Incidence structures, codes, and Galois geometry

Vladimir D. Tonchev

Michigan Technological University

An incidence structure is simple if all blocks are distinct as sets.

The complementary structure D^* of an incidence structure D has as blocks the complements of the blocks of D.

Design

- $|\mathcal{X}| = V$,
- |B| = k for each $B \in \mathcal{B}$, and
- Every *t*-subset of \mathcal{X} s contained in exactly λ blocks.

An incidence structure is simple if all blocks are distinct as sets.

The complementary structure D^* of an incidence structure D has as blocks the complements of the blocks of D.

Design

- $|\mathcal{X}| = V$,
- |B| = k for each $B \in \mathcal{B}$, and
- Every *t*-subset of \mathcal{X} s contained in exactly λ blocks.

An incidence structure is simple if all blocks are distinct as sets.

The complementary structure D^* of an incidence structure D has as blocks the complements of the blocks of D.

Design

- $|\mathcal{X}| = V$,
- |B| = k for each $B \in \mathcal{B}$, and
- Every *t*-subset of \mathcal{X} s contained in exactly λ blocks.

An incidence structure is simple if all blocks are distinct as sets.

The complementary structure D^* of an incidence structure D has as blocks the complements of the blocks of D.

Design

- $|\mathcal{X}| = v$,
- |B| = k for each $B \in \mathcal{B}$, and
- Every *t*-subset of \mathcal{X} s contained in exactly λ blocks.

An incidence structure is simple if all blocks are distinct as sets.

The complementary structure D^* of an incidence structure D has as blocks the complements of the blocks of D.

Design

- $|\mathcal{X}| = v$,
- |B| = k for each $B \in \mathcal{B}$, and
- Every *t*-subset of \mathcal{X} s contained in exactly λ blocks.

An incidence structure is **simple** if all blocks are distinct as sets.

The **complementary structure** D^* of an incidence structure D has as blocks the complements of the blocks of D.

Design

- $|\mathcal{X}| = V$,
- |B| = k for each $B \in \mathcal{B}$, and
- Every *t*-subset of \mathcal{X} s contained in exactly λ blocks.

An incidence structure is **simple** if all blocks are distinct as sets.

The **complementary structure** D^* of an incidence structure D has as blocks the complements of the blocks of D.

Design

A *t*-(v, k, λ) design is an incidence structure \mathcal{D} =(\mathcal{X} , \mathcal{B}) such that:

- $|\mathcal{X}| = V$,
- |B| = k for each $B \in \mathcal{B}$, and

• Every *t*-subset of \mathcal{X} s contained in exactly λ blocks.

An incidence structure is **simple** if all blocks are distinct as sets.

The **complementary structure** D^* of an incidence structure D has as blocks the complements of the blocks of D.

Design

- $|\mathcal{X}| = V$,
- |B| = k for each $B \in \mathcal{B}$, and
- Every *t*-subset of \mathcal{X} s contained in exactly λ blocks.

A small example

A 2-(7, 3, 1) design

The incidence matrix of a t-(v, k, λ) design is a $b \times v$ (0, 1) matrix whose (i, j) entry is 1 if block i contains point j, and 0 otherwise.

The incidence matrix of a t-(v, k, λ) design is a $b \times v$ (0, 1) matrix whose (i, j) entry is 1 if block i contains point j, and 0 otherwise.

The 2-(7,3,1) Design:

	Α	В	С	D	Ε	F	G
<i>B</i> ₁	1	1	1	0	0	0	0
B_2	1	0	0	1	1	0	0
B_3	1	0	0	0	0	1	1
B_4	0	1	0	1	0	1	0
B_5	0	1	0	0	1	0	1
B_6	0	0	1	1	0	0	1
B_7	0	0	1	0	1	1	0

Projective Geometry PG(n, q)

- **points** of PG(n,q) are the 1-dimensional subspaces of \mathbb{F}_q^{n+1} .
- **lines** of PG(n, q) are the 2-dimensional subspaces of \mathbb{F}_q^{n+1} .
- *d*-dimensional **projective** subspaces are the (*d* + 1)-dimensional subspaces of Fⁿ⁺¹_q.

- **points** of AG(n,q) are the vectors of \mathbb{F}_q^n .
- lines of AG(n, q) are the 1-dimensional subspaces of 𝔽ⁿ_q and their cosets.
- *d*-dimensional affine subspaces are the *d*-dimensional subspaces of Fⁿ_q and their cosets.

Projective Geometry PG(n, q)

• **points** of PG(n,q) are the 1-dimensional subspaces of \mathbb{F}_q^{n+1} .

- **lines** of PG(n, q) are the 2-dimensional subspaces of \mathbb{F}_{q}^{n+1} .
- *d*-dimensional **projective** subspaces are the (*d* + 1)-dimensional subspaces of Fⁿ⁺¹_q.

- **points** of AG(n,q) are the vectors of \mathbb{F}_q^n .
- lines of AG(n, q) are the 1-dimensional subspaces of 𝔽ⁿ_q and their cosets.
- *d*-dimensional affine subspaces are the *d*-dimensional subspaces of Fⁿ_q and their cosets.

Projective Geometry PG(n, q)

- **points** of PG(n, q) are the 1-dimensional subspaces of \mathbb{F}_q^{n+1} .
- **lines** of PG(n, q) are the 2-dimensional subspaces of \mathbb{F}_q^{n+1} .
- *d*-dimensional **projective** subspaces are the (*d* + 1)-dimensional subspaces of Fⁿ⁺¹_q.

- **points** of AG(n,q) are the vectors of \mathbb{F}_q^n .
- lines of AG(n, q) are the 1-dimensional subspaces of 𝔽ⁿ_q and their cosets.
- *d*-dimensional affine subspaces are the *d*-dimensional subspaces of Fⁿ_q and their cosets.

Projective Geometry PG(n, q)

- **points** of PG(n, q) are the 1-dimensional subspaces of \mathbb{F}_q^{n+1} .
- **lines** of PG(n, q) are the 2-dimensional subspaces of \mathbb{F}_q^{n+1} .
- *d*-dimensional **projective** subspaces are the (*d* + 1)-dimensional subspaces of Fⁿ⁺¹_q.

- **points** of AG(n, q) are the vectors of \mathbb{F}_q^n .
- lines of AG(n, q) are the 1-dimensional subspaces of 𝔽ⁿ_q and their cosets.
- *d*-dimensional affine subspaces are the *d*-dimensional subspaces of Fⁿ_q and their cosets.

Projective Geometry PG(n, q)

- **points** of PG(n, q) are the 1-dimensional subspaces of \mathbb{F}_q^{n+1} .
- **lines** of PG(n, q) are the 2-dimensional subspaces of \mathbb{F}_q^{n+1} .
- *d*-dimensional **projective** subspaces are the (*d* + 1)-dimensional subspaces of Fⁿ⁺¹_q.

- **points** of AG(n,q) are the vectors of \mathbb{F}_q^n .
- lines of AG(n, q) are the 1-dimensional subspaces of 𝔽ⁿ_q and their cosets.
- *d*-dimensional affine subspaces are the *d*-dimensional subspaces of Fⁿ_q and their cosets.

Projective Geometry PG(n, q)

- **points** of PG(n,q) are the 1-dimensional subspaces of \mathbb{F}_q^{n+1} .
- **lines** of PG(n, q) are the 2-dimensional subspaces of \mathbb{F}_q^{n+1} .
- *d*-dimensional **projective** subspaces are the (*d* + 1)-dimensional subspaces of Fⁿ⁺¹_q.

- **points** of AG(n, q) are the vectors of \mathbb{F}_q^n .
- lines of AG(n, q) are the 1-dimensional subspaces of 𝔽ⁿ_q and their cosets.
- *d*-dimensional affine subspaces are the *d*-dimensional subspaces of Fⁿ_q and their cosets.

Projective Geometry PG(n, q)

- **points** of PG(n,q) are the 1-dimensional subspaces of \mathbb{F}_q^{n+1} .
- **lines** of PG(n, q) are the 2-dimensional subspaces of \mathbb{F}_q^{n+1} .
- *d*-dimensional **projective** subspaces are the (*d* + 1)-dimensional subspaces of Fⁿ⁺¹_q.

- **points** of AG(n, q) are the vectors of \mathbb{F}_q^n .
- lines of AG(n, q) are the 1-dimensional subspaces of 𝔽ⁿ_q and their cosets.
- *d*-dimensional affine subspaces are the *d*-dimensional subspaces of Fⁿ_q and their cosets.

Projective Geometry PG(n,q)

- **points** of PG(n, q) are the 1-dimensional subspaces of \mathbb{F}_q^{n+1} .
- **lines** of PG(n, q) are the 2-dimensional subspaces of \mathbb{F}_q^{n+1} .
- *d*-dimensional **projective** subspaces are the (*d* + 1)-dimensional subspaces of Fⁿ⁺¹_q.

- **points** of AG(n, q) are the vectors of \mathbb{F}_q^n .
- lines of AG(n, q) are the 1-dimensional subspaces of 𝔽ⁿ_q and their cosets.
- *d*-dimensional affine subspaces are the *d*-dimensional subspaces of Fⁿ_q and their cosets.

A geometric design is formed from the points and *d*-subspaces of PG(n, q) or AG(n, q).

The projective geometry design $PG_d(n, q)$:

$$2 - \left(\frac{q^{n+1}-1}{q-1}, \frac{q^{d+1}-1}{q-1}, \frac{(q^{n+1}-q^2)(q^{n+1}-q^3)\cdots(q^{n+1}-q^d)}{(q^{d+1}-q^2)(q^{d+1}-q^3)\cdots(q^{d+1}-q^d)}\right)$$

The affine geometry design $AG_d(n, q)$:

$$2 - \left(q^{n}, q^{d}, \frac{(q^{n} - q)(q^{n} - q^{2}) \cdots (q^{n} - q^{d-1})}{(q^{d} - q)(q^{d} - q^{2}) \cdots (q^{d} - q^{d-1})}\right)$$

A geometric design is formed from the points and *d*-subspaces of PG(n, q) or AG(n, q).

The projective geometry design $PG_d(n, q)$:

$$2 - \left(\frac{q^{n+1}-1}{q-1}, \frac{q^{d+1}-1}{q-1}, \frac{(q^{n+1}-q^2)(q^{n+1}-q^3)\cdots(q^{n+1}-q^d)}{(q^{d+1}-q^2)(q^{d+1}-q^3)\cdots(q^{d+1}-q^d)}\right)$$

The affine geometry design $AG_d(n, q)$:

$$2 - \left(q^n, q^d, \frac{(q^n - q)(q^n - q^2) \cdots (q^n - q^{d-1})}{(q^d - q)(q^d - q^2) \cdots (q^d - q^{d-1})}\right)$$

A geometric design is formed from the points and *d*-subspaces of PG(n, q) or AG(n, q).

The projective geometry design $PG_d(n, q)$:

$$2 - \left(\frac{q^{n+1}-1}{q-1}, \frac{q^{d+1}-1}{q-1}, \frac{(q^{n+1}-q^2)(q^{n+1}-q^3)\cdots(q^{n+1}-q^d)}{(q^{d+1}-q^2)(q^{d+1}-q^3)\cdots(q^{d+1}-q^d)}\right)$$

The affine geometry design $AG_d(n, q)$:

$$2 - \left(q^{n}, q^{d}, \frac{(q^{n} - q)(q^{n} - q^{2}) \cdots (q^{n} - q^{d-1})}{(q^{d} - q)(q^{d} - q^{2}) \cdots (q^{d} - q^{d-1})}\right)$$

A geometric design is formed from the points and *d*-subspaces of PG(n, q) or AG(n, q).

The projective geometry design $PG_d(n, q)$:

$$2 - \left(\frac{q^{n+1}-1}{q-1}, \frac{q^{d+1}-1}{q-1}, \frac{(q^{n+1}-q^2)(q^{n+1}-q^3)\cdots(q^{n+1}-q^d)}{(q^{d+1}-q^2)(q^{d+1}-q^3)\cdots(q^{d+1}-q^d)}\right)$$

The affine geometry design $AG_d(n, q)$:

$$2 - \left(q^{n}, q^{d}, \frac{(q^{n} - q)(q^{n} - q^{2}) \cdots (q^{n} - q^{d-1})}{(q^{d} - q)(q^{d} - q^{2}) \cdots (q^{d} - q^{d-1})}\right)$$

A geometric design is formed from the points and *d*-subspaces of PG(n, q) or AG(n, q).

The projective geometry design $PG_d(n, q)$:

$$2 - \left(\frac{q^{n+1}-1}{q-1}, \frac{q^{d+1}-1}{q-1}, \frac{(q^{n+1}-q^2)(q^{n+1}-q^3)\cdots(q^{n+1}-q^d)}{(q^{d+1}-q^2)(q^{d+1}-q^3)\cdots(q^{d+1}-q^d)}\right)$$

The affine geometry design $AG_d(n, q)$:

$$2 - \left(q^n, q^d, \frac{(q^n - q)(q^n - q^2) \cdots (q^n - q^{d-1})}{(q^d - q)(q^d - q^2) \cdots (q^d - q^{d-1})}\right)$$

A geometric design is formed from the points and *d*-subspaces of PG(n, q) or AG(n, q).

The projective geometry design $PG_d(n, q)$:

$$2 - \left(\frac{q^{n+1}-1}{q-1}, \frac{q^{d+1}-1}{q-1}, \frac{(q^{n+1}-q^2)(q^{n+1}-q^3)\cdots(q^{n+1}-q^d)}{(q^{d+1}-q^2)(q^{d+1}-q^3)\cdots(q^{d+1}-q^d)}\right)$$

The affine geometry design $AG_d(n, q)$:

$$2 - \left(q^n, q^d, \frac{(q^n - q)(q^n - q^2) \cdots (q^n - q^{d-1})}{(q^d - q)(q^d - q^2) \cdots (q^d - q^{d-1})}\right)$$

A small example: $PG_1(2,2)$

 $PG_1(2,2)$: The projective plane of order 2

A **linear** q-ary [n, k, d] code C is a k-dimensional subspace of the n-dimensional vector space over the field GF(q) of order q with minimum Hamming distance d.

A code with **minimum distance** *d* can **correct** up to e = [(d - 1)/2] errors.

Dual code

The dual code C^{\perp} of an [n, k] code C is the [n, n - k] code defined by

$$C^{\perp} = \{ y \in GF(q)^n \mid y \cdot x = 0 \text{ for all } x \in C \}$$

Parity check matrix

Linear error-correcting codes

Linear code

A **linear** q-ary [n, k, d] code C is a k-dimensional subspace of the n-dimensional vector space over the field GF(q) of order q with minimum Hamming distance d.

A code with **minimum distance** *d* can **correct** up to e = [(d - 1)/2] errors.

Dual code

The dual code C^{\perp} of an [n, k] code C is the [n, n - k] code defined by

$$C^{\perp} = \{ y \in GF(q)^n \mid y \cdot x = 0 \text{ for all } x \in C \}$$

Parity check matrix

Linear error-correcting codes

Linear code

A **linear** q-ary [n, k, d] code C is a k-dimensional subspace of the n-dimensional vector space over the field GF(q) of order q with minimum Hamming distance d.

A code with **minimum distance** d can **correct** up to e = [(d - 1)/2] errors.

Dual code

The dual code C^{\perp} of an [n, k] code C is the [n, n - k] code defined by

$$C^{\perp} = \{ y \in GF(q)^n \mid y \cdot x = 0 \text{ for all } x \in C \}$$

Parity check matrix

A **linear** q-ary [n, k, d] code C is a k-dimensional subspace of the n-dimensional vector space over the field GF(q) of order q with minimum Hamming distance d.

A code with **minimum distance** d can **correct** up to e = [(d - 1)/2] errors.

Dual code

The dual code C^{\perp} of an [n, k] code C is the [n, n - k] code defined by

$$C^{\perp} = \{ y \in GF(q)^n \mid y \cdot x = 0 \text{ for all } x \in C \}$$

Parity check matrix

A **linear** q-ary [n, k, d] code C is a k-dimensional subspace of the n-dimensional vector space over the field GF(q) of order q with minimum Hamming distance d.

A code with **minimum distance** d can **correct** up to e = [(d - 1)/2] errors.

Dual code

The dual code C^{\perp} of an [n, k] code C is the [n, n-k] code defined by

$$C^{\perp} = \{ y \in GF(q)^n \mid y \cdot x = 0 \text{ for all } x \in C \}$$

Parity check matrix

A **linear** q-ary [n, k, d] code C is a k-dimensional subspace of the n-dimensional vector space over the field GF(q) of order q with minimum Hamming distance d.

A code with **minimum distance** d can **correct** up to e = [(d - 1)/2] errors.

Dual code

The dual code C^{\perp} of an [n, k] code C is the [n, n-k] code defined by

$$C^{\perp} = \{ y \in GF(q)^n \mid y \cdot x = 0 \text{ for all } x \in C \}$$

Parity check matrix
Linear code

A **linear** *q***-ary** [n, k, d] **code** *C* is a *k*-dimensional subspace of the *n*-dimensional vector space over the field GF(q) of order *q* with minimum Hamming distance *d*.

A code with **minimum distance** d can **correct** up to e = [(d - 1)/2] errors.

Dual code

The dual code C^{\perp} of an [n, k] code C is the [n, n-k] code defined by

$$C^{\perp} = \{ y \in GF(q)^n \mid y \cdot x = 0 \text{ for all } x \in C \}$$

Parity check matrix

A matrix *H* of *q*-rank n - k whose rows are vectors from C^{\perp} is a parity check matrix of *C*.

If a codeword $x = (x_1, ..., x_n) \in C$ is sent over a communication channel, and a vector $y = (y_1, ..., y_n)$ is received, for each coordinate $i, 1 \leq i \leq n$, the values

$$Y_i^{(1)},\ldots,Y_i^{(r_i)}$$

of r_i linear functions are computed, and y_i is decoded as the most frequent among the values (1).

heorem. (Rudolph, 1967)

If *C* is a linear [n, k] code such that C^{\perp} contains a set **S** of vectors of weight *w* whose supports are the blocks of a 2- (n, w, λ) design, the code *C* can correct up to

$$e = \left[\frac{r+\lambda-1}{2\lambda}\right]$$

If a codeword $x = (x_1, ..., x_n) \in C$ is sent over a communication channel, and a vector $y = (y_1, ..., y_n)$ is received, for each coordinate $i, 1 \leq i \leq n$, the values

 $Y_i^{(1)},\ldots,Y_i^{(r_i)}$

of r_i linear functions are computed, and y_i is decoded as the most frequent among the values (1).

"heorem. (Rudolph, 1967)

If *C* is a linear [n, k] code such that C^{\perp} contains a set **S** of vectors of weight *w* whose supports are the blocks of a 2- (n, w, λ) design, the code *C* can correct up to

$$e = \left[\frac{r+\lambda-1}{2\lambda}\right]$$

If a codeword $x = (x_1, ..., x_n) \in C$ is sent over a communication channel, and a vector $y = (y_1, ..., y_n)$ is received, for each coordinate *i*, $1 \le i \le n$, the values

$$\boldsymbol{y}_i^{(1)},\ldots,\boldsymbol{y}_i^{(r_i)}$$

(1)

of r_i linear functions are computed, and y_i is decoded as the most frequent among the values (1).

heorom. (Rudolph, 1967)

If *C* is a linear [n, k] code such that C^{\perp} contains a set **S** of vectors of weight *w* whose supports are the blocks of a 2- (n, w, λ) design, the code *C* can correct up to

$$e = \left[\frac{r+\lambda-1}{2\lambda}\right]$$

If a codeword $x = (x_1, ..., x_n) \in C$ is sent over a communication channel, and a vector $y = (y_1, ..., y_n)$ is received, for each coordinate *i*, $1 \le i \le n$, the values

$$\boldsymbol{y}_i^{(1)}, \dots, \boldsymbol{y}_i^{(r_i)} \tag{1}$$

of r_i linear functions are computed, and y_i is decoded as the most frequent among the values (1).

heorem. (Rudolph, 1967)

If *C* is a linear [n, k] code such that C^{\perp} contains a set **S** of vectors of weight *w* whose supports are the blocks of a 2- (n, w, λ) design, the code *C* can correct up to

$$e = \left[\frac{r+\lambda-1}{2\lambda}\right]$$

If a codeword $x = (x_1, ..., x_n) \in C$ is sent over a communication channel, and a vector $y = (y_1, ..., y_n)$ is received, for each coordinate *i*, $1 \le i \le n$, the values

$$\boldsymbol{y}_i^{(1)}, \dots, \boldsymbol{y}_i^{(r_i)} \tag{1}$$

of r_i linear functions are computed, and y_i is decoded as the most frequent among the values (1).

Theorem. (Rudolph, 1967)

If *C* is a linear [n, k] code such that C^{\perp} contains a set **S** of vectors of weight *w* whose supports are the blocks of a 2- (n, w, λ) design, the code *C* can correct up to

$$e = \left[\frac{r+\lambda-1}{2\lambda}\right]$$

If a codeword $x = (x_1, ..., x_n) \in C$ is sent over a communication channel, and a vector $y = (y_1, ..., y_n)$ is received, for each coordinate *i*, $1 \le i \le n$, the values

$$\boldsymbol{\gamma}_i^{(1)}, \dots, \boldsymbol{\gamma}_i^{(r_i)} \tag{1}$$

of r_i linear functions are computed, and y_i is decoded as the most frequent among the values (1).

Theorem. (Rudolph, 1967)

If *C* is a linear [n, k] code such that C^{\perp} contains a set **S** of vectors of weight *w* whose supports are the blocks of a 2- (n, w, λ) design, the code *C* can correct up to

$$e = \left[rac{r+\lambda-1}{2\lambda}
ight]$$

If a codeword $x = (x_1, ..., x_n) \in C$ is sent over a communication channel, and a vector $y = (y_1, ..., y_n)$ is received, for each coordinate *i*, $1 \le i \le n$, the values

$$\boldsymbol{y}_i^{(1)}, \dots, \boldsymbol{y}_i^{(r_i)} \tag{1}$$

of r_i linear functions are computed, and y_i is decoded as the most frequent among the values (1).

Theorem. (Rudolph, 1967)

If *C* is a linear [n, k] code such that C^{\perp} contains a set **S** of vectors of weight *w* whose supports are the blocks of a 2- (n, w, λ) design, the code *C* can correct up to

$$\boldsymbol{e} = \left[\frac{\boldsymbol{r} + \lambda - 1}{2\lambda}\right]$$

If a codeword $x = (x_1, ..., x_n) \in C$ is sent over a communication channel, and a vector $y = (y_1, ..., y_n)$ is received, for each coordinate *i*, $1 \le i \le n$, the values

$$\boldsymbol{y}_i^{(1)}, \dots, \boldsymbol{y}_i^{(r_i)} \tag{1}$$

of r_i linear functions are computed, and y_i is decoded as the most frequent among the values (1).

Theorem. (Rudolph, 1967)

If *C* is a linear [n, k] code such that C^{\perp} contains a set **S** of vectors of weight *w* whose supports are the blocks of a 2- (n, w, λ) design, the code *C* can correct up to

$$\boldsymbol{e} = \left[\frac{r+\lambda-1}{2\lambda}\right]$$

Find a linear code *C* such that C^{\perp} supports a *t*-design with $t \geq 2$.

A construction from incidence matrices

If *C* is a linear code over GF(q) of length *v* with a parity check matrix *H* being the $b \times v$ incidence matrix of a *t*-(*v*, *w*, λ) design *D*, then C^{\perp} supports the *t*-(*v*, *w*, λ) design *D*.

The dimension of *C* is

$$k = v - rank_q H$$
.

Find a linear code *C* such that C^{\perp} supports a *t*-design with $t \ge 2$.

A construction from incidence matrices

If *C* is a linear code over GF(q) of length *v* with a parity check matrix *H* being the $b \times v$ incidence matrix of a t-(v, w, λ) design *D*, then C^{\perp} supports the t-(v, w, λ) design *D*.

The dimension of *C* is

$$k = v - rank_q H$$
.

Find a linear code *C* such that C^{\perp} supports a *t*-design with $t \ge 2$.

A construction from incidence matrices

If *C* is a linear code over GF(q) of length *v* with a parity check matrix *H* being the $b \times v$ incidence matrix of a *t*-(*v*, *w*, λ) design *D*, then C^{\perp} supports the *t*-(*v*, *w*, λ) design *D*.

The dimension of C is

 $k = v - rank_a H$.

Find a linear code *C* such that C^{\perp} supports a *t*-design with $t \ge 2$.

A construction from incidence matrices

If *C* is a linear code over GF(q) of length *v* with a parity check matrix *H* being the $b \times v$ incidence matrix of a *t*-(*v*, *w*, λ) design *D*, then C^{\perp} supports the *t*-(*v*, *w*, λ) design *D*.

The dimension of *C* is

$$k = v - rank_q H.$$

Given parameters v > w > 0, $\lambda > 0$, such that a 2-(v, w, λ) design exists,

- What is the minimum *p*-rank of a $2-(v, w, \lambda)$ design?
- How many nonisomorphic 2-(v, w, λ) designs of minimum p-rank are there?

Given parameters v > w > 0, $\lambda > 0$, such that a 2-(v, w, λ) design exists,

- What is the minimum *p*-rank of a $2-(v, w, \lambda)$ design?
- How many nonisomorphic 2-(v, w, λ) designs of minimum p-rank are there?

Given parameters v > w > 0, $\lambda > 0$, such that a 2-(v, w, λ) design exists,

- What is the minimum *p*-rank of a $2-(v, w, \lambda)$ design?
- How many nonisomorphic 2-(ν, w, λ) designs of minimum p-rank are there?

(a) The *p*-rank of $PG_d(n, p^s)$ is given by

$$\sum_{t_0,\dots,t_s} \prod_{j=0}^{s-1} \sum_{i=0}^{[(t_{j+1}p-t_j)/p]} (-1)^i \binom{n+1}{i} \binom{n+t_{j+1}p-t_j-ip}{n},$$

where $(t_0, ..., t_s)$ are integers such that $t_s = t_0, d + 1 \le t_j \le n + 1, 0 \le t_{j+1}p - t_j \le (n+1)(p-1)$, for j = 0, 1, ..., s - 1.

(b)

 $rank_pAG_d(n, p^s) = rank_pPG_d(n, p^s) - rank_pPG_d(n-1, p^s).$

(a) The *p*-rank of $PG_d(n, p^s)$ is given by

$$\sum_{t_0,\dots,t_s} \prod_{j=0}^{s-1} \sum_{i=0}^{[(t_{j+1}p-t_j)/p]} (-1)^i \binom{n+1}{i} \binom{n+t_{j+1}p-t_j-ip}{n}$$

where $(t_0, ..., t_s)$ are integers such that $t_s = t_0, d + 1 \le t_j \le n + 1, 0 \le t_{j+1}p - t_j \le (n+1)(p-1),$ for j = 0, 1, ..., s - 1.

(b)

 $rank_pAG_d(n, p^s) = rank_pPG_d(n, p^s) - rank_pPG_d(n-1, p^s).$

(a) The *p*-rank of $PG_d(n, p^s)$ is given by

$$\sum_{t_0,\dots,t_s} \prod_{j=0}^{s-1} \sum_{i=0}^{[(t_{j+1}p-t_j)/p]} (-1)^i \binom{n+1}{i} \binom{n+t_{j+1}p-t_j-ip}{n}$$

where $(t_0, ..., t_s)$ are integers such that $t_s = t_0, d + 1 \le t_j \le n + 1, 0 \le t_{j+1}p - t_j \le (n+1)(p-1)$ for j = 0, 1, ..., s - 1.

(b)

 $rank_pAG_d(n, p^s) = rank_pPG_d(n, p^s) - rank_pPG_d(n-1, p^s).$

(a) The *p*-rank of $PG_d(n, p^s)$ is given by

$$\sum_{t_0,...,t_s} \prod_{j=0}^{s-1} \sum_{i=0}^{[(t_{j+1}p-t_j)/p]} (-1)^i \binom{n+1}{i} \binom{n+t_{j+1}p-t_j-ip}{n},$$

where $(t_0, ..., t_s)$ are integers such that $t_s = t_0, d + 1 \le t_j \le n + 1, 0 \le t_{j+1}p - t_j \le (n+1)(p-1)$, for j = 0, 1, ..., s - 1.

(b)

 $rank_pAG_d(n, p^s) = rank_pPG_d(n, p^s) - rank_pPG_d(n-1, p^s).$

(a) The *p*-rank of $PG_d(n, p^s)$ is given by

$$\sum_{t_0,...,t_s} \prod_{j=0}^{s-1} \sum_{i=0}^{[(t_{j+1}p-t_j)/p]} (-1)^i \binom{n+1}{i} \binom{n+t_{j+1}p-t_j-ip}{n},$$

where $(t_0, ..., t_s)$ are integers such that $t_s = t_0, d+1 \le t_j \le n+1, 0 \le t_{j+1}p - t_j \le (n+1)(p-1),$ for j = 0, 1, ..., s - 1.

(b)

$$rank_pAG_d(n, p^s) = rank_pPG_d(n, p^s) - rank_pPG_d(n-1, p^s).$$

(a) The *p*-rank of $PG_d(n, p^s)$ is given by

$$\sum_{t_0,...,t_s} \prod_{j=0}^{s-1} \sum_{i=0}^{\left[(t_{j+1}p-t_j)/p\right]} (-1)^i \binom{n+1}{i} \binom{n+t_{j+1}p-t_j-ip}{n},$$

where $(t_0, ..., t_s)$ are integers such that $t_s = t_0, d + 1 \le t_j \le n + 1, 0 \le t_{j+1}p - t_j \le (n+1)(p-1),$ for j = 0, 1, ..., s - 1.

(b)

$$rank_pAG_d(n, p^s) = rank_pPG_d(n, p^s) - rank_pPG_d(n-1, p^s).$$

(a) The *p*-rank of $PG_d(n, p^s)$ is given by

$$\sum_{t_0,...,t_s} \prod_{j=0}^{s-1} \sum_{i=0}^{[(t_{j+1}p-t_j)/p]} (-1)^i \binom{n+1}{i} \binom{n+t_{j+1}p-t_j-ip}{n},$$

where $(t_0, ..., t_s)$ are integers such that $t_s = t_0, d + 1 \le t_j \le n + 1, 0 \le t_{j+1}p - t_j \le (n+1)(p-1),$ for j = 0, 1, ..., s - 1.

(b)

$$rank_pAG_d(n, p^s) = rank_pPG_d(n, p^s) - rank_pPG_d(n-1, p^s).$$

(a) The *p*-rank of $PG_d(n, p^s)$ is given by

$$\sum_{t_0,\ldots,t_s}\prod_{j=0}^{s-1}\sum_{i=0}^{[(t_{j+1}p-t_j)/p]}(-1)^i\binom{n+1}{i}\binom{n+t_{j+1}p-t_j-ip}{n},$$

where $(t_0, ..., t_s)$ are integers such that $t_s = t_0, d + 1 \le t_j \le n + 1, 0 \le t_{j+1}p - t_j \le (n+1)(p-1),$ for j = 0, 1, ..., s - 1.

(b)

$$rank_{p}AG_{d}(n,p^{s}) = rank_{p}PG_{d}(n,p^{s}) - rank_{p}PG_{d}(n-1,p^{s}).$$

(a) The *p*-rank of $PG_d(n, p^s)$ is given by

$$\sum_{t_0,...,t_s} \prod_{j=0}^{s-1} \sum_{i=0}^{[(t_{j+1}p-t_j)/p]} (-1)^i \binom{n+1}{i} \binom{n+t_{j+1}p-t_j-ip}{n},$$

where $(t_0, ..., t_s)$ are integers such that $t_s = t_0, d + 1 \le t_j \le n + 1, 0 \le t_{j+1}p - t_j \le (n+1)(p-1),$ for j = 0, 1, ..., s - 1.

(b)

$$rank_{p}AG_{d}(n,p^{s}) = rank_{p}PG_{d}(n,p^{s}) - rank_{p}PG_{d}(n-1,p^{s}).$$

A geometric design, $PG_d(n, q)$ or $AG_d(n, q)$, $(q = p^t)$, has minimum *p*-rank among all designs with the given parameters.

Note

A geometric design, $PG_d(n, q)$ or $AG_d(n, q)$, $(q = p^t)$, has minimum p-rank among all designs with the given parameters.

Note

A geometric design, $PG_d(n, q)$ or $AG_d(n, q)$, $(q = p^t)$, has minimum *p*-rank among all designs with the given parameters.

Note

A geometric design, $PG_d(n, q)$ or $AG_d(n, q)$, $(q = p^t)$, has minimum *p*-rank among all designs with the given parameters.

Note

- Majority logic decodable codes: Hamada's conjecture indicates that geometric designs are the best choice for the given design parameters.
- Uniqueness: The conjecture provides a simple characterization of the geometric designs. Finding isomorphisms is a computational problem with exponential complexity, while calculating *p*-rank is done in polynomial time.

- Majority logic decodable codes: Hamada's conjecture indicates that geometric designs are the best choice for the given design parameters.
- Uniqueness: The conjecture provides a simple characterization of the geometric designs. Finding isomorphisms is a computational problem with exponential complexity, while calculating *p*-rank is done in polynomial time.

- Majority logic decodable codes: Hamada's conjecture indicates that geometric designs are the best choice for the given design parameters.
- Uniqueness: The conjecture provides a simple characterization of the geometric designs. Finding isomorphisms is a computational problem with exponential complexity, while calculating *p*-rank is done in polynomial time.

- Majority logic decodable codes: Hamada's conjecture indicates that geometric designs are the best choice for the given design parameters.
- Uniqueness: The conjecture provides a simple characterization of the geometric designs. Finding isomorphisms is a computational problem with exponential complexity, while calculating *p*-rank is done in polynomial time.

Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $PG_{n-1}(n, 2)$ and $AG_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978): True for $PG_1(n,2)$ and $AG_1(n,3)$.
- **Teirlinck (1980):** True for *AG*₂(*n*, 2).

Note

In all proved cases, the geometric designs are the unique designs of minimum *p*-rank.

Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $PG_{n-1}(n, 2)$ and $AG_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978): True for $PG_1(n,2)$ and $AG_1(n,3)$.
- **Teirlinck (1980):** True for *AG*₂(*n*, 2).

Note

In all proved cases, the geometric designs are the unique designs of minimum *p*-rank.

Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $PG_{n-1}(n, 2)$ and $AG_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978): True for $PG_1(n, 2)$ and $AG_1(n, 3)$.
- **Teirlinck (1980):** True for *AG*₂(*n*, 2).

Note

In all proved cases, the geometric designs are the unique designs of minimum *p*-rank.
Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $PG_{n-1}(n, 2)$ and $AG_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978): True for $PG_1(n, 2)$ and $AG_1(n, 3)$.
- Teirlinck (1980): True for AG₂(n, 2).

Note

In all proved cases, the geometric designs are the unique designs of minimum *p*-rank.

Hamada's Conjecture has been proved in the following cases:

- Hamada and Ohmori (1975): True for $PG_{n-1}(n, 2)$ and $AG_{n-1}(n, 2)$.
- Doyen, Hubaut, Vandensavel (1978): True for $PG_1(n, 2)$ and $AG_1(n, 3)$.
- Teirlinck (1980): True for AG₂(n, 2).

Note

In all proved cases, the geometric designs are the unique designs of minimum *p*-rank.

Question

Are geometric designs characterized as the **unique** (up to isomorphism) designs with the given parameters and *p*-rank?

Answer

Question

Are geometric designs characterized as the **unique** (up to isomorphism) designs with the given parameters and *p*-rank?

Answer

Question

Are geometric designs characterized as the **unique** (up to isomorphism) designs with the given parameters and *p*-rank?

Answer

Question

Are geometric designs characterized as the **unique** (up to isomorphism) designs with the given parameters and *p*-rank?

Answer

- A 2-(31,7,7) design supported by the binary quadratic-residue code (Goethals and Delsarte '68).
- All (five) quasi-symmetric 2-(31,7,7) (x = 1, y = 3) designs, one being PG₂(4,2): (Tonchev '86).
- All (five) 3-(32, 8, 7) designs with even block intersection numbers, one being AG₃(5, 2): (Tonchev '86).
- Two affine-resolvable 2-(64, 16, 5) designs with the parameters of $AG_2(4,3)$: (Harada, Lam and Tonchev '05).
- An infinite class of designs with the parameters of $PG_d(2d, p)$, where $d \ge 2$ and p is any prime: (Jungnickel and Tonchev, 2008).
- An infinite class of designs with the parameters of $AG_{d+1}(2d+1,2)$ for every $d \ge 2$: (Clark, Jungnickel and Tonchev, 2011).

- A 2-(31,7,7) design supported by the binary quadratic-residue code (Goethals and Delsarte '68).
- All (five) quasi-symmetric 2-(31,7,7) (x = 1, y = 3) designs, one being PG₂(4,2): (Tonchev '86).
- All (five) 3-(32, 8, 7) designs with even block intersection numbers, one being AG₃(5, 2): (Tonchev '86).
- Two affine-resolvable 2-(64, 16, 5) designs with the parameters of $AG_2(4,3)$: (Harada, Lam and Tonchev '05).
- An infinite class of designs with the parameters of PG_d(2d, p), where d ≥ 2 and p is any prime: (Jungnickel and Tonchev, 2008).
- An infinite class of designs with the parameters of $AG_{d+1}(2d+1,2)$ for every $d \ge 2$: (Clark, Jungnickel and Tonchev, 2011).

- A 2-(31,7,7) design supported by the binary quadratic-residue code (Goethals and Delsarte '68).
- All (five) quasi-symmetric 2-(31,7,7) (x = 1, y = 3) designs, one being PG₂(4,2): (Tonchev '86).
- All (five) 3-(32, 8, 7) designs with even block intersection numbers, one being AG₃(5, 2): (Tonchev '86).
- Two affine-resolvable 2-(64, 16, 5) designs with the parameters of $AG_2(4,3)$: (Harada, Lam and Tonchev '05).
- An infinite class of designs with the parameters of PG_d(2d, p), where d ≥ 2 and p is any prime: (Jungnickel and Tonchev, 2008).
- An infinite class of designs with the parameters of $AG_{d+1}(2d+1,2)$ for every $d \ge 2$: (Clark, Jungnickel and Tonchev, 2011).

- A 2-(31,7,7) design supported by the binary quadratic-residue code (Goethals and Delsarte '68).
- All (five) quasi-symmetric 2-(31,7,7) (x = 1, y = 3) designs, one being PG₂(4,2): (Tonchev '86).
- All (five) 3-(32, 8, 7) designs with even block intersection numbers, one being AG₃(5, 2): (Tonchev '86).
- Two affine-resolvable 2-(64, 16, 5) designs with the parameters of $AG_2(4,3)$: (Harada, Lam and Tonchev '05).
- An infinite class of designs with the parameters of PG_d(2d, p), where d ≥ 2 and p is any prime: (Jungnickel and Tonchev, 2008).
- An infinite class of designs with the parameters of $AG_{d+1}(2d+1,2)$ for every $d \ge 2$: (Clark, Jungnickel and Tonchev, 2011).

- A 2-(31,7,7) design supported by the binary quadratic-residue code (Goethals and Delsarte '68).
- All (five) quasi-symmetric 2-(31,7,7) (x = 1, y = 3) designs, one being PG₂(4,2): (Tonchev '86).
- All (five) 3-(32, 8, 7) designs with even block intersection numbers, one being AG₃(5, 2): (Tonchev '86).
- Two affine-resolvable 2-(64, 16, 5) designs with the parameters of $AG_2(4,3)$: (Harada, Lam and Tonchev '05).
- An infinite class of designs with the parameters of $PG_d(2d, p)$, where $d \ge 2$ and p is any prime: (Jungnickel and Tonchev, 2008).
- An infinite class of designs with the parameters of $AG_{d+1}(2d+1,2)$ for every $d \ge 2$: (Clark, Jungnickel and Tonchev, 2011).

- A 2-(31,7,7) design supported by the binary quadratic-residue code (Goethals and Delsarte '68).
- All (five) quasi-symmetric 2-(31,7,7) (x = 1, y = 3) designs, one being PG₂(4,2): (Tonchev '86).
- All (five) 3-(32, 8, 7) designs with even block intersection numbers, one being AG₃(5, 2): (Tonchev '86).
- Two affine-resolvable 2-(64, 16, 5) designs with the parameters of $AG_2(4,3)$: (Harada, Lam and Tonchev '05).
- An infinite class of designs with the parameters of $PG_d(2d, p)$, where $d \ge 2$ and p is any prime: (Jungnickel and Tonchev, 2008).
- An infinite class of designs with the parameters of $AG_{d+1}(2d+1,2)$ for every $d \ge 2$: (Clark, Jungnickel and Tonchev, 2011).

- A 2-(31,7,7) design supported by the binary quadratic-residue code (Goethals and Delsarte '68).
- All (five) quasi-symmetric 2-(31,7,7) (x = 1, y = 3) designs, one being PG₂(4,2): (Tonchev '86).
- All (five) 3-(32, 8, 7) designs with even block intersection numbers, one being AG₃(5, 2): (Tonchev '86).
- Two affine-resolvable 2-(64, 16, 5) designs with the parameters of $AG_2(4,3)$: (Harada, Lam and Tonchev '05).
- An infinite class of designs with the parameters of $PG_d(2d, p)$, where $d \ge 2$ and p is any prime: (Jungnickel and Tonchev, 2008).
- An infinite class of designs with the parameters of $AG_{d+1}(2d+1,2)$ for every $d \ge 2$: (Clark, Jungnickel and Tonchev, 2011).

Revising the Hamada conjecture

Generalized incidence matrix (T '99)

A generalized incidence matrix of a design has entries in GF(q), with nonzero elements of GF(q) designating incidence.

Definition (T '99)

The dimension of a design *D* over GF(q), $(dim_q(D))$, is defined as the minimum *q*-rank of all generalized incidence matrices of *D* over GF(q).

A revised version of Hamada's Conjecture

Revising the Hamada conjecture

Generalized incidence matrix (T '99)

A generalized incidence matrix of a design has entries in GF(q), with nonzero elements of GF(q) designating incidence.

Definition (T '99)

The dimension of a design *D* over GF(q), $(dim_q(D))$, is defined as the minimum *q*-rank of all generalized incidence matrices of *D* over GF(q).

A revised version of Hamada's Conjecture

Revising the Hamada conjecture

Generalized incidence matrix (T '99)

A generalized incidence matrix of a design has entries in GF(q), with nonzero elements of GF(q) designating incidence.

Definition (T '99)

The dimension of a design *D* over GF(q), $(dim_q(D))$, is defined as the minimum *q*-rank of all generalized incidence matrices of *D* over GF(q).

A revised version of Hamada's Conjecture

A generalized incidence matrix of a design has entries in GF(q), with nonzero elements of GF(q) designating incidence.

Definition (T '99)

The dimension of a design *D* over GF(q), $(dim_q(D))$, is defined as the minimum *q*-rank of all generalized incidence matrices of *D* over GF(q).

A revised version of Hamada's Conjecture

A generalized incidence matrix of a design has entries in GF(q), with nonzero elements of GF(q) designating incidence.

Definition (T '99)

The dimension of a design *D* over GF(q), $(dim_q(D))$, is defined as the minimum *q*-rank of all generalized incidence matrices of *D* over GF(q).

A revised version of Hamada's Conjecture

A generalized incidence matrix of a design has entries in GF(q), with nonzero elements of GF(q) designating incidence.

Definition (T '99)

The dimension of a design *D* over GF(q), $(dim_q(D))$, is defined as the minimum *q*-rank of all generalized incidence matrices of *D* over GF(q).

A revised version of Hamada's Conjecture

A generalized incidence matrix of a design has entries in GF(q), with nonzero elements of GF(q) designating incidence.

Definition (T '99)

The dimension of a design *D* over GF(q), $(dim_q(D))$, is defined as the minimum *q*-rank of all generalized incidence matrices of *D* over GF(q).

A revised version of Hamada's Conjecture

A generalized incidence matrix of a design has entries in GF(q), with nonzero elements of GF(q) designating incidence.

Definition (T '99)

The dimension of a design *D* over GF(q), $(dim_q(D))$, is defined as the minimum *q*-rank of all generalized incidence matrices of *D* over GF(q).

A revised version of Hamada's Conjecture

A generalized incidence matrix of a design has entries in GF(q), with nonzero elements of GF(q) designating incidence.

Definition (T '99)

The dimension of a design *D* over GF(q), $(dim_q(D))$, is defined as the minimum *q*-rank of all generalized incidence matrices of *D* over GF(q).

A revised version of Hamada's Conjecture

A generalized incidence matrix of a design has entries in GF(q), with nonzero elements of GF(q) designating incidence.

Definition (T '99)

The dimension of a design *D* over GF(q), $(dim_q(D))$, is defined as the minimum *q*-rank of all generalized incidence matrices of *D* over GF(q).

A revised version of Hamada's Conjecture

A generalized incidence matrix of a design has entries in GF(q), with nonzero elements of GF(q) designating incidence.

Definition (T '99)

The dimension of a design *D* over GF(q), $(dim_q(D))$, is defined as the minimum *q*-rank of all generalized incidence matrices of *D* over GF(q).

A revised version of Hamada's Conjecture

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1}-1)/(q-1), q^n, q^n - q^{n-1}$) design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n,q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n, q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1}-1)/(q-1), q^n, q^n - q^{n-1}$) design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n,q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

Theorem. (Tonchev '99)

Let q be an arbitrary prime power, and let $n \ge 2$. (i) Let D be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n, q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n, q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n,q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n,q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n,q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n,q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n,q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n,q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n,q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the complementary design of $AG_{n-1}(n, q)$.

The crucial tools
A q-analogue of Hamada and Ohmori's theorem

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1}-1)/(q-1), q^n, q^n - q^{n-1}$) design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n, q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

The uniqueness of simplex code $S_q(n)$ of length $(q^{n+1} - 1)/(q - 1)$, and the first order Reed-Muller code of length q^n over GF(q).

A q-analogue of Hamada and Ohmori's theorem

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n, q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

The uniqueness of simplex code $S_q(n)$ of length $(q^{n+1} - 1)/(q - 1)$, and the first order Reed-Muller code of length q^n over GF(q).

A q-analogue of Hamada and Ohmori's theorem

Theorem. (Tonchev '99)

Let *q* be an arbitrary prime power, and let $n \ge 2$. (i) Let *D* be a 2-($(q^{n+1} - 1)/(q - 1), q^n, q^n - q^{n-1}$) design. Then

 $dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $PG_{n-1}(n, q)$. (ii) Let *D* be a 2- $(q^n, q^n - q^{n-1}, q^n - q^{n-1} - 1)$ design. Then

 $\dim_q(D) \ge n+1.$

The equality $dim_q(D) = n + 1$ holds if and only if *D* is isomorphic to the **complementary design** of $AG_{n-1}(n, q)$.

The crucial tools

The uniqueness of simplex code $S_q(n)$ of length $(q^{n+1}-1)/(q-1)$, and the first order Reed-Muller code of length q^n over GF(q).

The weight distribution of the binary [15, 4] simplex code $S_2(4)$:

 $A_0 = 1, \ A_8 = 15.$

Note

The codewords of weight 8 support complements of **planes** in PG(3, 2).

The weight distribution of the $GF(2^2)$ -code spanned by $S_2(4)$:

$$A_0 = 1, \ A_8 = 45, \ A_{12} = 210.$$

Note

The weight distribution of the binary [15, 4] simplex code $S_2(4)$:

 $A_0 = 1, \ A_8 = 15.$

Note

The codewords of weight 8 support complements of **planes** in PG(3, 2).

The weight distribution of the $GF(2^2)$ -code spanned by $S_2(4)$:

$$A_0 = 1, \ A_8 = 45, \ A_{12} = 210.$$

Note

The weight distribution of the binary [15, 4] simplex code $S_2(4)$:

$$A_0 = 1, \ A_8 = 15.$$

Note

The codewords of weight 8 support complements of **planes** in PG(3, 2).

The weight distribution of the $GF(2^2)$ -code spanned by $S_2(4)$:

$$A_0 = 1, \ A_8 = 45, \ A_{12} = 210.$$

Note

The weight distribution of the binary [15, 4] simplex code $S_2(4)$:

$$A_0 = 1, \ A_8 = 15.$$

Note

The codewords of weight 8 support complements of **planes** in PG(3, 2).

The weight distribution of the $GF(2^2)$ -code spanned by $S_2(4)$:

$$A_0 = 1, \ A_8 = 45, \ A_{12} = 210.$$

Note

The weight distribution of the binary [15, 4] simplex code $S_2(4)$:

$$A_0 = 1, \ A_8 = 15.$$

Note

The codewords of weight 8 support complements of **planes** in PG(3, 2).

The weight distribution of the $GF(2^2)$ -code spanned by $S_2(4)$:

$$A_0 = 1, \ A_8 = 45, \ A_{12} = 210.$$

Note

The weight distribution of the binary [15, 4] simplex code $S_2(4)$:

$$A_0 = 1, \ A_8 = 15.$$

Note

The codewords of weight 8 support complements of **planes** in PG(3, 2).

The weight distribution of the $GF(2^2)$ -code spanned by $S_2(4)$:

$$A_0 = 1, \ A_8 = 45, \ A_{12} = 210.$$

Note

The weight distribution of the binary [15, 4] simplex code $S_2(4)$:

$$A_0 = 1, \ A_8 = 15.$$

Note

The codewords of weight 8 support complements of **planes** in PG(3,2).

The weight distribution of the $GF(2^2)$ -code spanned by $S_2(4)$:

$$A_0 = 1, \ A_8 = 45, \ A_{12} = 210.$$

Note

Theorem (Jurrius '12)

- The codewords of weight (qⁿ⁺¹ q^{d+1})/(q 1) of the linear code over GF(q^d) spanned by the q-ary simplex code S_q(n) support the complements of (n d)-subspaces of PG(n, q).
- The codewords of weight $q^n q^d$ of the linear code over $GF(q^d)$ spanned by the *q*-ary first order Reed-Muller code support complements of (n d)-subspaces of AG(n, q).

A generalization to dimensions d < n-1

Theorem (Jurrius '12).

- The codewords of weight (qⁿ⁺¹ q^{d+1})/(q 1) of the linear code over GF(q^d) spanned by the q-ary simplex code S_q(n) support the complements of (n d)-subspaces of PG(n, q).
- The codewords of weight $q^n q^d$ of the linear code over $GF(q^d)$ spanned by the *q*-ary first order Reed-Muller code support complements of (n d)-subspaces of AG(n, q).

Theorem (Jurrius '12).

- The codewords of weight (qⁿ⁺¹ − q^{d+1})/(q − 1) of the linear code over GF(q^d) spanned by the q-ary simplex code S_q(n) support the complements of (n − d)-subspaces of PG(n, q).
- The codewords of weight $q^n q^d$ of the linear code over $GF(q^d)$ spanned by the *q*-ary first order Reed-Muller code support complements of (n d)-subspaces of AG(n, q).

Theorem (Jurrius '12).

- The codewords of weight (qⁿ⁺¹ − q^{d+1})/(q − 1) of the linear code over GF(q^d) spanned by the q-ary simplex code S_q(n) support the complements of (n − d)-subspaces of PG(n, q).
- The codewords of weight $q^n q^d$ of the linear code over $GF(q^d)$ spanned by the *q*-ary first order Reed-Muller code support complements of (n d)-subspaces of AG(n, q).

Let C be a linear code over $E = GF(q^t)$, being a field extension of F = GF(q).

Subfield subcode C_F

The subfield subcode $C_F \subseteq C$:

$$C_F = \{x = (x_1, \dots, x_n) \mid x \in C, x_i \in GF(q)\}$$

Trace code *Tr*(*C*)

$$Tr(C) = \{ Tr(x) = (Tr(x_1), \ldots, Tr(x_n)) | x \in C, \}$$

where $Tr = Tr_{E/F}$:

$$Tr(\xi) = \xi + \xi^q + \xi^{q^2} + \dots + \xi^{q^{t-1}}.$$

$$(Tr(C))^{\perp} = (C^{\perp})_{F}$$

Let *C* be a linear code over $E = GF(q^t)$, being a field extension of F = GF(q).

Subfield subcode C_F

The subfield subcode $C_F \subseteq C$:

$$C_F = \{x = (x_1, \dots, x_n) \mid x \in C, x_i \in GF(q)\}$$

Trace code *Tr*(*C*)

$$Tr(C) = \{ Tr(x) = (Tr(x_1), \ldots, Tr(x_n)) | x \in C, \}$$

where $Tr = Tr_{E/F}$:

$$Tr(\xi) = \xi + \xi^q + \xi^{q^2} + \dots + \xi^{q^{t-1}}.$$

Theorem (Delsarte '75)

 $(Tr(C))^{\perp} = (C^{\perp})_{F}$

Let *C* be a linear code over $E = GF(q^t)$, being a field extension of F = GF(q).

Subfield subcode C_F

The subfield subcode $C_F \subseteq C$:

$$C_F = \{x = (x_1, \ldots, x_n) \mid x \in C, x_i \in GF(q)\}$$

Trace code *Tr*(*C*)

$$Tr(C) = \{ Tr(x) = (Tr(x_1), \ldots, Tr(x_n)) | x \in C, \}$$

where $Tr = Tr_{E/F}$:

$$Tr(\xi) = \xi + \xi^q + \xi^{q^2} + \dots + \xi^{q^{t-1}}.$$

$$(Tr(C))^{\perp} = (C^{\perp})_{F}$$

Let *C* be a linear code over $E = GF(q^t)$, being a field extension of F = GF(q).

Subfield subcode C_F

The subfield subcode $C_F \subseteq C$:

$$C_F = \{x = (x_1, \ldots, x_n) \mid x \in C, x_i \in GF(q)\}$$

Trace code *Tr*(*C*)

$$Tr(C) = \{ Tr(x) = (Tr(x_1), \ldots, Tr(x_n)) | x \in C, \}$$

where $Tr = Tr_{E/F}$:

$$Tr(\xi) = \xi + \xi^q + \xi^{q^2} + \dots + \xi^{q^{t-1}}.$$

$$(Tr(C))^{\perp} = (C^{\perp})_{F}$$

Let *C* be a linear code over $E = GF(q^t)$, being a field extension of F = GF(q).

Subfield subcode C_F

The subfield subcode $C_F \subseteq C$:

$$C_F = \{x = (x_1, \ldots, x_n) \mid x \in C, x_i \in GF(q)\}$$

Trace code Tr(C)

$$Tr(C) = \{ Tr(x) = (Tr(x_1), \ldots, Tr(x_n)) | x \in C, \}$$

where $Tr = Tr_{E/F}$:

$$Tr(\xi) = \xi + \xi^q + \xi^{q^2} + \dots + \xi^{q^{t-1}}.$$

$$(Tr(C))^{\perp} = (C^{\perp})_{F}$$

Let *C* be a linear code over $E = GF(q^t)$, being a field extension of F = GF(q).

Subfield subcode C_F

The subfield subcode $C_F \subseteq C$:

$$C_F = \{x = (x_1, \ldots, x_n) \mid x \in C, x_i \in GF(q)\}$$

Trace code Tr(C)

$$Tr(C) = \{ Tr(x) = (Tr(x_1), \ldots, Tr(x_n)) | x \in C, \}$$

where $Tr = Tr_{E/F}$:

$$Tr(\xi) = \xi + \xi^q + \xi^{q^2} + \dots + \xi^{q^{t-1}}.$$

$$(Tr(C))^{\perp} = (C^{\perp})_{F}$$

Let *C* be a linear code over $E = GF(q^t)$, being a field extension of F = GF(q).

Subfield subcode C_F

The subfield subcode $C_F \subseteq C$:

$$C_F = \{x = (x_1, \ldots, x_n) \mid x \in C, x_i \in GF(q)\}$$

Trace code Tr(C)

$$Tr(C) = \{ Tr(x) = (Tr(x_1), \ldots, Tr(x_n)) | x \in C, \}$$

where $Tr = Tr_{E/F}$:

$$Tr(\xi) = \xi + \xi^q + \xi^{q^2} + \dots + \xi^{q^{t-1}}.$$

Theorem (Delsarte '75)

 $(Tr(C))^{\perp} = (C^{\perp})_F.$

Let *C* be a linear code over $E = GF(q^t)$, being a field extension of F = GF(q).

Subfield subcode C_F

The subfield subcode $C_F \subseteq C$:

$$C_F = \{x = (x_1, \ldots, x_n) \mid x \in C, x_i \in GF(q)\}$$

Trace code Tr(C)

$$Tr(C) = \{ Tr(x) = (Tr(x_1), \ldots, Tr(x_n)) | x \in C, \}$$

where $Tr = Tr_{E/F}$:

$$Tr(\xi) = \xi + \xi^q + \xi^{q^2} + \cdots + \xi^{q^{t-1}}.$$

Theorem (Delsarte '75)

$$(\operatorname{Tr}(C))^{\perp} = (C^{\perp})_{F}$$

25/35

A code *C* over $E = GF(q^t)$ is **Galois closed** if it is invariant under the Frobenius automorphism

 $\xi \to \xi^q$.

Theorem

If *C* is Galois closed then

 $C_F = Tr(C).$

A code *C* over $E = GF(q^t)$ is **Galois closed** if it is invariant under the Frobenius automorphism

$$\xi \to \xi^q$$
.

Theorem

If *C* is Galois closed then

 $C_F = Tr(C).$

A code *C* over $E = GF(q^t)$ is **Galois closed** if it is invariant under the Frobenius automorphism

$$\xi \to \xi^q$$
.

Theorem

If C is Galois closed then

$$C_F = Tr(C).$$

Let *D* be a design with the parameters of the complementary design of $PG_{n-s}(n,q)$, and let $E = GF(q^t)$ be an extension field of F = GF(q). Let *M* be a generalized *E*-incidence matrix of *D*, and let *C* the code over *E* spanned by the rows of *M*.

 The trace code of *C* over *F* has dimension ≥ *n* + 1, and equality is achieved if and only if *t* ≥ *s* and *D* is isomorphic to the complementary design of *PG_{n-s}(n, q)*.

Let *D* be a design with the parameters of the complementary design of $PG_{n-s}(n,q)$, and let $E = GF(q^t)$ be an extension field of F = GF(q). Let *M* be a generalized *E*-incidence matrix of *D*, and let *C* the code over *E* spanned by the rows of *M*.

 The trace code of *C* over *F* has dimension ≥ *n* + 1, and equality is achieved if and only if *t* ≥ *s* and *D* is isomorphic to the complementary design of *PG_{n-s}(n, q)*.

Let *D* be a design with the parameters of the complementary design of $PG_{n-s}(n,q)$, and let $E = GF(q^t)$ be an extension field of F = GF(q). Let *M* be a generalized *E*-incidence matrix of *D*, and let *C* the code over *E* spanned by the rows of *M*.

 The trace code of *C* over *F* has dimension ≥ *n* + 1, and equality is achieved if and only if *t* ≥ *s* and *D* is isomorphic to the complementary design of *PG_{n-s}(n, q)*.

Let *D* be a design with the parameters of the complementary design of $PG_{n-s}(n,q)$, and let $E = GF(q^t)$ be an extension field of F = GF(q). Let *M* be a generalized *E*-incidence matrix of *D*, and let *C* the code over *E* spanned by the rows of *M*.

The trace code of *C* over *F* has dimension ≥ *n* + 1, and equality is achieved if and only if *t* ≥ *s* and *D* is isomorphic to the complementary design of *PG_{n-s}(n, q)*.

Let *D* be a design with the parameters of the complementary design of $PG_{n-s}(n,q)$, and let $E = GF(q^t)$ be an extension field of F = GF(q). Let *M* be a generalized *E*-incidence matrix of *D*, and let *C* the code over *E* spanned by the rows of *M*.

- The trace code of *C* over *F* has dimension ≥ *n* + 1, and equality is achieved if and only if *t* ≥ *s* and *D* is isomorphic to the complementary design of *PG_{n-s}(n, q)*.
- An analogous result holds for designs with the parameters of the complementary design of AG_{n−s}(n, q) for s = n − 1 or s < (n+2)/2.

Let D^* be the complementary structure of a simple incidence structure D, and let $E = GF(q^t)$ be an extension of F = GF(q). Let M be a generalized E-incidence matrix of D^* , and C = C(M) be the linear code over E spanned by the rows of M.

Let D^* be the complementary structure of a simple incidence structure D, and let $E = GF(q^t)$ be an extension of F = GF(q). Let M be a generalized E-incidence matrix of D^* , and C = C(M) be the linear code over E spanned by the rows of M.

Let D^* be the complementary structure of a simple incidence structure D, and let $E = GF(q^t)$ be an extension of F = GF(q).

Let *M* be a generalized *E*-incidence matrix of D^* , and C = C(M) be the linear code over *E* spanned by the rows of *M*.

Let D^* be the complementary structure of a simple incidence structure D, and let $E = GF(q^t)$ be an extension of F = GF(q). Let M be a generalized E-incidence matrix of D^* , and C = C(M) be the linear code over E spanned by the rows of M.

Let D^* be the complementary structure of a simple incidence structure D, and let $E = GF(q^t)$ be an extension of F = GF(q). Let M be a generalized E-incidence matrix of D^* , and C = C(M) be the linear code over E spanned by the rows of M.

Let D^* be the complementary structure of a simple incidence structure D, and let $E = GF(q^t)$ be an extension of F = GF(q). Let M be a generalized E-incidence matrix of D^* , and C = C(M) be the linear code over E spanned by the rows of M.
Let D^* be the complementary structure of a simple incidence structure D, and let $E = GF(q^t)$ be an extension of F = GF(q). Let M be a generalized E-incidence matrix of D^* , and C = C(M) be the linear code over E spanned by the rows of M.

We define the *q*-dimension of D^* , $dim_q D^*$, as the smallest dimension of any GF(q)-trace code Tr(C(M)), where E runs over all finite extension fields of GF(q), and M runs over all generalized E-incidence matrices of D^* .

Let D^* be the complementary structure of a simple incidence structure D, and let $E = GF(q^t)$ be an extension of F = GF(q). Let M be a generalized E-incidence matrix of D^* , and C = C(M) be the linear code over E spanned by the rows of M.

We define the *q*-dimension of D^* , $dim_q D^*$, as the smallest dimension of any GF(q)-trace code Tr(C(M)), where *E* runs over all finite **extension fields** of GF(q), and *M* runs over all generalized *E*-incidence matrices of D^* .

Let D = (V, B) be a simple incidence structure. *D* is embedded in $\Pi = PG(N, q)$ if *V* corresponds to a set of points of Π , and every block *B* is the intersection of *V* with some projective subspace *W* of Π :

 $B=V\cap W.$

Theorem (Jungnickel and Tonchev '13)

Let D = (V, B) be a simple incidence structure.

D is embedded in $\Pi = PG(N, q)$ if *V* corresponds to a set of points of Π , and every block *B* is the intersection of *V* with some projective subspace *W* of Π :

 $B = V \cap W$.

Theorem (Jungnickel and Tonchev '13)

Let D = (V, B) be a simple incidence structure. *D* is embedded in $\Pi = PG(N, q)$ if *V* corresponds to a set of points of Π , and every block *B* is the intersection of *V* with some projective subspace *W* of Π :

 $B = V \cap W.$

Theorem (Jungnickel and Tonchev '13)

Let D = (V, B) be a simple incidence structure. *D* is embedded in $\Pi = PG(N, q)$ if *V* corresponds to a set of points of Π , and every block *B* is the intersection of *V* with some projective subspace *W* of Π :

 $B=V\cap W.$

Theorem (Jungnickel and Tonchev '13)

Let D = (V, B) be a simple incidence structure. *D* is embedded in $\Pi = PG(N, q)$ if *V* corresponds to a set of points of Π , and every block *B* is the intersection of *V* with some projective subspace *W* of Π :

 $B = V \cap W.$

Theorem (Jungnickel and Tonchev '13)

Let D = (V, B) be a simple incidence structure. *D* is embedded in $\Pi = PG(N, q)$ if *V* corresponds to a set of points of Π , and every block *B* is the intersection of *V* with some projective subspace *W* of Π :

 $B = V \cap W.$

Theorem (Jungnickel and Tonchev '13)

Let \mathcal{D} be a simple incidence structure which is embedded in $\Pi = PG(N - 1, q)$, and let $E = GF(q^t)$ be any extension field of F = GF(q) satisfying

 $t\geq n-d$,

where *d* is the smallest dimension of a subspace of Π associated with some block of \mathcal{D} .

Let \mathcal{D} be a simple incidence structure which is embedded in $\Pi = PG(N - 1, q)$, and let $E = GF(q^t)$ be any extension field of F = GF(q) satisfying

 $t\geq n-d$,

where *d* is the smallest dimension of a subspace of Π associated with some block of \mathcal{D} .

Let \mathcal{D} be a simple incidence structure which is embedded in $\Pi = PG(N - 1, q)$, and let $E = GF(q^t)$ be any extension field of F = GF(q) satisfying

 $t \ge n-d$,

where *d* is the smallest dimension of a subspace of Π associated with some block of \mathcal{D} .

Let \mathcal{D} be a simple incidence structure which is embedded in $\Pi = PG(N - 1, q)$, and let $E = GF(q^t)$ be any extension field of F = GF(q) satisfying

 $t\geq n-d$,

where *d* is the smallest dimension of a subspace of Π associated with some block of \mathcal{D} .

Let \mathcal{D} be a simple incidence structure which is embedded in $\Pi = PG(N - 1, q)$, and let $E = GF(q^t)$ be any extension field of F = GF(q) satisfying

$$t\geq n-d$$
,

where *d* is the smallest dimension of a subspace of Π associated with some block of \mathcal{D} .

Theorem (Jungnickel and Tonchev '13)

• Let D^* be the complementary design of a design D having the **same parameters** as $PG_d(n, q)$, $1 \le d \le n - 1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $PG_d(n, q)$.

2 Let D^* be the complementary design of a design D having the **same parameters** as $AG_d(n, q)$, where d = 1 or $(n-2)/2 < d \le n-1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $AG_d(n, q)$.

Open Problem

Theorem (Jungnickel and Tonchev '13)

• Let D^* be the complementary design of a design D having the **same parameters** as $PG_d(n, q)$, $1 \le d \le n - 1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $PG_d(n, q)$.

2 Let D^* be the complementary design of a design D having the **same parameters** as $AG_d(n, q)$, where d = 1 or $(n-2)/2 < d \le n-1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $AG_d(n, q)$.

Open Problem

Theorem (Jungnickel and Tonchev '13)

• Let D^* be the complementary design of a design D having the same parameters as $PG_d(n, q)$, $1 \le d \le n - 1$. Then

 $\dim_q(D^*)\geq n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $PG_d(n, q)$.

2 Let D^* be the complementary design of a design D having the **same parameters** as $AG_d(n, q)$, where d = 1 or $(n-2)/2 < d \le n-1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $AG_d(n, q)$.

Open Problem

Theorem (Jungnickel and Tonchev '13)

• Let D^* be the complementary design of a design D having the same parameters as $PG_d(n, q)$, $1 \le d \le n - 1$. Then

 $\dim_q(D^*) \ge n+1,$

and dim_q(D*) = n + 1 if and only if D is isomorphic to PG_d(n, q).
2 Let D* be the complementary design of a design D having the same parameters as AG_d(n, q), where d = 1 or (n-2)/2 < d ≤ n − 1. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $AG_d(n, q)$.

Open Problem

Theorem (Jungnickel and Tonchev '13)

• Let D^* be the complementary design of a design D having the same parameters as $PG_d(n, q)$, $1 \le d \le n - 1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $PG_d(n, q)$.

2 Let D* be the complementary design of a design D having the same parameters as AG_d(n, q), where d = 1 or (n-2)/2 < d ≤ n − 1. Then</p>

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $AG_d(n, q)$.

Open Problem

Theorem (Jungnickel and Tonchev '13)

• Let D^* be the complementary design of a design D having the **same parameters** as $PG_d(n, q)$, $1 \le d \le n - 1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $PG_d(n, q)$.

2 Let D^* be the complementary design of a design D having the **same parameters** as $AG_d(n, q)$, where d = 1 or $(n-2)/2 < d \le n-1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $AG_d(n, q)$.

Open Problem

Theorem (Jungnickel and Tonchev '13)

• Let D^* be the complementary design of a design D having the **same parameters** as $PG_d(n, q)$, $1 \le d \le n - 1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $PG_d(n, q)$.

2 Let D^* be the complementary design of a design D having the **same parameters** as $AG_d(n, q)$, where d = 1 or $(n-2)/2 < d \le n-1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $AG_d(n, q)$.

Open Problem

Theorem (Jungnickel and Tonchev '13)

• Let D^* be the complementary design of a design D having the **same parameters** as $PG_d(n, q)$, $1 \le d \le n - 1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $PG_d(n, q)$.

2 Let D^* be the complementary design of a design D having the **same parameters** as $AG_d(n, q)$, where d = 1 or $(n-2)/2 < d \le n-1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $AG_d(n, q)$.

Open Problem

Theorem (Jungnickel and Tonchev '13)

• Let D^* be the complementary design of a design D having the **same parameters** as $PG_d(n, q)$, $1 \le d \le n - 1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $PG_d(n, q)$.

2 Let D^* be the complementary design of a design D having the **same parameters** as $AG_d(n, q)$, where d = 1 or $(n-2)/2 < d \le n-1$. Then

 $\dim_q(D^*) \ge n+1,$

and $\dim_q(D^*) = n + 1$ if and only if *D* is isomorphic to $AG_d(n, q)$.

Open Problem

The *q*-dimension of the classical $3 \cdot (q^2 + 1, q + 1, 1)$ design being the Möbius (or Miquelian) plane of order *q*, is equal to 4.

Theorem (J & T '13)

The dimension of any 2- $(2^{s}(2^{t} - 2^{t-s} + 1, 2^{s}, 1)$ design over $GF(2^{t})$, being a maximal 2^{s} -arc $(1 \le s \le t - 1)$ in $PG(2, 2^{t})$, is equal to 3.

Theorem (J & T '13)

The *q*-dimension of the classical $3 \cdot (q^2 + 1, q + 1, 1)$ design being the Möbius (or Miquelian) plane of order *q*, is equal to 4.

Theorem (J & T '13)

The dimension of any 2- $(2^{s}(2^{t} - 2^{t-s} + 1, 2^{s}, 1)$ design over $GF(2^{t})$, being a maximal 2^{s} -arc $(1 \le s \le t - 1)$ in $PG(2, 2^{t})$, is equal to 3.

Theorem (J & T '13)

The *q*-dimension of the classical $3 \cdot (q^2 + 1, q + 1, 1)$ design being the Möbius (or Miquelian) plane of order *q*, is equal to 4.

Theorem (J & T '13)

The dimension of any 2- $(2^{s}(2^{t} - 2^{t-s} + 1, 2^{s}, 1)$ design over $GF(2^{t})$, being a maximal 2^{s} -arc $(1 \le s \le t - 1)$ in $PG(2, 2^{t})$, is equal to 3.

Theorem (J & T '13)

The *q*-dimension of the classical $3 \cdot (q^2 + 1, q + 1, 1)$ design being the Möbius (or Miquelian) plane of order *q*, is equal to 4.

Theorem (J & T '13)

The dimension of any 2- $(2^{s}(2^{t} - 2^{t-s} + 1, 2^{s}, 1)$ design over $GF(2^{t})$, being a maximal 2^{s} -arc $(1 \le s \le t - 1)$ in $PG(2, 2^{t})$, is equal to 3.

Theorem (J & T '13)

Thank You!

Thank You!

Thank You!

Any Questions?

References

- D. Jungnickel and Vladimir D. Tonchev: A Hamada type characterization of the classical geometric designs, Designs, Codes and Cryptography, 65 (2012), 15-28.
- D. Jungnickel and Vladimir D. Tonchev: New invariants for incidence structures, Designs, Codes and Cryptography, 68 (2013), 163-177.
- D. Clark, D. Jungnickel, V.D. Tonchev: Affine geometry designs, polarities, and Hamada's conjecture, J. Combin. Theory, Ser. A, 118 (2011), 231-239.
- D. Jungnickel and Vladimir D. Tonchev: Polarities, quasi-symmetric designs, and Hamada's conjecture, Designs, Codes and Cryptography, 51 (2009), 131-140. '
- R. Jurrius: Weight enumeration of codes from finite spaces, Designs, Codes and Cryptography 63 (2012), 321-330.