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q-factorials and q-binomials

Let us introduce some useful notation. We denote the finite
product

(a; q)n = (1− a)(1− aq)(1− aq2) . . . (1− aqn−1), (a; q)0 = 1

and for the common case when a = q we abbreviate

(q; q)n =
n∏

j=1

(1− qj) =: (q)n.

We also use the infinite product

(a; q)∞ = lim
n→∞

(a; q)n.



q-factorials and q-binomials

Another notation seen in combinatorics papers is the q-factorial,

[n]q! = [1]q[2]q . . . [n]q =
(q; q)n

(1− q)n

= (1 + q)(1 + q + q2) . . . (1 + q + q2 + · · ·+ qn−1).

The reason for the name is clear – evaluation at q = 1 yields n!.

We say that such a polynomial is a q-analogue of the factorial. If
we can show that a q-analogue of a number sequence is the
generating function for a class of objects with some statistical
weight, then we show that those objects are counted by the
number sequence and that the set has some internal structure.



q-factorials and q-binomials

The classic example with the q-factorial is that [n]q! is the
generating function for inversions in the permutations of length n:

[n]q! =
∑
σ∈Sn

qinvσ.

The statistic inv σ counts the number of inversions, pairs σi , σj in
a permutation σ = σ1 . . . σn such that i < j but σi > σj . Building
a permutation by inserting elements in order from 1 to n, it is clear
that when inserting element k we can create from 0 to k − 1
inversions simply by placing k a sufficient number of spaces from
the end, and later insertions will not destroy any such inversion.

Thus this claim on the generating function for inversions refines
the theorem that there are n! permutations of length n.



q-factorials and q-binomials

We can write the generating function for partitions as 1
(q)∞

.
Another identity is

1

(q)∞
=
∞∑
n=1

qn2

(q)n
2
.

To prove this latter identity, we mark the largest square we can
find in the Ferrers diagram of a partition: this is known as the
Durfee square of the partition. We then observe that every
partition can be written as a Durfee square of some size n, and an
ordered pair of partitions into parts of size at most n.

� �
� �



q-factorials and q-binomials

Define the q-binomial coefficient[
n + m

m

]
q

=
(q)n+m

(q)n(q)m
.

This is a q-analogue of the binomial coefficients, for when
evaluated at q = 1, we obtain precisely the binomial coefficient(n+m

m

)
. We’ll prove this by showing that the q-binomial coefficients

are actually polynomials that are the generating functions for
partitions into at most n parts of size at most m, i.e., they count
partitions in the n ×m box.



q-factorials and q-binomials

Consider the n ×m box:

Partitions which fit in this box correspond (via their profiles) to
lattice paths between opposite corners, and so presuming we can
show that the q-binomials do indeed count them, their
specialization immediately follows, since the q = 1 specialization is
just the total number of such paths.



q-factorials and q-binomials

We begin by noting that
[n
n

]
q

and
[n
0

]
q

are both 1, simply because
their numerators and denominators cancel.

Let the generating function for partitions in the n ×m box be
f (n + m,m). The generating function for the single (empty)
partition of 0 in an n × 0 or 0× n box is just q0 = 1. So the
boundary conditions are the same for both functions. Now we will
produce a doubly-indexed recurrence.



q-factorials and q-binomials

A partition in the box either has a part of largest possible size, or
does not. This gives us a Pascal-like recurrence satisfied by the
generating function for partitions in the box, which if satisfied by[ n
m

]
q

proves their identity:

f (n + m,m) = qmf (n − 1 + m,m) + f (n + m − 1,m − 1).



q-factorials and q-binomials

[
n + m

m

]
q

= qm

[
n − 1 + m

m

]
q

+

[
n + m − 1

m − 1

]
q

Exercise 1: verify the algebra that confirms that the above identity
holds. (Most factors in all three terms are common; deal with the
remainder.)



q-factorials and q-binomials

This generating function is clearly a polynomial, since it is the
generating function for a finite set of partitions. Here are a few:[n

1

]
q

= 1 + q + q2 + · · ·+ qn−1

since the (n − 1)× 1 box simply contains 1-row partitions of size
up to n − 1.

[
4

2

]
q

= 1 + q + 2q2 + q3 + q4



q-factorials and q-binomials

It is possible to construct a q-analogue of the Catalan numbers
1

n+1

(2n
n

)
:

1

1 + q + · · ·+ qn

[
2n

n

]
q

.

This is the generating function for a certain statistic maj(π) on
Dyck paths, partitions which never go below the NW-SE diagonal:



q-factorials and q-binomials

We have two nice q-analogues of the binomial theorem (whole and
general powers) which are very useful in proving q-series identities:

Theorem

N∏
j=1

(1 + zqj) =
N∑

m=0

qm(m+1)/2

[
N

m

]
q

zm,

N∏
j=1

1

1− zqj
=
∞∑

m=0

qm

[
N + m − 1

m

]
q

zm.



q-factorials and q-binomials

N∏
j=1

(1 + zqj) =
N∑

m=0

qm(m+1)/2

[
N

m

]
q

zm

Observe that the coefficient on qnzm on the LHS counts partitions
of n into exactly m distinct parts at most N. From such a partition
remove the largest possible triangle; there are at most m parts

remaining, of size at most N −m, which are counted by
[
N
m

]
q
.

N = 7,m = 5:

�
� �
� � �
� � � �
� � � � � =

�
� �
� � �
� � � �
� � � � � +



q-factorials and q-binomials

N∏
j=1

1

1− zqj
=
∞∑

m=0

qm

[
N + m − 1

m

]
q

zm.

Exercise: How do we prove this?



q-factorials and q-binomials

[
7

3

]
q

= 1 + q + 2q2 + 3q3 + 4q4 + 4q5 + 5q6

+ 4q7 + 4q8 + 3q9 + 2q10 + q11 + q12

It is easy to notice that the q-binomials are symmetric: the degree
of
[ n
m

]
q

is (n −m)m, and the term of degree i has the same

coefficient as the term of degree (n −m)m − i . Why?

We also have the binomial identity
[ n
m

]
q

=
[

n
n−m

]
q
. Why?



Unimodality

It is much less obvious that the coefficients are unimodal: they
weakly increase, then weakly decrease, and only have one peak
(sometimes extended, such as for

[n
1

]
q
).

Questions of unimodality are of interest other classes of partitions:
there are cases where we still want a combinatorial proof of
something known analytically, and there are some cases where
unimodality is open.

We will not prove this – it’s rather difficult. Instead, let me point
you to the quite readable papers where it was done, and discuss
some context.



Unimodality

That the q-binomial coefficients are unimodal was first proved with
abstract algebra, by J. J. Sylvester:

Sylvester, J. J., Proof of the hitherto undemonstrated fundamental
theorem of invariants, Collect. Math. papers, Vol. 3, Chelsea, New
York (1973), 117-126

We would rather have a proof that uses the properties of the
partitions involved and breaks the q-binomial coefficient down into
smaller sets that display the unimodality property. This was done
much more recently, by Kathleen O’Hara:

O’Hara, K., Unimodality of Gaussian Coefficients: A Constructive
Proof, Journal of Combinatorial Theory, Series A 53 29-52 (1990)



Unimodality

O’Hara’s proof decomposes the set of partitions in the N ×M box
into chains: subsets that are symmetric about the middle, including
1 each of partitions from some size i to size NM − i . If you do this,
then no matter what the number or lengths of the chains required,
their sum must certainly be a unimodal generating function.

Example

1 + q + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9

q2 + q3 + q4 + q5 + q6 + q7

q3 + q4 + q5 + q6

1 + q + 2q2 + 3q3 + 3q4 + 3q5 + 3q6 + 2q7 + q8 + q9



Unimodality

O’Hara’s proof is quite readable on its own, but there is a nice
associated expositional paper by Doron Zeilberger which is almost
as well known:

Zeilberger, D., Kathy OHaras constructive proof of the unimodality
of the Gaussian polynomials, Amer. Math. Monthly 96 (1989), no.
7, 590-602

We will not go into O’Hara’s paper in detail. Instead, I’d like to
place it in the context of the current state of knowledge and some
open questions about, and using, unimodality in partitions. To do
so, let’s introduce some terms related to partially ordered sets.



Unimodality

A partial order on a set is a relation < with which we can compare
some, not necessarily all, members of a set. We require certain
properties: irreflexivity (x 6< x), antisymmetricity (x < y implies
y 6< x), and transitivity. A set with a partial order is a poset.

If x < y and there is no z such that x < z < y , we say y covers x .
The Hasse diagram of a poset is a graph with the elements of the
set as nodes, and an edge between x and y when x covers y .

A poset is ranked if it has subsets Ki such that elements in Ki+1

only cover elements in Ki . The rank generating function of the
poset is

∑
qrank(x).

A chain is a sequence of elements x1 < x2 < . . . . An interval is a
chain all of whose relations are covers.



Unimodality

With all these definitions, the partitions in the N ×M box form a
finite partially ordered set under the partial order of inclusion, or
the Young order. We say π1 < π2 if π1 has at most the same
number of parts as π2, and part j of π1 is always at most the size
of part j of π2.

Covers occur when π1 ` n and π2 ` n + 1, so only one part is
different. The ranking is obviously the weight of the partition.

Let’s look at a few N ×M posets.



Unimodality

[
4
2

]
q
,

22

21

2 11

1

HL



Unimodality

[
6
2

]
q
,



Unimodality

In these terms, the breakdown we asked for earlier to prove
unimodality is called a symmetric chain decomposition. This is a
decomposition of the poset into intervals symmetric about the
middle rank. This is for the 3× 3 box:

Example

1 + q + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9

q2 + q3 + q4 + q5 + q6 + q7

q3 + q4 + q5 + q6

1 + q + 2q2 + 3q3 + 3q4 + 3q5 + 3q6 + 2q7 + q8 + q9

Let’s take a look at the 4× 2 box again.



Unimodality

[
6
2

]
q
,

Can you find a symmetric chain decomposition?



Unimodality

Alas, this gets rapidly harder as the number of parts increases:

[
7
3

]
q
,



Unimodality

[
10
5

]
q
,



Unimodality

We could also use a weaker order, and just say that π2 covers π1 if
π2 ` n + 1 and π1 ` n, so that every element on one rank covers
every element on the one below. This gives us more chains but a
less informative structure – however, it still proves unimodality,
which knows nothing about the covering relations except rank.



Unimodality

In fact, this is what Kathleen O’Hara did. She said everything in
one rank covers everything in the rank below, and used a theorem
which constructs an SCD for the poset product of two posets
which themselves have SCDs.

Therefore, although her work provided a symmetric chain
decomposition for the N ×M box, we were left with the open
question:

Question

Can we find a symmetric chain decomposition of the
[
N
M

]
q

poset

which respects the Young order?



Unimodality

Question

Can we find a symmetric chain decomposition of the
[
N
M

]
q

poset

which respects the Young order?

This question maaaaaay have been recently solved. I still have to
sit down with the paper.

However, we can ask the same question for another very natural
set of partitions, and this is definitely unsolved.



Unimodality

Namely, consider partitions into distinct parts of size at most N:
their generating function is

N∏
i=1

(1 + qi ).

Exercise 2: Verify that this generating function is symmetric:
multiply through by q−N(N+1)/2, transform q → q−1, and show
that the resulting polynomial is the same.

Exercise 3: Find a combinatorial bijection on the poset that
realizes the symmetry. (How will you subtract parts?)

These polynomials are also known to be unimodal, but there is no
known SCD, respecting Young’s order or not.



Unimodality

Unimodality is useful because it can verify other properties. I’ll
close today’s talk with the (First) Borwein Conjecture.

Conjecture

Define

N∏
i=1

(1− q3i−2)(1− q3i−1) := A(q3)− qB(q3)− q2C (q3).

Then A(q), B(q), and C (q) are all polynomials with nonnegative
coefficients.



Unimodality

Equivalently, e.g., A(q) =
∑∞

n=0 (p3,N,e(n)− p3,N,o(n)) qn, where
p3,N,e(n) is the number of partitions of 3n into an even number of
parts not divisible by 3, of size at most 3N, and likewise odd for
p3,N,o .

Borwein’s conjecture says that for a number divisible by 3, there
are at least as many partitions into an even number of such parts
as there are into an odd number of such parts, and the reverse if
the number is not divisible by 3.



Unimodality

Now, this question is easier if there is no restriction on size.

Theorem

(Andrews) Define

∞∏
i=1

(1− q3i−2)(1− q3i−1) := A∞(q3)− qB∞(q3)− q2C∞(q3).

Then A∞(q), B∞(q), and C∞(q) are all power series with
nonnegative coefficients.



Unimodality

But if n < 3N, then there is essentially no size restriction, and the
coefficients of A(q) match those of A∞(q). So the theorem holds
in that range, and on the upper end of the range. (By the way, A
is symmetric, but B and C are not; they are reflections of each
other.)

Now, what do the coefficients of A(q) look like?



Unimodality

For parts of size less than 120:

500 1000 1500

2 ´ 1016

4 ´ 1016

6 ´ 1016

8 ´ 1016



Unimodality

The polynomial certainly looks unimodal.

Since we know that it is nonnegative on the bottom, and on the
top, then if we could show that A(q) were unimodal, we would
immediately have that all its coefficients were nonnegative.


