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Incidence Structures

simple

complementary structure

A t-(v, k, \) design is an incidence structure D=(X, B) such that:

@ |X|=v,
@ |B| = k for each B € B, and
@ Every f-subset of X’ s contained in exactly A blocks.
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Incidence Matrix

The incidence matrix of a t-(v, k, \) designis a b x v (0, 1) matrix
whose (/,j) entry is 1 if block / contains point j, and 0 otherwise.

The 2-(7,3,1) Design:

ABCDEF G
Bi/1 1 1 0 0 0 0
B,/1 001 1 0 0
Bs;/1 0 000 1 1
B,/o01 01 0 1 0
Bs|o 1 00 1 0 1
Bs|o o1 1 0 0 1
B,lo 01 0 1 10
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Finite Geometries

Projective Geometry PG(n, q)

@ points of PG(n, q) are the 1-dimensional subspaces of ]Fg“.

@ lines of PG(n, q) are the 2-dimensional subspaces of IFZ”.

@ d-dimensional projective subspaces are the (d + 1)-dimensional
subspaces of F§'.

Affine Geometry AG(n, q)
@ points of AG(n, q) are the vectors of .
@ lines of AG(n, q) are the 1-dimensional subspaces of Fg and their
cosets.

@ d-dimensional affine subspaces are the d-dimensional
subspaces of Fg and their cosets.
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The geometric designs

A geometric design is formed from the points and d-subspaces of
PG(n, q) or AG(n, q). J

The projective geometry design PGy(n, q):

5 qn+1 1 qd+1 1 (qn+1 _ q2)(qn+1 _ q3) . (qn-H _ qd)
qg-— 1 J q-— 1 2 (qd+1 _ q2)(qd+1 _ q3) e (qd+1 _ qd)

The affine geometry design AGy4(n, q):

¢ (@=9@Q"—¢%) - (q"—q° ")
(q 9= )7 — @) (g7 — q‘“))

It g =2, AGq(n,2) is also a 3-(2", 29, &2 1-(C-27 1)) design.




A small example: PG;(2,2)

A

B G

N
|

C F

PG;1(2,2): The projective plane of order 2
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Linear error-correcting codes

Linear code

A linear g-ary [n, k, d] code C is a k-dimensional subspace of the
n-dimensional vector space over the field GF(q) of order g with
minimum Hamming distance d.

A code with minimum distance d can correct upto e = [(d — 1)/2]
errors.

Dual code
The dual code C* of an [n, k] code C is the [n, n — k] code defined by

Ct={yecGF(Q"|y-x=0forall x € C}

Parity check matrix

A matrix H of g-rank n — k whose rows are vectors from C* is a parity
check matrix of C. )
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Maijority logic decoding algorithm

If a codeword x = (x1,...,Xn) € Cis sent over a communication
channel, and a vector y = (1, ..., ¥n) is received, for each coordinate
i,1 <i < n,the values

y Dyt (1)

of rj linear functions are computed, and y; is decoded as the most
frequent among the values (1).

v

(Rudolph, 1967)

If Cis a linear [n, k] code such that C+ contains a set S of vectors of
weight w whose supports are the blocks of a 2-(n, w, \) design, the
code C can correct up to
o r+ix—1
- 2\

errors by majority logic decoding, where r = Ay = A(n—1)/(w — 1).

v
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Which codes support t-designs?

Find a linear code C such that C supports a t-design with t > 2.

A construction from incidence matrices

If Cis alinear code over GF(q) of length v with a parity check matrix
H being the b x v incidence matrix of a t-(v, w, \) design D, then C+
supports the t-(v, w, \) design D.

The dimension of C is

k = v — rankgH.

13/35
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Two fundamental questions

Given parameters v > w > 0, A > 0, such that a 2-(v, w, \) design
exists,

@ What is the minimum p-rank of a 2-(v, w, \) design?

@ How many nonisomorphic 2-(v, w, \) designs of minimum p-rank
are there?
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The p-rank of geometric designs
Theorem. (Hamada ’73)
(a) The p-rank of PGy4(n, p®) is given by
1 [(tap—t; ,
Z sl_[1[(/+1pz/)/.0](_1)i(n+ 1) <n+ tj+1p—tj— Ip>
: : i n ’
fo,ls j=0 =0

where (fp, . . ., ts) are integers such that
ts=t, d+1<t<n+1,0<fp—t < (n+1)(p—1),
forj=0,1,...,s—1.

(b)
rankpAGy(n, p®) = rank,PGgy(n, p®) — rank,PGg(n — 1, p®).

Motivation: Majority-logic decoding of linear codes spanned by the
incidence matrices of geometric designs.
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Hamada’s Conjecture

Conjecture (Hamada, 1973)

A geometric design, PG4(n, q) or AGy(n, q), (g = p'), has minimum
p-rank among all designs with the given parameters.

The number of nonisomorphic designs having the same parameters as
geometric designs grows exponentially: Jungnickel '84, Kantor 94,
Lam, Lam & T ’00, '02, Jungnickel & T, 09, Clark, Jungnickel & T, 09.
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Implications

@ Majority logic decodable codes: Hamada’s conjecture indicates that
geometric designs are the best choice for the given design parameters.

@ Uniqueness: The conjecture provides a simple characterization of the
geometric designs. Finding isomorphisms is a computational problem
with exponential complexity, while calculating p-rank is done in
polynomial time.
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Proved cases

Hamada’s Conjecture has been proved in the following cases:

@ Hamada and Ohmori (1975): True for PG,_1(n,2) and
AG,_1(n,2).

@ Doyen, Hubaut, Vandensavel (1978):
True for PGy(n,2) and AG;(n, 3).

@ Teirlinck (1980): True for AG>(n, 2).

In all proved cases, the geometric designs are
the unique designs of minimum p-rank.
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Are geometric designs characterized by their
p-rank?

Are geometric designs characterized as the unique (up to
isomorphism) designs with the given parameters and p-rank?

Yes, in all proved cases of Hamada’s Conjecture. \
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@ All (five) quasi-symmetric 2-(31,7,7) (x = 1,y = 3) designs, one
being PGy(4,2): (Tonchev '86).

@ All (five) 3-(32, 8, 7) designs with even block intersection numbers,
one being AGs(5,2): (Tonchev '86).

@ Two affine-resolvable 2-(64,16,5) designs with the parameters of
AGy(4,3): (Harada, Lam and Tonchev '05).

@ An infinite class of designs with the parameters of PG4(2d, p),
where d > 2 and p is any prime: (Jungnickel and Tonchev, 2008).

@ An infinite class of designs with the parameters of
AGg.1(2d + 1,2) for every d > 2: (Clark, Jungnickel and Tonchev,
2011).
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Revising the Hamada conjecture

Generalized incidence matrix (T ’99)

A generalized incidence matrix of a design has entries in GF(q),
with nonzero elements of GF(q) designating incidence.

Definition (T ’99)

The dimension of a design D over GF(q), (dimg(D)), is defined as the
minimum g-rank of all generalized incidence matrices of D over GF(q).

A revised version of Hamada’s Conjecture

Hamada’s conjecture is true if ordinary incidence matrices are
replaced by generalized incidence matrices over the related finite
field.
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complementary design of AG,_1(n, q).

The crucial tools

The uniqueness of simplex code S,(n) of length (g™*' —1)/(qg — 1),
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What is the dimension of PG,(n,q) ford <n—1?

The weight distribution of the binary [15, 4] simplex code Sy(4):

Ay =1, Ag = 15.

The codewords of weight 8 support complements of planes in
PG(3,2).

The weight distribution of the GF(22)-code spanned by S»(4):

Ao =1, Ag = 45, Aip = 210.

The codewords of weight 12 support complements of lines in PG(3, 2).
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A generalization to dimensions d < n— 1

Theorem (Jurrius ’12).

@ The codewords of weight (g"t" — g?*1)/(q — 1) of the linear code
over GF(q?) spanned by the g-ary simplex code S,(n) support
the complements of (n — d)-subspaces of PG(n, q).

@ The codewords of weight g" — g“ of the linear code over GF(g9)
spanned by the g-ary first order Reed-Muller code support
complements of (n — d)-subspaces of AG(n, q).
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Subfield, trace, and Galois closed codes

Let C be a linear code over E = GF(q'), being a field extension of
F = GF(q).

Subfield subcode Cr

The subfield subcode Cr C C:
Cr={x=(x1,....,xa) | X € C, X € GF(q)} )
Trace code Tr(C)

Tr(C)={ Tr(x) = (Tr(xq),..., Tr(xn)) |x € C, }

where Tr = TI’E/FZ

THE) = E+67+67 +---+67 .

v

Theorem (Delsarte °75)

(THC))* = (CH)r.

ot
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Galois closed code

A code C over E = GF(q') is Galois closed if it is invariant under the
Frobenius automorphism

§— &9
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Galois closed code

A code C over E = GF(q') is Galois closed if it is invariant under the
Frobenius automorphism

§— &9

Theorem
If C is Galois closed then

| A\

Cr = T (C).
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Theorem (Jungnickel and Tonchev ’12).

Let D be a design with the parameters of the complementary design of
PG,_s(n, q), and let E = GF(q!) be an extension field of F = GF(q).
Let M be a generalized E-incidence matrix of D, and let C the code
over E spanned by the rows of M.

@ The trace code of C over F has dimension > n+ 1, and equality
is achieved if and only if t > s and D is isomorphic to the
complementary design of PG,_s(n, q).

@ An analogous result holds for designs with the parameters of the
complementary design of AG,_s(n,q) fors=n—1or
s<(n+2)/2.
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Let D* be the complementary structure of a simple incidence structure
D, and let E = GF(q') be an extension of F = GF(q).

Let M be a generalized E-incidence matrix of D*, and C = C(M) be
the linear code over E spanned by the rows of M.

We define the g-dimension of D*, dimyD*, as the smallest dimension
of any GF(q)-trace code Tr(C(M)), where E runs over all finite
extension fields of GF(q), and M runs over all generalized
E-incidence matrices of D*. )
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Embeddings and the g-dimension

Definition (Jungnickel and Tonchev ’13).

Let D = (V, B) be a simple incidence structure.
D is embedded in M = PG(N, q) if V corresponds to a set of points of
M, and every block B is the intersection of V with some projective
subspace W of I:

B=VvVnWw.

Theorem (Jungnickel and Tonchev "13)

Let D be a simple incidence structure, and q be a prime power.
The g-dimension of D* is equal to the smallest N for which D can be
embedded in PG(N — 1, q).
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Let D be a simple incidence structure which is embedded in
N = PG(N —1,q), and let E = GF(q') be any extension field of
F = GF(q) satisfying
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Embeddings, g-dimension, and the trace code

Theorem (Jungnickel and Tonchev ’12)

Let D be a simple incidence structure which is embedded in
N = PG(N —1,q), and let E = GF(q') be any extension field of
F = GF(q) satisfying

t>n-—ad,

where d is the smallest dimension of a subspace of I associated with

some block of D.

Then there exists a generalized E-incidence matrix M for the
complementary incidence structure D* of D such that the trace code
Tr(C(M)) associated with M has dimension at most N over F.
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A characterization of PG4(n, q) and AGy4(n, q)

@ Let D* be the complementary design of a design D having the
same parameters as PGy(n,q), 1 <d <n-—1. Then

dimg(D*) > n+1,

and dimg(D*) = n+ 1 if and only if D is isomorphic to PGy4(n, q).

© Let D* be the complementary design of a design D having the
same parameters as AG4(n, q), where d =1 or
(n—2)/2<d<n—1.Then

dimg(D*) > n+1,

and dimg(D*) = n+ 1 if and only if D is isomorphic to AGy(n, q).

Open Problem
Prove Part 2 for all dintherange 2 < d < (n—2)/2.
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The g-dimension of the classical 3-(q + 1, g + 1, 1) design being the
Mébius (or Miquelian) plane of order g, is equal to 4.

Theorem (J & T '13)

The dimension of any 2-(25(2! — 2!=5 1,25 1) design over GF(2}),
being a maximal 25-arc (1 < s <t — 1) in PG(2,2!), is equal to 3.

| A\

Theorem (J & T '13)

The g-dimension of a 2-(¢® + 1, g + 1, 1) design being the Hermitian
unital in PG(2, ¢?), is equal to 3.
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Any Questions?
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