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Background: Partitions

A partition of an integer n is a way to write n as a sum of whole
numbers, order not mattering. In combinatorial terms from the
viewpoint of Gian-Carlo Rota’s “Twelvefold Way,” it is the number
of different distributions of n indistinguishable objects among
indistinguishable places.

Here are the 11 partitions of 6:

6 33 22 1111

51 42 411 3111 2211 21111

321



Background: Partitions

So we say p(6) = 11. Setting by convention p(0) = 1, the first few
partition numbers are

n 0 1 2 3 4 5 6 7 8 9 10

p(n) 1 1 2 3 5 7 11 15 22 30 42

Euler proved that the generating function of the partitions
numbers is

∞∑
n=0

p(n)qn =
∞∏
k=1

1

1− qk
.



Background: Partitions

There seems to be no immediate reason the number of partitions
of n ought to be divisible by anything – no obvious way to group
them, for instance – and yet it turns out that as long as n ≡ 6
(mod 11), p(n) will always be divisible by 11.

This was first observed by the great Indian mathematician
Srinivasa Ramanujan in the early 1900s, and proved by him and G.
H. Hardy, along with similar theorems:

p(5n + 4) ≡ 0 (mod 5)

p(7n + 5) ≡ 0 (mod 7)

p(11n + 6) ≡ 0 (mod 11)



Background: Partitions

There are similar congruences p(An + B) ≡ 0 (mod P) for every
prime P ≥ 5 and every power of these, and by multiplying the A
we can get them for any product of such primes.

However, there is no such congruence for P = 2 or P = 3, and one
of the major questions in partition theory is just how the partition
function does behave with respect to these two primes.



Background: Partitions

How are identities like this proved? For instance, how can one
prove that p(5n + 4) ≡ 0 (mod 5)?

One way is to dissect the generating function: pick out just the
q5n+4 terms and ask, is there a neat way to write the generating
function for these? Hardy and Ramanujan showed that

∞∑
n=0

p(5n + 4)q5n+4 = 5q4
∞∏
k=1

(1− q25k)5

(1− q5k)6
.

So all its terms are divisible by 5.



Background: Partitions

Another way is to find a way to group the partitions of 5n + 4.
The rank of a partition is its largest part minus the number of
parts, and Freeman Dyson conjectured (and Atkin and
Swinnerton-Dyer showed) that if you group the partitions of 5n + 4
by their residue mod 5, the groups are of equal size.

For instance, the ranks of 4, 31, 22, 211, and 1111 are,
respectively, 3, 1, 0, -1, and -3, which are all five residue classes
mod 5.



Background: Partitions

If you’re looking for identities mod 2, you want a way to pair up
partitions, and this is done by conjugation. If we stack blocks in
rows of height equal to the parts of a partition, we get its Ferrers
diagram, and one thing we can do to this picture is to reflect it
across the main diagonal. If the results are different from each
other, those two partitions are conjugate to each other, while a
partition fixed under this map is self-conjugate.



Background: Partitions

Another type of theorem in partitions observes structure or
symmetry that holds for subsets of the partitions of n that satisfy
some conditions. Euler was the first to note the most famous
theorem of this type: the number of partitions of n in which only
odd sizes are allowed, equals the number of partitions of n in which
only one part of any given size can appear. For n = 6, there are 4
of each of these.

6 33 22 1111

51 42 411 3111 2211 21111

321



Background: Partitions

The restriction we’ll be interested in today is demanding that our
partitions have a certain number of sizes of part. Let νi (n) be the
number of partitions of n that have exactly i different part sizes.

6 33 22 1111

51 42 411 3111 2211 21111

321

The part sizes are already sorted in rows, so we can see that
ν1(6) = 4, ν2(6) = 6, and ν3(6) = 1.

Other than intellectual curiosity, is there any particular reason to
be interested in these?



Background: Overpartitions

Partitions can model many physical systems (those with
indistiguishable parts and places), but if we want more structure,
we can add additional details. For instance, we can talk about
partitions with multiple “colors” of part, which correspond to
vectors of partitions which total to n.

Very popular in recent years are overpartitions, which are partitions
into two colors of part where only one color can be used per size of
part, usually denoted by overlining the last instance of that part
size if the second color is used.



Background: Overpartitions

The overpartitions of 4 are

4 4 22 22 1111 1111

31 31 31 31 211 211 211 211

So there are 14 overpartitions of 4.



Background: Overpartitions

How interested are people in overpartitions? They were invented in
this paper:



Background: Overpartitions

Since every part size can have one of two colors, it’s easy to see
that the number of overpartitions of n, p(n), satisfies

p(n) = 2ν1(n) + 4ν2(n) + 8ν3(n) + . . . .

So knowing something about the νi (n) can tell you something
about p(n).

(But really I just thought it was a neat question.)



ν1

The first case is easy. We have that ν1(n) is just d(n), the number
of divisors of n. This function is pretty completely understood. If
the prime factorization of n is

n = pe11 pe22 . . . perr ,

then
d(n) = (e1 + 1)(e2 + 1) . . . (er + 1).

So the first interesting case is ν2.



ν2

Theorem

If m ≡ 2 (mod 4), or if two or more primes appear to odd order in
the prime factorization of m, them ν2(m) ≡ 0 (mod 2).

To prove this, we are going to pair up partitions. Note that the
number of distinct part sizes of a partition is invariant under
conjugation, and the parity of a set of partitions closed under
conjugation is equal to the parity of its self-conjugate subset.

The theorem will be proved if we guarantee that any possible
partitions can be paired up, or at least that there are an even
number of exceptions to the pairing.



ν2

The first thing to pair up is any partition which has exactly two
part sizes but is not self-conjugate.

,



ν2

Any self-conjugate partition into two sizes of part has a Ferrers
diagram that looks like this:

a
a

b

b

In other words, m = (a + b)2 − b2. But it is elementary that
4n + 2 is not a difference of squares, so no such partition can exist.
That covers the m = 4n + 2 case.



ν2

a
a

b

b

For the more general m (“two primes to odd order in its
factorization”), note that we can also say
m = a2 + 2ab = a(a + 2b). We know a has to be the of the parity
of m. So any a will give a b as long as a|m, a <

√
m, and either

0 < s2(a) < s2(m) or s2(a) = 0 = s2(m).

Here sp(m) is the order of p in the factorization of m.



ν2

Let m = pa
α0pb

α1pβ1
1 . . . pβr

r , with α0 and α1 odd. If pa or pb is 2,
the relevant exponent is at least 2.

If m is odd, every a|m, a <
√
m gives a suitable partition, and

since d(n) ≡ 0 (mod 4), the half below
√
m are of even number.

If m is even, let m′ = m
4 . For any suitable a, let a = 2c , so

m = 2c(2c + 2b), so m′ = c(c + b). Now any divisor c|m′ below√
m′ gives a suitable partition, and again we have an even number

of these.
�



ν2

This gives us, among others,

Theorem

ν2(4n + 2) ≡ 0 (mod 2)

ν2(9n + 6) ≡ 0 (mod 2)

ν2(25n + 10) ≡ 0 (mod 2)

ν2(25n + 15) ≡ 0 (mod 2)

. . .

Any arithmetic progression p(pn + r) with r a quadratic nonresidue
mod a prime p will do.



ν2 and ν1

Remember that

p(m) = 2ν1(m) + 4ν2(m) + . . . .

Except for the m = 4n + 2 case, all of our progressions here have
d(p(pn + r)) ≡ 0 (mod 4), because two of the (ei + 1) will be
even. Since ν1(m) = d(m), we have ν1(m) ≡ 0 (mod 4) and
ν2(m) ≡ 0 (mod 2), so we now know

Theorem

In any of these progressions other than m = 4n + 2, p(m) ≡ 0
(mod 8).



ν2

A note to emphasize for later observation: other than m = 4n + 2,
all of the progressions where we were just now able to prove that
ν2(An + B) ≡ 0 (mod 2) rely on having two primes to odd power
in the factorizations of An + B: that means that ν2(An + B) ≡ 0
(mod 2) most of the time means that ν1(An + B) ≡ 0 (mod 4).

Are the νi related in such progressions?



ν2

There are two ways to go further from here. We could start
looking at ν3, which would let us say things modulo 16 about
overpartitions, or we could see if something can be said about ν2
modulo higher powers of 2.



ν2

Theorem

The following are all divisible by 4 for all n ≥ 0: ν2(16n + 14),
ν2(36n + 30), ν2(72n + 42), ν2(196n + 70), ν2(252n + 114).

Notice that all of these progressions are all of numbers 2 mod 4:
they have no self-conjugate partitions into two part sizes, so all
their partitions counted by ν2 come in conjugate pairs.

It would be really nice if we could prove this theorem in the same
hands-on way, by pairing up conjugate pairs to show that these are
divisible by 4. I haven’t been able to figure out how to to that yet...

Instead, the proof will rely on a different kind of technique in
partition theory: modular forms. First, we need to describe ν2 in
more detail.



ν2

Let d(n) be the number of divisors of n and σ1(n) =
∑

d |n d , the
sum of all the divisors of n. We have the following identity for
ν2(n):

ν2(n) =
1

2

(
n−1∑
k=1

d(k)d(n − k)− σ1(n) + d(n)

)
.

Think of taking all possible pairs of rectangles of parts to make a
partition. One will have “area” k, and the other will have “area”
n − k . For each k , there are d(k) rectangles (the heights have to
divide k).



ν2

ν2(n) =
1

2

(
n−1∑
k=1

d(k)d(n − k)− σ1(n) + d(n)

)
.

Sometimes, the two heights will be the same, and in that case we
don’t get a partition into two different sizes. This happens when
the height is any divisor j of n, and the width of the first rectangle
is anything from 1 to n/j .

So if we subtract off σ1(n) to account for these, we’ve subtracted
off 1 too many for each divisor, so we add those back in. Now we
have two distinct heights, and we take half the number of such
pairs to account for just taking those in which the first rectangle is
of greater height.



ν2

Let’s prove our theorem for 16n + 14.

ν2(n) =
1

2

(
n−1∑
k=1

d(k)d(n − k)− σ1(n) + d(n)

)
.

First, σ1(16n + 14) ≡ 0 (mod 8), because 16n + 14 = 2(8n + 7),
and 8n + 7 has exactly one of either

1 an odd number of primes 8j + 7 to odd power in its prime
factorization, or

2 an odd number each of primes 8j + 3 and 8j + 5 to odd
powers.

If it’s the first case, say k = 8j + 7 is such a prime, and then we
can group divisors by whether they have 2 or k:
x + 2x + kx + 2kx = x(3 + 3k) = 3x(1 + k), and 1 + k ≡ 0
(mod 8). A similar (longer) identity holds for the other case.



ν2

So we can just throw −1
2σ1(n) out of the calculation; it is 0 mod 4.

ν2(16n + 14) =
1

2

(
16n−1∑
k=1

d(k)d(n − k)− σ1(n) + d(n)

)
We also have d(16n + 14) ≡ d(8n + 7)2 ≡ 0 (mod 4), so we can
throw out these two terms as well.

Why? Because 8n + 7 has at least 1 prime to odd order, and then
16n + 14 has at least 2: that makes d(8n + 7) at least 2 and
possibly 4 modulo 4, and 16n + 14 always twice that.



ν2

Now all the divisors of m = 16n + 14 above and below the halfway
mark can be paired off in the sum. That leaves us with

ν2(16n + 14) ≡
8n+6∑
k=1

d(k)d(m − k) (mod 4).

So now we want to show that this is 0 mod 4. (So far all of this
logic applies to all of the progressions in the theorem.)

For the method to do this I thank a colleague by the name of
Jeremy Rouse.



ν2

If k is square, d(k) is odd; if k has 1 prime to power 1 mod 4,
d(k) is 2 mod 4, and otherwise it is 0 mod 4. Furthermore,
16n + 14 cannot be the sum of two squares.

ν2(16n + 14) ≡
8n+6∑
k=1

d(k)d(m − k) (mod 4)

So the only terms that are not multiples of 4 are those in which k
or m − k is square, and the other term is 2 mod 4, i.e. m − k or k
respectively is py2 for p a prime, with sp(y) ≡ 0 (mod 2). Since
m ≡ 6 (mod 8), when m = x2 + py2 either x is even, p = 2 and y
is odd, or x is odd, y is odd and p ≡ 5 (mod 8).



ν2

Build the following two functions:

F (q) :=
∞∑
n=0

σ1(2n + 1)q2n+1 ≡
∞∑
n=1

q(2n+1)2 (mod 2)

and

G (q) :=
1

2

∞∑
n=0

σ1(8n + 5)q8n+5 ≡
∑

p≡5 (mod 8)
y≥1,2|sp(y)

qpy
2

(mod 2).

With these functions,

T (q) = F (q)G (q) + F (q4)F (q2)

has coefficient of q16n+14 of parity equal to the number of
representations x2 + py2 of 16n + 14 that we desire.



ν2

I will not go into detail here about how this works, but the key idea
is that T (q) is a modular form, a function for which there is a
finite procedure to check the parity of all of its coefficients.

We run this check and we find that all the coefficients are even, so
there are an even number of representations of 16n + 14 of the
form x2 + py2 with sp(y) even. (For instance, for 14 these happen
to be 12 + 13 · 12 and 32 + 5 · 12.) Each contributes 2 to the sum,
so the total is 0 mod 4. �

We need more terms in the analogue of T (q) for the other
progressions because there are more possible types of
representations, but once we have constructed the relevant forms
the same check procedure works.



ν3

For ν3, we will go backwards in a way: from information about
overpartitions to information about ν3.

Theorem

ν3(An + B) ≡ 0 (mod 2) for (A,B) = (36, 30), (72, 42), (196, 70),
and (252, 114).

In each of these progressions we have already shown that ν1(n) ≡ 0
(mod 8) and ν2(n) ≡ 0 (mod 4). If we can show that p(n) ≡ 0
(mod 16), then it must be the case that ν3(n) ≡ 0 (mod 2).



ν3

To prove these, we will use a third technique from partition theory:
generating function dissection.

The dissection of a generating function is a way of writing it that
separates out all the terms with a given residue for some modulus.
We saw it earlier when we said that

∞∑
n=0

p(5n + 4)q5n+4 = 5q4
∞∏
k=1

(1− q25k)5

(1− q5k)6
= 5q4

f 525
f 65
,

where we shorten notation with fi =
∏∞

k=1(1− qik).



ν3

The generating function for overpartitions is

∞∑
n=0

p(n)qn =
∞∏
k=1

1 + qk

1− qk
=
∞∏
k=1

1− q2k

(1− qk)2
=

f2

f1
2
.

The following dissection was proved by Hirschhorn and Sellers:

∞∑
n=0

p(n)qn =
f 46 f

6
9

f 83 f
3
18

+ 2q
f 36 f

3
9

f 73
+ 4q

f 26 f
3
18

f 63
.



ν3

If we are interested in p(36n + 30), we only need the first term:

∞∑
n=0

p(3n)q3n =
f 46 f

6
9

f 83 f
3
18

or

∞∑
n=0

p(3n)qn =
f 42 f

6
3

f 81 f
3
6

.

Our process will be to repeatedly extract progressions we are
interested in, and dissect again to get finer progressions, until we
reach 36n+30. Our goal will be to show that all coefficients in the
final progression are 0 mod 16.



ν3

We also need the following identities, which were proved by
Ramanujan:

f 21 =
f2f

5
8

f 24 f
2
16

− 2q
f2f

2
16

f8

and

1

f 41
=

f 144

f 142 f 48
+ 4q

f 24 f
4
8

f 102

.



ν3

We saw that
∞∑
n=0

p(3n)qn =
f 42 f

6
3

f 81 f
3
6

.

If we want to dissect this mod 2, we can factor out the even
powers:

∞∑
n=0

p(3n)qn =

(
f 42
f 36

)
f 63
f 81

=

(
f 42
f 36

)(
f6f

5
24

f 212f
2
48

− 2q3
f6f

2
48

f24

)3(
f 144

f 142 f 48
+ 4q

f 24 f
4
8

f 102

)2

.



ν3

We expand out all the powers and throw out anything with an odd
q-power on the front. The even terms out of

∑
p(3n)qn will be∑

p(6n)q2n. We can also throw out any term with a coefficient
divisible by 16 or more. We end up with

∑
p(6n)qn ≡ f 42 f

15
12

f 81 f
6
6 f

6
24

+ 12q3
f 312f

2
24

f 26
(mod 16).

But all powers in the second term are of the form 6n + 3, so they
are irrelevant to us.



ν3

Since we are interested in 36n + 30, we focus on the first term:

∞∑
n=0

p(6n)qn ≡ 12q3
f 42 f

15
12

f 81 f
6
6 f

6
24

+ . . .

≡ f 1512

f 66 f
6
24

(
f 46 f

6
9

f 83 f
3
18

+ 2q
f 36 f

3
9

f 73
+ 4q

f 26 f
3
18

f 63

)4

+ . . . (mod 16)

Expand out and pick the terms of the form q3n+2 to get

∞∑
n=0

p(18n + 12)q3n+2 ≡ f 1512

f 66 f
6
24

(
24q2

f 76 f
18
9

f 303 f 618

)
(mod 16).



ν3

∞∑
n=0

p(18n + 12)q3n+2 ≡ f 1512

f 66 f
6
24

(
24q2

f 76 f
18
9

f 303 f 618

)
(mod 16).

Out of this we want the terms for odd n. But
(1− qi )2 = 1− 2qi + q2i ≡ 1− q2i (mod 2), so f 2i ≡ f2i (mod 2)
and 24f 2i ≡ f2i (mod 16). With that, we can say

24
1

f 303

≡ 24
1

f 156

(mod 16).



ν3

So

∞∑
n=0

p(18n + 12)q3n+2 ≡ f 1512

f 66 f
6
24

(
24q2

f 76 f
18
9

f 156 f 618

)
(mod 16).

But this does not have any odd n terms. That means no term of
the form q36n+30 has a coefficient which is nonzero mod 16.

Hence p(36n + 30) ≡ 0 (mod 16).

And since ν1(36n + 30) ≡ 0 (mod 8) and ν2(36n + 30) ≡ 0
(mod 4), it must follow that ν3(36n + 30) ≡ 0 (mod 2). �



Open Questions

Our proof for all our ν2 being 0 mod 4 used progressions where
d(An + B) ≡ 0 (mod 8), d((An + B)/2) ≡ 0 (mod 4), and
An + B is never the sum of two squares. I haven’t found any
progression where this is not the case:

Conjecture

The stated conditions are necessary for ν2(An + B) ≡ 0 (mod 4)
for all n.

Likewise, our proof for ν3(An + B) ≡ 0 (mod 2) required
ν2(An + B) ≡ 0 (mod 4). Again, is this a necessary condition?

Conjecture

If ν3(An + B) ≡ 0 (mod 2) for all n, then ν2(An + B) ≡ 0
(mod 4) for all n.



Open Questions

We know 16n + 14 has no self-conjugate partitions into 2 sizes of
part, because 16n + 14 ≡ 2 (mod 4). Can we prove
ν2(16n + 14) ≡ 0 (mod 4) more combinatorially, by finding a
matching that pairs up pairs of conjugate partitions?

It is known that there are progressions in p that are 0 modulo any
power of 2: for instance, p(72n + 69) ≡ 0 (mod 32). Congruences
also hold for other primes: for instance, p(27n + 19) ≡ 0 (mod 3).
But so far I have found no examples of the following:

1 Progressions for ν2 or ν3 of any modulus other than 2 or 4;

2 Progressions for any νi for i > 3.

Do these exist? If so, what are some, and how can they be found?
If they don’t exist, why not?


