Linear codes with complementary duals from regular graphs
invariant under finite groups

Bernardo Rodrigues
School of Mathematics, Statistics and Computer Science
University of KwaZulu-Natal
Private Bag X54001, Durban 4000
South Africa

Let F be a finite field of q elements, and G be a transitive group on a finite set Ω. Then there is a G-action on Ω, namely a map $\cdot:G \times \Omega \rightarrow \Omega$, $(g, w) \mapsto w^g = g \cdot w$, satisfying $w^{gg'} = (gg')w = g(g'w)$ for all $g, g' \in G$ and all $w \in \Omega$, and that $w^1 = 1w = w$ for all $w \in \Omega$. Let $F\Omega = \{ f : \Omega \rightarrow F \}$, be the vector space over F with basis Ω. Extending the G-action on Ω linearly, $F\Omega$ becomes an FG-module called an FG-permutation module. We are interested in finding all G-invariant FG-submodules, i.e., codes in $F\Omega$. The elements $f \in F\Omega$ are written in the form $f = \sum_{w \in \Omega} a_w \chi_w$ where χ_w is a characteristic function. The natural action of an element $g \in G$ is given by $g(\sum_{w \in \Omega} a_w \chi_w) = \sum_{w \in \Omega} a_w \chi_{g(w)}$. This action of G preserves the natural bilinear form defined by

$$\langle \sum_{w \in \Omega} a_w \chi_w, \sum_{w \in \Omega} b_w \chi_w \rangle = \sum_{w \in \Omega} a_w b_w.$$

By way of illustration we determine all linear codes of length 50 over F_p (p a prime) which admit the projective special unitary group $U_3(5)$ as an automorphism group. By group representation theory means we prove that these can all be realized as submodules of the permutation module $F\Omega$ where Ω corresponds to the vertex set of the Hoffman-Singleton graph.