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Incidence Structures

A finite incidence structure D=(X ,B) is a finite set X of points and a
collection B of subsets called blocks.

An incidence structure is simple if all blocks are distinct as sets.

The complementary structure D∗ of an incidence structure D has as
blocks the complements of the blocks of D.

Design
A t-(v , k , λ) design is an incidence structure D=(X ,B) such that:

|X | = v ,
|B| = k for each B ∈ B, and
Every t-subset of X s contained in exactly λ blocks.
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A small example

A

B

C

D

G

E F

A 2-(7,3,1) design
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Incidence Matrix

The incidence matrix of a t-(v , k , λ) design is a b × v (0,1) matrix
whose (i , j) entry is 1 if block i contains point j , and 0 otherwise.

The 2-(7,3,1) Design:

A B C D E F G
B1 1 1 1 0 0 0 0
B2 1 0 0 1 1 0 0
B3 1 0 0 0 0 1 1
B4 0 1 0 1 0 1 0
B5 0 1 0 0 1 0 1
B6 0 0 1 1 0 0 1
B7 0 0 1 0 1 1 0
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Finite Geometries

Projective Geometry PG(n,q)

points of PG(n,q) are the 1-dimensional subspaces of Fn+1
q .

lines of PG(n,q) are the 2-dimensional subspaces of Fn+1
q .

d-dimensional projective subspaces are the (d + 1)-dimensional
subspaces of Fn+1

q .

Affine Geometry AG(n,q)

points of AG(n,q) are the vectors of Fn
q.

lines of AG(n,q) are the 1-dimensional subspaces of Fn
q and their

cosets.
d-dimensional affine subspaces are the d-dimensional
subspaces of Fn

q and their cosets.
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The geometric designs

A geometric design is formed from the points and d-subspaces of
PG(n,q) or AG(n,q).

The projective geometry design PGd (n,q):

2−
(

qn+1 − 1
q − 1

,
qd+1 − 1

q − 1
,

(qn+1 − q2)(qn+1 − q3) · · · (qn+1 − qd )

(qd+1 − q2)(qd+1 − q3) · · · (qd+1 − qd )

)

The affine geometry design AGd (n,q):

2−
(

qn,qd ,
(qn − q)(qn − q2) · · · (qn − qd−1)

(qd − q)(qd − q2) · · · (qd − qd−1)

)
If q = 2, AGd (n,2) is also a 3-(2n,2d , (2n−22)···(2n−2d−1)

(2d−22)···(2d−2d−1)
) design.
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A small example: PG1(2, 2)

A

B

C

D

G

E F

PG1(2,2): The projective plane of order 2
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Linear error-correcting codes

Linear code
A linear q-ary [n, k ,d ] code C is a k -dimensional subspace of the
n-dimensional vector space over the field GF (q) of order q with
minimum Hamming distance d .
A code with minimum distance d can correct up to e = [(d − 1)/2]
errors.

Dual code

The dual code C⊥ of an [n, k ] code C is the [n,n − k ] code defined by

C⊥ = {y ∈ GF (q)n | y · x = 0 for all x ∈ C}

Parity check matrix

A matrix H of q-rank n − k whose rows are vectors from C⊥ is a parity
check matrix of C.
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Majority logic decoding algorithm
If a codeword x = (x1, . . . , xn) ∈ C is sent over a communication
channel, and a vector y = (y1, . . . , yn) is received, for each coordinate
i , 1 ≤ i ≤ n, the values

y (1)
i , . . . , y (ri )

i (1)

of ri linear functions are computed, and yi is decoded as the most
frequent among the values (1).

Theorem. (Rudolph, 1967)

If C is a linear [n, k ] code such that C⊥ contains a set S of vectors of
weight w whose supports are the blocks of a 2-(n,w , λ) design, the
code C can correct up to

e =

[
r + λ− 1

2λ

]
errors by majority logic decoding, where r = λ1 = λ(n − 1)/(w − 1).
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Which codes support t-designs?

Task

Find a linear code C such that C⊥ supports a t-design with t ≥ 2.

A construction from incidence matrices
If C is a linear code over GF (q) of length v with a parity check matrix
H being the b × v incidence matrix of a t-(v ,w , λ) design D, then C⊥

supports the t-(v ,w , λ) design D.

The dimension of C is
k = v − rankqH.
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Two fundamental questions

Given parameters v > w > 0, λ > 0, such that a 2-(v ,w , λ) design
exists,

What is the minimum p-rank of a 2-(v ,w , λ) design?
How many nonisomorphic 2-(v ,w , λ) designs of minimum p-rank
are there?
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The p-rank of geometric designs

Theorem. (Hamada ’73)
(a) The p-rank of PGd (n,ps) is given by

∑
t0,...,ts

s−1∏
j=0

[(tj+1p−tj )/p]∑
i=0

(−1)i
(

n + 1
i

)(
n + tj+1p − tj − ip

n

)
,

where (t0, . . . , ts) are integers such that
ts = t0, d + 1 ≤ tj ≤ n + 1, 0 ≤ tj+1p − tj ≤ (n + 1)(p − 1),
for j = 0,1, . . . , s − 1.

(b)

rankpAGd (n,ps) = rankpPGd (n,ps)− rankpPGd (n − 1,ps).

Motivation: Majority-logic decoding of linear codes spanned by the
incidence matrices of geometric designs.
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Hamada’s Conjecture

Conjecture (Hamada, 1973)

A geometric design, PGd (n,q) or AGd (n,q), (q = pt ), has minimum
p-rank among all designs with the given parameters.

Note
The number of nonisomorphic designs having the same parameters as
geometric designs grows exponentially: Jungnickel ’84, Kantor ’94,
Lam, Lam & T ’00, ’02, Jungnickel & T, ’09, Clark, Jungnickel & T, 09.
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Implications

Majority logic decodable codes: Hamada’s conjecture indicates that
geometric designs are the best choice for the given design parameters.

Uniqueness: The conjecture provides a simple characterization of the
geometric designs. Finding isomorphisms is a computational problem
with exponential complexity, while calculating p-rank is done in
polynomial time.
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Proved cases

Hamada’s Conjecture has been proved in the following cases:

Hamada and Ohmori (1975): True for PGn−1(n,2) and
AGn−1(n,2).
Doyen, Hubaut, Vandensavel (1978):
True for PG1(n,2) and AG1(n,3).
Teirlinck (1980): True for AG2(n,2).

Note
In all proved cases, the geometric designs are
the unique designs of minimum p-rank.
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Are geometric designs characterized by their
p-rank?

Question
Are geometric designs characterized as the unique (up to
isomorphism) designs with the given parameters and p-rank?

Answer
Yes, in all proved cases of Hamada’s Conjecture.

19 / 35



Are geometric designs characterized by their
p-rank?

Question
Are geometric designs characterized as the unique (up to
isomorphism) designs with the given parameters and p-rank?

Answer
Yes, in all proved cases of Hamada’s Conjecture.

19 / 35



Are geometric designs characterized by their
p-rank?

Question
Are geometric designs characterized as the unique (up to
isomorphism) designs with the given parameters and p-rank?

Answer
Yes, in all proved cases of Hamada’s Conjecture.

19 / 35



Are geometric designs characterized by their
p-rank?

Question
Are geometric designs characterized as the unique (up to
isomorphism) designs with the given parameters and p-rank?

Answer
Yes, in all proved cases of Hamada’s Conjecture.

19 / 35



Non-geometric designs with the same p-rank as
geometric ones

A 2-(31,7,7) design supported by the binary quadratic-residue
code (Goethals and Delsarte ’68).
All (five) quasi-symmetric 2-(31,7,7) (x = 1, y = 3) designs, one
being PG2(4,2): (Tonchev ’86).
All (five) 3-(32,8,7) designs with even block intersection numbers,
one being AG3(5,2): (Tonchev ’86).
Two affine-resolvable 2-(64,16,5) designs with the parameters of
AG2(4,3): (Harada, Lam and Tonchev ’05).
An infinite class of designs with the parameters of PGd (2d ,p),
where d ≥ 2 and p is any prime: (Jungnickel and Tonchev, 2008).
An infinite class of designs with the parameters of
AGd+1(2d + 1,2) for every d ≥ 2: (Clark, Jungnickel and Tonchev,
2011).
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Revising the Hamada conjecture

Generalized incidence matrix (T ’99)
A generalized incidence matrix of a design has entries in GF (q),
with nonzero elements of GF (q) designating incidence.

Definition (T ’99)
The dimension of a design D over GF (q), (dimq(D)), is defined as the
minimum q-rank of all generalized incidence matrices of D over GF (q).

A revised version of Hamada’s Conjecture
Hamada’s conjecture is true if ordinary incidence matrices are
replaced by generalized incidence matrices over the related finite
field.
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A q-analogue of Hamada and Ohmori’s theorem

Theorem. (Tonchev ’99)
Let q be an arbitrary prime power, and let n ≥ 2.
(i) Let D be a 2-((qn+1 − 1)/(q − 1),qn,qn − qn−1) design. Then

dimq(D) ≥ n + 1.

The equality dimq(D) = n + 1 holds if and only if D is isomorphic to the
complementary design of PGn−1(n,q).
(ii) Let D be a 2-(qn,qn − qn−1,qn − qn−1 − 1) design. Then

dimq(D) ≥ n + 1.

The equality dimq(D) = n + 1 holds if and only if D is isomorphic to the
complementary design of AGn−1(n,q).

The crucial tools

The uniqueness of simplex code Sq(n) of length (qn+1 − 1)/(q − 1),
and the first order Reed-Muller code of length qn over GF (q). 22 / 35
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What is the dimension of PGd(n, q) for d < n − 1?

The weight distribution of the binary [15,4] simplex code S2(4):

A0 = 1, A8 = 15.

Note
The codewords of weight 8 support complements of planes in
PG(3,2).

The weight distribution of the GF (22)-code spanned by S2(4):

A0 = 1, A8 = 45, A12 = 210.

Note
The codewords of weight 12 support complements of lines in PG(3,2).
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A generalization to dimensions d < n − 1

Theorem (Jurrius ’12).

The codewords of weight (qn+1 − qd+1)/(q − 1) of the linear code
over GF (qd ) spanned by the q-ary simplex code Sq(n) support
the complements of (n − d)-subspaces of PG(n,q).
The codewords of weight qn − qd of the linear code over GF (qd )
spanned by the q-ary first order Reed-Muller code support
complements of (n − d)-subspaces of AG(n,q).
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Subfield, trace, and Galois closed codes

Let C be a linear code over E = GF (qt ), being a field extension of
F = GF (q).

Subfield subcode CF

The subfield subcode CF ⊆ C:

CF = {x = (x1, . . . , xn) | x ∈ C, xi ∈ GF (q)}

Trace code Tr(C)

Tr(C) = { Tr(x) = (Tr(x1), . . . ,Tr(xn)) |x ∈ C, }

where Tr = TrE/F :

Tr(ξ) = ξ + ξq + ξq2
+ · · ·+ ξqt−1

.

Theorem (Delsarte ’75)

(Tr(C))⊥ = (C⊥)F .
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Galois closed code

A code C over E = GF (qt ) is Galois closed if it is invariant under the
Frobenius automorphism

ξ → ξq.

Theorem
If C is Galois closed then

CF = Tr(C).
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Theorem (Jungnickel and Tonchev ’12).
Let D be a design with the parameters of the complementary design of
PGn−s(n,q), and let E = GF (qt ) be an extension field of F = GF (q).
Let M be a generalized E-incidence matrix of D, and let C the code
over E spanned by the rows of M.

The trace code of C over F has dimension ≥ n + 1, and equality
is achieved if and only if t ≥ s and D is isomorphic to the
complementary design of PGn−s(n,q).
An analogous result holds for designs with the parameters of the
complementary design of AGn−s(n,q) for s = n − 1 or
s < (n + 2)/2.
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A new invariant for incidence structures

Definition (Jungnickel and Tonchev ’13).
Let D∗ be the complementary structure of a simple incidence structure
D, and let E = GF (qt ) be an extension of F = GF (q).
Let M be a generalized E-incidence matrix of D∗, and C = C(M) be
the linear code over E spanned by the rows of M.

We define the q-dimension of D∗, dimqD∗, as the smallest dimension
of any GF (q)-trace code Tr(C(M)), where E runs over all finite
extension fields of GF (q), and M runs over all generalized
E-incidence matrices of D∗.
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Embeddings and the q-dimension

Definition (Jungnickel and Tonchev ’13).
Let D = (V ,B) be a simple incidence structure.
D is embedded in Π = PG(N,q) if V corresponds to a set of points of
Π, and every block B is the intersection of V with some projective
subspace W of Π:

B = V ∩W .

Theorem (Jungnickel and Tonchev ’13)
Let D be a simple incidence structure, and q be a prime power.
The q-dimension of D∗ is equal to the smallest N for which D can be
embedded in PG(N − 1,q).
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Embeddings, q-dimension, and the trace code

Theorem (Jungnickel and Tonchev ’12)
Let D be a simple incidence structure which is embedded in
Π = PG(N − 1,q), and let E = GF (qt ) be any extension field of
F = GF (q) satisfying

t ≥ n − d ,

where d is the smallest dimension of a subspace of Π associated with
some block of D.

Then there exists a generalized E-incidence matrix M for the
complementary incidence structure D∗ of D such that the trace code
Tr(C(M)) associated with M has dimension at most N over F .

30 / 35



Embeddings, q-dimension, and the trace code

Theorem (Jungnickel and Tonchev ’12)
Let D be a simple incidence structure which is embedded in
Π = PG(N − 1,q), and let E = GF (qt ) be any extension field of
F = GF (q) satisfying

t ≥ n − d ,

where d is the smallest dimension of a subspace of Π associated with
some block of D.

Then there exists a generalized E-incidence matrix M for the
complementary incidence structure D∗ of D such that the trace code
Tr(C(M)) associated with M has dimension at most N over F .

30 / 35



Embeddings, q-dimension, and the trace code

Theorem (Jungnickel and Tonchev ’12)
Let D be a simple incidence structure which is embedded in
Π = PG(N − 1,q), and let E = GF (qt ) be any extension field of
F = GF (q) satisfying

t ≥ n − d ,

where d is the smallest dimension of a subspace of Π associated with
some block of D.

Then there exists a generalized E-incidence matrix M for the
complementary incidence structure D∗ of D such that the trace code
Tr(C(M)) associated with M has dimension at most N over F .

30 / 35



Embeddings, q-dimension, and the trace code

Theorem (Jungnickel and Tonchev ’12)
Let D be a simple incidence structure which is embedded in
Π = PG(N − 1,q), and let E = GF (qt ) be any extension field of
F = GF (q) satisfying

t ≥ n − d ,

where d is the smallest dimension of a subspace of Π associated with
some block of D.

Then there exists a generalized E-incidence matrix M for the
complementary incidence structure D∗ of D such that the trace code
Tr(C(M)) associated with M has dimension at most N over F .

30 / 35



Embeddings, q-dimension, and the trace code

Theorem (Jungnickel and Tonchev ’12)
Let D be a simple incidence structure which is embedded in
Π = PG(N − 1,q), and let E = GF (qt ) be any extension field of
F = GF (q) satisfying

t ≥ n − d ,

where d is the smallest dimension of a subspace of Π associated with
some block of D.

Then there exists a generalized E-incidence matrix M for the
complementary incidence structure D∗ of D such that the trace code
Tr(C(M)) associated with M has dimension at most N over F .

30 / 35



A characterization of PGd(n, q) and AGd(n, q)

Theorem (Jungnickel and Tonchev ’13)
1 Let D∗ be the complementary design of a design D having the

same parameters as PGd (n,q), 1 ≤ d ≤ n − 1. Then

dimq(D∗) ≥ n + 1,

and dimq(D∗) = n + 1 if and only if D is isomorphic to PGd (n,q).
2 Let D∗ be the complementary design of a design D having the

same parameters as AGd (n,q), where d = 1 or
(n − 2)/2 < d ≤ n − 1. Then

dimq(D∗) ≥ n + 1,

and dimq(D∗) = n + 1 if and only if D is isomorphic to AGd (n,q).

Open Problem
Prove Part 2 for all d in the range 2 ≤ d ≤ (n − 2)/2.
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More examples

Theorem (J & T ’13)

The q-dimension of the classical 3-(q2 + 1,q + 1,1) design being the
Möbius (or Miquelian) plane of order q, is equal to 4.

Theorem (J & T ’13)

The dimension of any 2-(2s(2t − 2t−s + 1,2s,1) design over GF (2t ),
being a maximal 2s-arc (1 ≤ s ≤ t − 1) in PG(2,2t ), is equal to 3.

Theorem (J & T ’13)

The q-dimension of a 2-(q3 + 1,q + 1,1) design being the Hermitian
unital in PG(2,q2), is equal to 3.
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Thank You!
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Any Questions?
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