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Partition congruences

If we observe a table of values of the partition numbers, striking
regularities arise.

p(0)− p(4) 1 1 2 3 5

p(5)− p(9) 7 11 15 22 30

p(10)− p(14) 42 56 77 101 135

p(15)− p(19) 176 231 297 385 490

p(20)− p(24) 627 792 1002 1255 1575



Partition congruences

p(0)− p(4) 1 1 2 3 5

p(5)− p(9) 7 11 15 22 30

p(10)− p(14) 42 56 77 101 135

p(15)− p(19) 176 231 297 385 490

p(20)− p(24) 627 792 1002 1255 1575

The conjecture immediately arises that p(5n + 4) ≡ 0 (mod 5).
With a little extra searching we can conjecture that p(5kn− 1) ≡ 0
(mod 5k), and that p(7n + 5) ≡ 0 (mod 7) and p(11n + 6) ≡ 0
(mod 11), with corresponding results for powers of 7 and 11.
Furthermore, these appear to be the only such progressions.



Partition congruences

Ramanujan observed and conjectured these facts, which turn out
to be almost all true. The sole exception is that p(n) is not quite
so neatly divisible by powers of 7. It turns out that p(7bn + δ) ≡ 0
(mod 7b(b+2)/2c) for the correct δ, which is sufficient for
p(7n + 5) ≡ 0 (mod 7) and p(49 + 47) likewise, but not 343.

It is furthermore true that never again is p(kn + j) ≡ 0 (mod k)
for an entire residue class with any modulus other than
k = 5a7[(b+2)/2]11c , but this is much more difficult to prove.



Partition congruences

The p(5n + 4) congruence is the most famous and the easiest to
prove. The shortest proof I know of, which we will sketch, uses one
of the two of the techniques common in partition theory papers:
dissections.

In the second part of the talk, we will prove another congruence
using another typical tool: modular forms.



Partition congruences
Dissection

The proof that I will sketch here largely comes from:

Hirschhorn, M.D., An identity of Ramanujan, and applications, in:
q-series from a contemporary perspective, Contemporary
Mathematics, Vol. 254, American Mathematical Society, 2000,
229-234.

It is available at
http://web.maths.unsw.edu.au/˜mikeh/webpapers/paper67.pdf .
Mike is a very clear writer who is good for a student to read.



Partition congruences
Dissection

The main tool that we will need for his argument is the Jacobi
Triple Product, a powerful tool for manipulating q-series. The
form we will use is

(a; q)∞(a−1q; q)∞(q; q)∞ =
∞∑

n=−∞
(−1)nanqn(n−1)/2.

The proof is not hard, about a page, and can be found in Andrews’
Theory of Partitions or at
http://mathworld.wolfram.com/JacobiTripleProduct.html .



Partition congruences
Dissection

The goal of the first part of the proof is to give an identity which
allows us to display the subsequences of terms of (q)∞ in which
the powers are 0 mod 5, 1 mod 5, 2 mod 5, et cetera.

Recall that the Pentagonal Number Theorem:

(q; q)∞ = 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − . . . .

It turns out that only numbers 0, 1, and 2 mod 5 appear as powers
here. Thus we will be able to write the 5-dissection

(q; q)∞ = A(q5) + qB(q5) + q2C (q5).

Our goal is to determine what these functions are.



Partition congruences
Dissection

We start with (a; q)∞(a2; q)∞(a−2q; q)∞(a−1q; q)∞(q)∞.

Later, we will first make the substitution q → q5 and then a→ q,
and then these five products will run over all the residue classes in∏∞

k=1(1− qk).



Partition congruences
Dissection

We aim to show

(a; q)∞(a2; q)∞(a−2q; q)∞(a−1q; q)∞(q)∞ =

(q5; q5)∞

(
(a5q; q5)∞(a−5q4; q5)∞

(q; q5)∞(q4; q5)∞
− a

(a5q2; q5)∞(a−5q3; q5)∞
(q2; q5)∞(q3; q5)∞

−a2
(a5q3; q5)∞(a−5q2; q5)∞

(q2; q5)∞(q3; q5)∞
+ a3

(a5q4; q5)∞(a−5q; q5)∞
(q; q5)∞(q4; q5)∞

)
Notice that each term is one residue class mod 5 in powers of a,
and the a5k+4 terms are 0.



Partition congruences
Dissection

If we multiply and divide by one factor of (q; q)∞, we get two
triple products in the numerator:

(
(a; q)∞(a−1q; q)∞(q; q)∞

) (
(a2; q)∞(a−2q; q)∞(q; q)∞

)
(q; q)∞

.



Partition congruences
Dissection

We expand each triple using the Jacobi Triple Product, and gather
terms involving a:

(
(a; q)∞(a−1q; q)∞(q; q)∞

) (
(a2; q)∞(a−2q; q)∞(q; q)∞

)
(q; q)∞

=
1

(q; q)∞

∞∑
s=−∞

(−1)rarq(r2−r)/2
∞∑

r=−∞
(−1)sa2sq(s2−s)/2

=
∞∑

n=−∞
ancn(q),

with

cn(q) =
1

(q)∞

∑
r+2s=n

(−1)r+sq(r2−r+s2−s)/2.
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Dissection

Now we want to reverse the process and get the cn(q) as product
generating functions in residue classes mod 5 for powers of a.
If we set r = n − 2t, s = 2n + t, then for c5n we get:

c5n(q) =
1

(q)∞

∞∑
t=−∞

(−1)n+tq((n−2t)2−(n−2t)+(2n+t)2−(2n+t))/2

= (−1)nq(5n2−3n)/2 1

(q)∞

∞∑
t=−∞

(−1)tq(5t2+t)/2

=
(−1)nq(5n2−3n)/2

(q; q5)∞(q4; q5)∞
.



Partition congruences
Dissection

The last line in the previous frame follows from using the Jacobi
Triple Product the other way.

Exercise: Show that

∞∑
t=−∞

(−1)tq(5t2+t)/2 = (q2; q5)∞(q3; q5)∞(q5; q5)∞.
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Dissection

We can find c5n+1(q), c5n+2(q), c5n+3(q), and c5n+4(q) similarly.
We have c5n+4(q) ending up as

c5n+4(q) = (−1)n+1q(5n2−5n+2)/2 1

(q)∞

∞∑
t=−∞

(−1)tq(5t2+5t)/2 = 0.

Why is this the 0 function?
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Dissection

Putting our sums together, we get

(a, a−1q, a2, a−2q, q; q)∞ =

1

(q, q4; q5)∞

∞∑
n=−∞

(−1)na5nq(5n2−3n)/2−

1

(q2, q3; q5)∞

∞∑
n=−∞

(−1)na5n+1q(5n2−n)/2

− 1

(q2, q3; q5)∞

∞∑
n=−∞

(−1)na5n+2q(5n2+n)/2−

1

(q, q4; q5)∞

∞∑
n=−∞

(−1)na5n+3q(5n2+3nn)/2.
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Dissection

Finally, we use the Triple Product on each of the triangular sums
once more to obtain the identity we sought:

(a; q)∞(a2; q)∞(a−2q; q)∞(a−1q; q)∞(q)∞ =

(q5; q5)∞

(
(a5q; q5)∞(a−5q4; q5)∞

(q; q5)∞(q4; q5)∞
− a

(a5q2; q5)∞(a−5q3; q5)∞
(q2; q5)∞(q3; q5)∞

−a2
(a5q3; q5)∞(a−5q2; q5)∞

(q2; q5)∞(q3; q5)∞
+ a3

(a5q4; q5)∞(a−5q; q5)∞
(q; q5)∞(q4; q5)∞

)
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Dissection

Putting q → q5 and a→ q in this evaluation, we obtain the
dissection we desire:

(q)∞ = (q25; q25)∞

(
(q10, q15; q25)∞
(q5, q20; q25)∞

− q − q2 (q5, q20; q25)∞
(q10, q15; q25)∞

)
where the a3 becomes 0, because (1; q)∞ = (1− 1)(1− q) · · · = 0.

For convenience, set R(q) = (q2,q3;q5)∞
(q,q4;q5)∞

.
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Dissection

We are almost done. In

(q)∞ = (q, q2, q3, q4, q5; q5)∞ = (q25; q25)∞
(
R(q5)− q − q2R−1(q5)

)
,

substitute q → ζ j5q where ζ5 is a complex 5th root of unity. (This
is a common feature of dissection proofs). We obtain

(ζ j5q, ζ2j5 q2, ζ3j5 q3, ζ4j5 q4, q5; q5)∞ =

(q25; q25)∞
(

R(q5)− ζ j5q − ζ2j5 q2R(q5)−1
)
.
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Dissection

Now we multiply the results for all 5 powers, and make use of the
facts that:

(1− ζ5q)(1− ζ25q) . . . (1− q) = 1− q5,

and

(q, q2, q3, q4; q5)∞ =
(q; q)∞

(q5; q5)∞
.

We obtain

(q5; q5)6∞
(q25; q25)∞

= (q25; q25)5∞
(
R(q5)5 − 11q5 − q10R(q5)−5

)
.
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Dissection

Clear the left-hand side to 1 and divide through by (q)∞ on the left
and (q25; q25)∞

(
R(q5)− q − q2R−1(q5)

)
on the right: we get

1

(q)∞
=

(q25; q25)5∞
(q5; q5)6∞

R(q5)5 − 11q5 − q10R(q5)−5

R(q5)− q − q2R−1(q5)
.

The denominator factors the numerator integrally:

1

(q)∞
=

(q25; q25)5∞
(q5; q5)6∞

(
R(q5)4 + qR(q5)3 + 2q2R(q5)2 + 3q3R(q5)

+ 5q4 − 3q5R(q5)−1 + 2q6R(q5)−2 − q7R(q5)−3 + q8R(q5)−4
)
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Dissection

1

(q)∞
=

(q25; q25)5∞
(q5; q5)6∞

(
R(q5)4 + qR(q5)3 + 2q2R(q5)2 + 3q3R(q5)

+ 5q4 − 3q5R(q5)−1 + 2q6R(q5)−2 − q7R(q5)−3 + q8R(q5)−4
)

And now we have it, for the only powers q5n+4 arise from the term

∞∑
n=0

p(5n + 4)q5n+4 = 5q4 (q25; q25)5∞
(q5; q5)6∞

.

Thus, p(5n + 4) is always divisible by 5.
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Congruences for higher powers of 5 need a deeper approach. We

would require that the five functions q (q25;q25)∞
(q)∞

with q → ζ j5q are
the distinct roots of the quintic polynomial

u5 − q5(q25; q25)6∞
(q5; q5)6∞

(25u4 + 25u3 + 15u2 + 5u + 1) = 0,

called the modular equation of fifth order. This would allow us to
see the p(5n + 4) function as self-similar in useful ways.

The use of the theory of modular forms in proving partition
identities will be the next part of the series, but before we discuss
these, we digress to ask some natural questions about partition
congruences.
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First off, is there some more combinatorial way to show these
identities? If we are claiming that some group of discrete objects is
of a population divisible by 5, shouldn’t we be able to divide them
into 5 equal-sized groups? Or, at least, into a collection of groups
all of size divisible by 5?

This is possible, but the proof that the construction works still
relies heavily on the properties of modular forms.



Partition congruences

Freeman Dyson discovered a simple statistic he called the rank of a
partition: its largest part minus its number of parts. Amazingly, for
n ≡ 4 (mod 5), the partitions of n with rank congruent to 0, 1, 2,
3, and 4 mod 5 form equinumerous classes.

0 mod 5 1 mod 5 2 mod 5 3 mod 5 4 mod 5

72 81 6111 9 711

51111 5211 531 621 63

4311 441 522 54 42111

4221 432 3211111 411111 3321

333 3111111 22221 33111 3222

2211111 222111 111111111 32211 21111111
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The rank also shows the p(7n + 5) congruence, but not
p(11n + 6). Dyson conjectured that some better statistic would
show all three, and George Andrews and Frank Garvan found one,
which they called the crank. It is defined as ”the number of parts
larger than the number of 1s minus the number of 1s if there are
any 1s, else the largest part.”

For instance, for λ = 5 + 2 + 1 + 1, the crank is 1− 2 = −1,
whereas for 5 + 4 it is 5.
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The rank and the crank explain the conguences, in a sense, but the
proof relies heavily on the modularity of their generating functions.
In other words, although they “display” the congruences, as proof
techniques they are still somewhat lacking.
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However, the crank is an extremely powerful tool.

The crank shows not only all three of Ramanujan’s prime
congruences, but all their powers. Furthermore, analysis of its
modular properties showed the existence of congruences for all
numbers not divisible by 2 or 3, although the progressions have
moduli which are large multiples of the modulus of the progression.
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There are two obvious holes here.

First, is there some way to produce a more combinatorial
explanation of the congruences where the proof does not rely on
the modularity properties of the generating function? Possibly not,
but this is still an area of some interest. Time permitting, I will
discuss some explorations in this direction where development
might be suitable for grad students next session.
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The second is a major and motivating question in partition theory:
what about the residue of p(n) mod 2 and mod 3?

Wide open!
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Here’s what we know and don’t know:

Radu showed that there exist no arithmetic progressions An + B
for which the partition function is constant mod 2 or mod 3. This
was recent and hard: proving noncongruences is very different.

The obvious conjecture is that parity and tertiarity are equally
distributed in the limit, i.e. the number of odd partition numbers
p(n) for n < X should tend to 1

2X .

We know that this number is at least
√
X

lnX .

It is not known whether the density of odd p(n) is positive. Even
getting the number to

√
X would be an achievement.


