must be subtracted since it is excessively included in the simple
defined as that area bounded by the tooth edge profiles cor Coduct fd. Though the cusp area becomes negligibly small in

sponding to two tooth passes. The theoretical analysis of machifinnarison tdd as the depth increases, it can introduce notice-

ing processes, dating back to the early .19405 or before, has cQfre error at high feed and low depth of cut.

S|dered_ this fact and m_odeled the machlnlng force components asne feed typically consists of the nominal feed per togtand

proportional to the chip arefl]. However, in the presence of the profile-to-profile variation in the feed directiaf:

vibration, runout or certain special cutter desigagy., step mill

cutterg, as well as contour turning applications, establishing an f=f,+Af. 2)

analytical chip-area expression is no trivial matter when working

with processes used by industry, i.e., those that exhibit compl&ke area model of Eq$l) and(2) is attractive sincéd is a simple

tooth forms. product involving the set depth of cut, the set feed per tooth and a
The most common tooth form seen in turning, boring, and fagkell defined feed variation, while, is a fairly simple function of

milling processes consists of a straight majead cutting edge, feed, corner radius and sometimes, in extreme cases, the lead and

a straight minor(end/trai) cutting edge, and a cornéradiusegl trail (end-cutting edge angles. However, “realities” of machin-

edge that connects/blends together the two straight edges. Sitigeintroduce profile-to-profile variation in the depth direction as

the presence of two straight edg@sajor and minorimplies that Well. Depth-direction variation may come from a variety of

there exists a corner, and since it is the radius of the corner thaBRUrces, such as vibration, runout, special cutter designs, and

primarily responsible for the complexity of this geometry, w&ontour turning.

have termed the ensuing chip-area representation and analysis fJUmerous investigators have addressed, to a varying degree,
be for corner-radiused tools feed and depth variations in their modeling efforts. Feed variation

can be handled in a straightforward mantEq. (2)) in static

1.1 Background and Motivation. A traditional graphical models, such as that of Young et f]. Zhang et al[3] devel-
representation of the chip area is shown in Fig. 1, wheris the oped a dynamic boring process model where the corner radius was
corner radius and, is the lead angle. Shown here is the simpléaken to be zero, which is a good approximation when the depth
situation, which is often considered, where feed directiand of cut is substantially larger than the corner radius. DeVor et al.
feedf) is defined to be parallel to the uncut surface and a depl#] acknowledged both radidfeed-direction and axial (depth-
direction(and depth of cutl) is defined to be perpendicular to thedirection throw, and accounted for the former in their mechanis-
feed direction. The depth of cut is measured from the uncut stic force model for face milling. Enhanced dynamic models of
face with positive values directed into the workpiece. Since tfface milling[5] and cylinder boring6] included both tooth throw
current- and previous_pass profiles are equa”y Spaced by a (ﬂg.d V|brat|0n'|nduce-d variations In bOth .dlreCtIO_n§. They made
tancef in the feed direction, at all points down to the profile tipsuse of four geometric shapes, two of which exhibited areas that
they are parallel. This fact has been recognized and exploited ¥¥gré computed through direct integration. The simulation ap-

years to obtain the commonly seen chip area expression proach of Tans€l7] used to study turning stability relies solely on

numerical area integration and as such is very computationally
Contributed by the Manufacturing Engineering Division for publication in thee)(p(.answe and ObVIOUSIy not suited to analy_t|cal_ metho.ds.'
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- measured from the tip of the nominal profile and is positive in the
direction into the workpiece so that a positida increases the
S depth of cut. Figure 2 depicts the geometry of two tooth profiles in
Profile the presence of variations in both depth and féeaptured inf
d through Eq.(2)). Recognizing that the profiles are equally spaced
Uncut in an “equivalent” feed direction, they can be considered parallel
G G when traversed along an equivalent depth. Hence, the same simple
approach of Eq(1) may be used wherfes replaced by an equiva-
lent feed andl is replaced by an equivalent depth of cut. Indicat-
ing the equivalent variables with a star subscript, the resulting
new chip area representation is
a=f,d,—ac . (3)
. . . . . This representation is basically a rotational transformation of Eq.
many tooth geometries seen in practice, a simple analytical e&)
pression for chip area in the presence baith depth and feed '
variation ha_s widespread use. Furthermore, the _simple analy_tigal Chip-Area Derivation
representation presented here provides far superior computational
speed as compared to the highly algorithmic and/or numericalDerivation of the chip-area expressions requires classification
integration-based schemes, which are employed for each toottPhthe tooth-profile pair into two casessmall depth and large
each time step in time-domain simulations. This analytical repréepthi—depending on the values of lead angle, corner radius, and
sentation also opens the door to accounting for depth-directiégpth of cut. The transition between the two cases occurs at a
vibration in analytical machining dynamics, where one seeks arfgansition depth of cutd,. The transition depth of cut is refer-
lytical solutions for stability limit and vibration level. enced to dvirtual) mid-profilethat is shown in Fig. 2 as a thick
) ) dashed line between the current- and previous-pass profiles. It is
1.2 Comparative Representations. Some of the most re- centered, in the equivalent feed direction, between those two pro-
cent advances in characterizing the effect of depth-direction varigas. The transition depth is defined as that for which the line
tion on chip area for corner-radiused tools include works by ERegmentA,A, passes through poifR—the point on the mid-
dres etal.[8], Radulescu[9], and Gu[10]. A previously profile where the corner arc transitions into the straight lead edge.
unpublished approach developed by Endres, which is based §fymentA, A, lies at the uncut surface and extends from the

geometric shapes, will be presented in the Error Analysis sectigfevious-pass profile to the current-pass profile. From the geom-
which was chosen for its simplicity and computational efficiencyatry of Fig. 2,

The analytical representation presented and analyzed for errors in

Current-Pass

e

Fig. 1 Traditional simple representation of the corner-
radiused chip area

the remainder of the paper is substantially more simple from an ) Ady+Ad,

algorithmic standpoint, exhibits negligible computational com- dt:ré(l_SIn‘pr)_Tv (4)
plexity, and is suitable for application in analytical machining

dynamics. where Ady, and Ad; are the variations of the current- and

Other simple approximations can be considered as alternatiygsvious-pass depths of cut, respectively, relative to the nominal
to the representation presented here. Those considered heredépth of cutd. Having only one conditiond<d,,?) separating
comparison are simple products of feed anditie current-pass two cases is desirable for both analytical and numerical applica-
depth of cutdy, 2) the previous-pass depth of adit, and 3 the tions as compared to having multiple conditions with additional
mean of the current- and previous-pass depths of cut. It will lmases, which introduces algorithmic complexity.
shown that the new representation, given the end result provide

here, is far superior to these three oversimplified alternatives. dz'l Large Depth Case. The geometry for the large depth

case (I=d,) is illustrated in Fig. 2. In this figure, a numeric

1.3 The New Analytical Representation. Irrespective of subscript on any symbol indicates that it is associated with that
the source of depth-direction variation, the variation can be idemany tooth passes prior to the current pass-@rrent, 1-one
tified as someAd so that a single analysis can be conducted torevious. The equivalent feed vectdr, , is defined as the vector
cover all the aforementioned practical situations. Heke, is stretching from the centel;) of the corner arc for the previous-
pass to that of the current-passy). The equivalent depth-of-cut
vector is defined to be the vector perpendicularffa and
stretches from poinB to the common tangenof the two corner
Current-Pass arcs, which is parallel té, , by definition.

Defining the location of poinB dictates the accuracy of the
chip-area expressions since it represents the definition of the
“equivalence” approximation. PoinB identifies the intersection
of the line segmeni\;A, and the equivalent feed segmént-,
the latter of which is drawn in thé, direction such that it con-
nects the current- and previous-pass profiles. As mentioned above,
the location ofA,; A, is fixed at the uncut surface. Hence, defining
the location ofF;F, which must intersech;Ay, is analogous to
locating pointB. In reference to Fig. 2, the chip area representa-
tion of Eg. (3) includes the area of triangla,BF, whereas the
actual chip area includes the area of trianglegBF, instead.
Therefore, the location df;F, (the equivalencyshould be cho-

The Common

4 sen such that the areas of these two triangles are as close to equal
7 as possible. The closer they are to equal, the better their cancel-
Surface g lation will be, which leads to a reduced error in the equivalent
representation compared to the actual/exact chip area.
Fig. 2 Chip-area geometry with depth-direction variation Ad, In the case shown, poirB falls in the middle ofA;A, and
where Ad=Ad,—Ad,; makes the areas of the two triangles equal. Consequently, at first
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glance, locating-1F so that poinB bisectsA; A, seems to bethe A4, >0
“best” choice. However, when considering the small depth case ________. _l
whereAy BF, andA,BF; are no longer triangles, and after inves-
tigating numerous possibilities, the best definition of the equiva-
lency is that for which poinB is located on the mid-profile. Inthis 4
way, pointB is always located at the mid-point Bf,F, which is
equivalent to the middle of;A, for the large depth case, but not
for the small depth case.

The area solution begins by setting the origin of xg-z Car-
tesian coordinate frame to be @. Physically,x, y, andz label
the depth-of-cut, cutting and feed directions, respectively. The
vectorb locates poinB and a vector . is defined to be orthogonal
to f, and to stretch fronC, to the common tangent. Given these G
definitions,f, andr, can be expressed as

Fig. 3 Small depth geometry

f,=Adi+fk (5)
and Using thisb together with Egs(5)—(8), the chip-area expression
for the small depth case eventually reduces to
rfz—A_;;fz(fi—Adk), (6) as=fdp+r(f,—f)+Adyd,(2r —dy) —ac, - (12)
* 2.3 Cusp Area Expression. The expression for the cusp
. . . o areaa, is well known to be
wherei and k are the unit vectors in the& and z-directions,
respectively, andd=Ad,— Ad, is the total depth variation. Us- f f2 f
ing vector algebrad, can be computed as a.=fr—3 r2— Z—ri arcsi o) (12)
r.-b r.-b Comparing the cusp region of Fig. 1, viewed in thed coordi-
d,=r.— S Te=Te 1- > (7) nates, to that of Figs. 2 and 3, viewed in the—d, coordinates,
le le clearly indicates an equivalent shape. Thus, the equivalent cusp

area can be established by substitutingfor f in Eq. (12).

Recalling thatd,, andf, are orthogonal The equivalent cusp area expression given above is valid when
the two profiles intersect on their corner arcs. However, for ex-
a=|f, Xd, | —ac =lfllld, ] — acy » (8) treme values of depth variation and feed, the intersection can be

that of the current-pass traignd-cutting edge and the previous-

where|+|| determines the length of the vector on which it oper?@SS corner arc, the current-pass corner arc and the previous-pass
ates. From the geometry of Fig. B,can be derived as lead edge or the current-pass trail edge and the previous-pass lead
' edge. Investigation of these less common cases is simply an alge-

) braic exercise; hence, it is left as an implementation exercise.
r{l-—siny,) f

Ad +d
cosiy; 2 0

b=(r.—dy)i+ 5

tani,

k, 2.4 Validity Constraints. Though chip-area expressions
may produce negative values, only non-negative values make
physical sense. The chip area becomes zero when the current-pass

wheredy=d+Ady, and likewised;=d+Ad; . profile completely disengages the workpiece. In practice, this oc-

Using this expression foo along with Eqs.(5)—(8), the chip- curs in the presence of large tooth throws and/or when the chatter
area expression for the large depth case, after some manipulatihdition is reached due to excessive vibrations. For the case
reduces to when only a feed direction variation is considered, zero chip area
translates into either the feed or the depth being zero. However,
a fdmtr(f,—f)+Ad(c,+dntany,) —ac, (9) Wwhen both the depth and feed variations are non-zero, the tooth
engagement ceases causing the chip area to become zero for any
where configuration where the current-pass profile is located “inside”
the previous-pass profile. This physical limitation can be ex-
r(1—sing,) pressed as

= 10
Cv CoSi, (10)

f+Adtany,>0 and f-— >0,

andd,,= 3(dy+d,) is the mean depth of cut. tanx,

In summary, use of the definitions fif andr, are given in Eq.
(5) and Eq.(6), respectively, leads to the derivationdyf , result-
ing in Eq.(7). Then, deriving thease-specifit from the profile- Current-Pass Profile Previous-Pass
pair geometry, substituting it into the, expression, and substi- Profile
tuting d,. into Eqg. (8) leads to the area expression of E§).

2.2 Small Depth Case. The same derivation method as
above applies for the small depth case, which is shown in Fig. 3.

. . . . . ’ tan(x,)- A
The difference lies only in computing the case-specific vebtor o f ftan(iey)- Ad
From the geometry in Fig. 3, i ~JAd
[+Ad tan(Yy)
f
— = i \ —_ —_—— .
b= (1= do)i+| VUm(2r = dm) 2 k Fig. 4 Finite-positive validity constraints

662 / Vol. 122, NOVEMBER 2000 Transactions of the ASME



f f2
Aming=Te— —\/ 12— ——Ad.
min3 f 4 0

*

To minimize the algorithmic complexitgnumber of intermediate
conditions and corresponding casese wish to avoid different
expressions forAd<0 and Ad>0; hence, a single minimum
depth is computed as

A Amin=MaX dmin1 »dminz ,Aminz]-

Of course, at depths belodly,;,, the chip area is simply that of an
arc segment, the exact value of which is easily computed if
desired.

Fig. 5 Minimum depth for Ad>0

wherek,, is the trail(end cutting edge angle. Figure 4 shows the ;
dimensions corresponding to the left-hand sides of theg)e Error Analysis
constraints. Since the presented chip area is an approximation, it must be
The first condition assures tooth engagement so that the chipalyzed in terms of the errors it introduces. Comparison is made
area is positive. The second condition assures that the chip aretighe exact area and to the three alternate, highly simplified ex-
finite, i.e., a bounded region. The fact thagt always assumes a pressions mentioned in the introduction.
value between 0 deg and 90 deg is considered when writing theé/Vhen conducting the error analysis and later formulating a
second condition. Should tan, be zero, this condition becomescompensation term it is advantageous to remove the corner radius
f>Ad-. This implies that whemA\d=0 no acceptable finite as a variable by nondimensionalizing depttisd| ,Ad, etc) and
value off will result in the chip-area being bounded. On the othdeeds(f and f,) by r.. Uppercase symbols to follow represent
hand, a finite chip area would exist for &d<0. In other words, hondimensional variations of their respective lowercase symbols,
when the second condition is not met, meaning the previous-paRat is, that lowercase variable divided by for all variables
profile does not intersect the current-pass profile to form/close tB¥ceptA andA., , which are their respective variable divided by
chip area, there must exist, in practice, some earlier tooth proﬁlé Note that all the above results can be nondimensionalized as
for which the condition is satisfied. This is an implementatiomell.
issue that exists for any chip-area computation algorithm.

In addition to satisfying the above constraints, there exists a3.1 Comparison to Exact and Simplified Representations.
nominal depth constraint for the new Chip-area representation. ItAS'nethod to Compute the exact Ch|p area, in the presence of depth
imposed so that the cusp area is always completely below thgq feed variations, has been developed by Endres based on ad-
nominal depth of cut. Figures 5 and 6 illustrate the three candidafgion and subtraction of geometric shapes. Figure 7 illustrates the
minimum depth values. The first two are of interest wheth geometric shapes for the large depth case. Subtracting the cross-
>0, with the first arising from the intersection of the previoushatched area, a circular segment, from the shaded area composed
and current-pass corner arcs at pdnrom the geometry in the of three triangles and a circular segment, the exact area is ob-

figure, the first candidate value can be written as tained. This exact result is very computationally complex and
2 fairly algorithmic since it includes many cases with several con-

do =t L A /rz_ f_*_ E(Ad +Ady). di_tions, and requires the coordinates _of t_aach _of the five points in

minl ™ e € 270 1 Fig. 7 to be computed. Such complexity is typical of and in some

*

- . . . cases worse in the other methods cited eafBerl(].
Defining pointQ to be the intersection of the common tangent and |, the ensuing error analysis, ranges of variables have been

the previous-pass corner arc, the second candidate value is Writgdsen to encompass some of the most extreme conditions en-

as countered in practice:—0.6<AD=<0.6, 0.15<F<0.9, and
f —45 deg=¢,=<30 deg. The analysis is performed considering
Aming="T .~ ——Ad;. AD to be evenly distributed about the nominal profiles, i.e.,
fe ADy=—AD;. If AD is not evenly distributed about the nominal

depth, one would simply observe the same errors, only shifted
along the depth axis.

For a given|AD|, the percent errors foAD<0 are much
H%rger in magnitude than fakD>0. This is a result of the exact
&q?a,relative to which the percent error is computdzking much

Consequently, wherdd>0, the minimum depth value is the
larger of the two candidate values, i.e., T@¥in1 ,dmin2]-

Figure 6 shows the case fard<0. Here, a minimum equiva-
lent depth,d, ., can be defined as the distance between t
common tangent and a line that is parallel to the common tang
and passes through poiRt Thus, the minimum depth foAd
<0 can be expressed as

Fig. 6 Minimum depth for Ad<O0 Fig. 7 Exact area calculation using geometric shapes
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P
Py
=

expression is exact for large depthslence, the difference be-
tween the areas4(AqFoSy) and A(F1S;A;) would be the error

or '-‘ ] associated with the chip-area expressions. This area can be calcu-
3501 ' fdy-a. 1 lated exactly and directly through the geometry of Fig. 9. Their
0 ! - | shapes change based on the depth of cut and the sigrdpf

o 74 -a which should be considered when calculating these areas. The
250 ) m c* J

Percent Error
- [
3 8

S

%3
(=3

50 . " . ; . . ) L :
0

Fig. 8 Comparison of the percent errors with those of the al-
ternate expressions

smaller whenrAD <0 than whenAD>0. Additionally, all errors
approach zero &3 increases, and more specifically, becomes zero
for

D=D,=max{(1—siny,—ADy), (1-sing,—AD,)].

As a consequence of the exact area getting larger with increasing
feed as well, the percent errors decrease, in the absolute value,
with increasing feed.

Figure 8 shows a comparison, in terms of percent errors, to the
three highly simplified chip-area expressions noted in the intro-
duction. Clearly, the new chip-area representation results in much
smaller percent errors. In addition, while the percent error of the
new expression becomes zero for the large-depth case, the alter-
native expressions still exhibit large errors. The conditions used to
generate this comparison yield some of the smallest errors in the
alternate expressions that were observed across all conditions con-
sidered here.

3.2 Error Compensation. For use in analytical stability so-
lutions, since infinitesimal displacements about equilibrium are
considered Ad~0), the error is virtually zero. Compensating for
the error, however, is of interest for implementation in numerical
time-domain simulations where the new representation can sig-
nificantly enhance computational efficiency.

3.2.1 Analytical Error Compensation.The source of errors
can be clearly seen in Fig. 9. The actual chip ared(i8,PA,),
whereas the chip area computed via the above representation is
A(FoPA,). Therefore, the chip-area expression presented here
includes the aread(BA;F;) in place of A(AyFyB). Due to the
way the poinB is chosen, the two triangular ared$Sy,F,B) and
A(BS,F,) are identical(which is precisely why the chip area

Current-Pass
Profile

’ Previous-Pass ! ; A .
/ Profile sions. A numerical and less algorithmic error compensation term

can be derived as well with the intent being to achieve a near-
exact result with little additional algorithmic complexity. Its de-
velopment is based on the trends of the non-dimensional errors

Fig. 9 Source of errors
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where

I
l.=r.—d., s.=yr’—d. and 0.:arcsir(—

compensation areas for positive lead angles are

2
aaeclzge(el_ 0o) —Adsy,

1 |Ad|
+§(Slll_50lo) fOt‘ d$dt_T,
|1r6 rg
Qae™ —Adsy+ — (¢ —tany; — 6o)
oS, 2

1 2
+§(_|050_|1tanl/fr)

|Ad|
for dt>d>dt—7 and Ad<O0,
|0rE ri
Qaes™ —Adsy+ —(— ¢ +tany, + 6,)
COSY, 2
1 2
+§(Ilsl—lotampr)
|Ad|
for dlzd>d177 and Ad>0,
IOre I'i
Qaen= +Adl,tany, + — (i, —tany, + 6y)
CoSy, 2

1 2
+§(—|Oso—lltanz//r)

|Ad]|

for dt+ T>d>dt and Ad<O,

Iir, r?
! +Adl,tany, + —(— ¢, +tany, + 6,)
CoSy, 2

1 2
+§(Ilsl—lotanzpr)

|Ad|

for dt+T>d>dt and Ad>0,

r

€

Adding to the appropriatésmall or large depthchip area expres-
sion given in Eqs(9) and(11), the compensation term associated
with the condition at hand makes the resulting expressions exact.
Although more involved and algorithmic, analytical error com-
pensation terms for negative lead angles can be established in the
same way.

3.2.2 Numerical Error Compensation Although the analyti-
cal error compensation introduced above makes the chip-area ex-
pressions exact, it increases the algorithmic content of the expres-
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wm—— C20=4.34x10 *AD?+2.27x 10 2AD*
g 00151 Cpp=1.51x10 3AD?+2.07x 10 2AD*
g 001 | Cpy=2.13x10 3AD?+7.78x 10 2AD*.
-g 0.005 | Including the error compensation terms reduces the errors sub-
g stantially. For the case iD= —0.4 andy, =0 deg, which ex-
a 0 hibits some of the worst errors across AID that were consid-
§ 0.005| ered, the maximum absolute value of the percent error for this
= case is decreased from 28 percent to 1.8 percerft f00.15 and
001} ' from 24 percent to 1.2 percent fér=0.3. Since the data used to
' formulate this numerical error compensation expression was
0015+ X based onADy=—AD;, the mean nondimensionalized depth
' (Dy=dy/r,) should be used fob in these expressions.
-0.02 T e
Y4002 04 06 08 1 12 14 16 18 2 .
D 4 Summary and Conclusions

A new analytical chip-area representation for corner-radiused
tools under both depth-of-cut and feed variation was presented.
Based on this representation, chip-area expressions were derived
for “small” and “large” depth cases using a vectorial approach.
with respect taAD (Fig. 10 and lead angléFig. 11). As seen in The resulting errors were analyzed across wide ranges of condi-
Fig. 10, the trends at depths of cut well below the transition deptions within the validity constraints. The percent errors of the new
(D,) are even functions of normalized deplh, being symmetric representation are far better than those of three alternate represen-
aboutD=1 and mirrored about an error value of zero for positivéations introduced for comparison purposes. Analytical error com-
and negative levels of eadAD|. Figure 11 shows that the leadpensation functions have been derived, addition of which makes
angle affects the depth of cut at which the decaying departukee chip area expressions exact, but at the expense of increased
occurs from the even, symmetric curves shown in Fig. 10 for tradgorithmic content. An alternative, less algorithmic, numerical
extreme lead angle of45 deg. These observations lead to &ompensation function was also derived, which reduces the errors
two-part error compensation function that provides a superpo#- near zero for all conditions surveyed without introducing any
tion of these two trends. The resulting error compensation termsignificant complexity in the computations or algorithms.
Anec=AneatAne, WhereA, .4 represents the symmetric por-
tion of the error curves and, ., represents the),-dependent Acknowledgments
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