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Modular techniques

We described last session the surprisingly difficult open question of
whether the partition numbers p(n) are equally often even and
odd, i.e. whether it is true for each i that

lim
N→∞

1

N
#{p(n) ≡ i (mod 2) |n ≤ N} =

1

2

and likewise for modulus 3, whether

lim
N→∞

1

N
#{p(n) ≡ i (mod 3) |n ≤ N} =

1

3

Very little is known about these conjectures. But perhaps
surprisingly, a relatively small change to the set of partitions we’re
looking at can result in some very strong congruences mod 2 or 3,
and powers of these.



Modular techniques

Recall that we are sometimes interested in partitions into parts not
divisible by some m. The more usual word for these is m-regular
partitions. They have a simple generating function:

Bm(q) =
∞∑
n=0

bm(n)qn =
(qm; qm)∞

(q; q)∞
.



Modular techniques

Our first theorem is

Theorem

B9(q) =
(q12;q12)2∞

(q2;q2)2∞(q6,q30;q36)∞
+ q (q12;q24)2∞(q36;q36)∞

(q4;q4)∞(q4;q8)6∞
+ 3q3 (q

24;q24)2∞(q36;q36)∞
(q4;q4)3∞(q4;q8)2∞

with its immediate corollary

Theorem

b9(4n + 3) ≡ 0 (mod 3).



Modular techniques

In order to prove this identity, we will rewrite the theorem in terms
of the η function. We let q = e2πiz , and define

η(z) = q1/24(q; q)∞.

Hence η(kz) = qk/24(qk ; qk)∞.

As an aside,
τ(z) = η24(z) = q(q; q)24∞

is known as the Ramanujan τ function. Lehmer’s conjecture is that
the coefficients of this function are all nonzero. We know that
almost all are, and the conjecture holds up to 1023.



Modular techniques

In our desired identity

B9(q) =
(q12; q12)2∞

(q2; q2)2∞(q6, q30; q36)∞
+

q
(q12; q24)2∞(q36; q36)∞

(q4; q4)∞(q4; q8)6∞
+ 3q3 (q24; q24)2∞(q36; q36)∞

(q4; q4)3∞(q4; q8)2∞

notice that not all of our factors are η functions.
In order to rewrite our theorem, we need two observations:

1

(q; q2)∞
=

(q2; q2)∞
(q; q)∞

and
1

(q, q5; q6)∞
=

(q2; q2)∞(q3; q3)∞
(q; q)∞(q6; q6)∞

.



Modular techniques

In terms of η products, our desired identity becomes

q−1/3
η(9z)

η(z)
= q−1/3

η(12z)2η(18z)η(12z)

η(2z)2η(6z)η(36z)

+ q−1/3
η(8z)6η(36z)η(12z)2

η(4z)7η(24z)2
+ 3q−1/3

η(8z)2η(36z)η(24z)2

η(4z)5
.

Multiplying through by a factor of q1/3η(4z)4, we obtain

η(9z)η(4z)4

η(z)
=
η(12z)2η(18z)η(12z)η(4z)4

η(2z)2η(6z)η(36z)

+
η(8z)6η(36z)η(12z)2

η(4z)3η(24z)2
+ 3

η(8z)2η(36z)η(24z)2

η(4z)
.



Modular techniques

A natural question would be “I get the q1/3, but why the η(4z)4?”

In order to explain this we introduce the idea of modular forms, a
special class of functions in a complex variable z . If f (z) is a
function holomorphic (complex differentiable) on H without poles
on R

⋃
{i∞} satisfying

f

(
az + b

cz + d

)
= (cz + d)k f (z)

for all z ∈ H and all elements of

Γ0(N) = {
(

a b
c d

)
∈ SL2(Z), c ≡ 0 (mod N)} with N minimal,

then f is a modular form of weight k and level N.



Modular techniques

One may show that the property

f

(
az + b

cz + d

)
= (cz + d)k f (z)

holds for Γ0(N) by checking that it holds for the generators; if

N = 1, these are translation,

(
1 1
0 1

)
: z → z + 1, and inversion,(

0 −1
1 0

)
: z → −1/z .

Thus, we can loosely say that modular forms are functions that
behave well under translation and inversion.



Modular techniques

Products and quotients of η functions are often modular forms.
We can guarantee that they will be under circumstances outlined
in the theorem of Gordon, Hughes and Newman:

Theorem

Let f (z) =
∏
δ|N η

rδ(δz) with rδ ∈ Z. If

∑
δ|N

δrδ ≡ 0 (mod 24) and
∑
δ|N

N

δ
rδ ≡ 0 (mod 24),

then f (z) is a modular form of weight k = 1
2

∑
rδ and level N.



Modular techniques

The weight and level are important because a theorem of Sturm
tells us that we can check that two modular forms are equal by
checking a finite number of their coefficients, up to a bound
dependent on their weight and level:

Theorem

Let f (z) =
∑∞

n=0 a(n)qn and g(z) =
∑∞

n=0 b(n)qn both be
modular forms of weight k and level N. If

p|(a(n)− b(n)) ∀ 0 ≤ n ≤ k

12
N ·

∏
d prime:d |N

(
1 +

1

d

)
,

then f (z) ≡ g(z) mod p.



Modular techniques

Why do we only need to check a finite number of coefficients to
ensure congruence (or equality, if two forms are congruent for all
primes) for an infinite series?

Because the set of modular forms of a given level and weight form
a finite-dimensional vector space over C.



Modular techniques

Back to our desired identity:

η(9z)η(4z)4

η(z)
=
η(12z)2η(18z)η(12z)η(4z)4

η(2z)2η(6z)η(36z)

+
η(8z)6η(36z)η(12z)2

η(4z)3η(24z)2
+ 3

η(8z)2η(36z)η(24z)2

η(4z)
.

Notice that if we take the lcm of all the δ that appear in a term,
we can also take any multiple of this for our N. That allows us to
match N for all of our terms. (If the weight didn’t match we’d be
out of luck.) With GHN we can thus see that each term is a
modular form of weight 2 and level dividing N = 216.



Modular techniques

The Sturm bound for modular forms of weight 2 and level
(dividing) 216 is

2

12
216

(
1 +

1

2

)(
1 +

1

3

)
= 72.

We use Mathematica to expand both sides of the identity as
q-series, up to the q72 term. We find that they are equal, and so
every term of both sides is congruent modulo every prime. The
only way that can happen is if they are exactly equal, and thus the
identity (and its corollary) is established.



Modular techniques

With modular techniques, the work is essentially reduced to finding
a conjectured congruence, constructing a related modular form,
and verifying it. It’s no surprise that there is a fairly substantial
literature of congruences for any number of m-regular partitions.

m An + B ≡ 0 mod... m An + B ≡ 0 mod...

4 (9,4) 4 7 (9,8) 3

4 (9,7) 12 10 (9,3) 3

5 (4,2) 2 13 (9,7) 3

5 (20,13) 2 19 (81,33) 3

9 (4,3) 3 22 (27,16) 3

16 (81,77) 2 25 (27,17) 3



Modular techniques

There are still a couple of things missing, however.

We just showed that b9(4n + 3) ≡ 0 (mod 3). Is there a
combinatorial explanation? Can you construct three equal-sized
classes, or at least classes of size divisible by 3, to justify the claim?
In short, is there a crank? (The actual crank does not work.)



Modular techniques

Is there a general theorem? With so many congruences for
m-regular partitions running around, for so many m, one would
think that we could glean some insight into saying that
bm(An + B) ≡ 0 (mod N) for some infinite class of m and/or
arithmetic progressions. However, while I have heard one claim of
a forthcoming paper to this effect, I have not seen anything in
black and white.



Modular techniques

Now we’ll use modular forms in a different way. Instead of proving
equality, we’ll just prove that all coefficients of a q-series are
congruent to 0 modulo a prime.

This is handy when it is hard to conjecture or work with the proper
form of a generating function. Here, we will be looking at the
function ν2(n), which counts the number of partitions of n into
parts of exactly 2 different sizes. For instance, ν2(6) = 6, counting

5 + 1, 4 + 2, 4 + 1 + 1, 3 + 1 + 1 + 1, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1

but not 6, 3+3, 3+2+1, 2+2+2, or 1+1+1+1+1+1.



Modular techniques

Student Exercise: Justify the claim that

∞∑
n=0

ν1(n)qn =
∞∑
k=1

1

1− qk
=
∞∑
n=0

d(n)qn,

where d(n) is the number of divisors of n.



Modular techniques

Theorem

(MacMahon) ν2(n) = 1
2

(∑n−1
k=1 d(k)d(n − k)− σ1(n) + d(n)

)
Proof sketch: Consider a “two-sided Ferrers diagram” built by
separating n into k and n − k, both nonzero, and creating two
rectangles, one of area k and the other of area n − k . The number
of such diagrams is

∑n−1
k=1 d(k)d(n − k). You will take half the

number of these after removing pairs in which the rectangles are
the same height (overcounting slightly).



Modular techniques

ν2(n) = 1
2

(∑n−1
k=1 d(k)d(n − k)− σ1(n) + d(n)

)
Using this, we will show:

Theorem

ν2(16n + 14) ≡ 0 (mod 4).

Surprisingly, the proof comes down to counting representations of
numbers by sums of squares, and using a modular form congruence
to show that there are an even number of desirable pairs.

I thank Jeremy Rouse of Wake Forest University for showing me
the modular forms argument that finishes off this technique.



Modular techniques

ν2(n) = 1
2

(∑n−1
k=1 d(k)d(n − k)− σ1(n) + d(n)

)
First observe that σ1(16n + 14) ≡ 0 (mod 8), because
16n + 14 = 2(8n + 7), and for 8n + 7, one of two things happens:
either it has a factor which is 7 mod 8 which appears to an odd
power, or it has factors 3 and 5 mod 8 which both appear to odd
powers. (If you’re not sure, work this out!)

In the former case, let p be the prime 8k + 7. Then every factor
has either a 2 or not, and p an odd number of times or an even. If
even, call it x . Then factors can be grouped as x , 2x , (8k + 7)x ,
and 2 ∗ (8k + 7)x , and the total of these is (24k + 24)x . The
argument is similar for the other case.



Modular techniques

So we can toss out 1
2σ1(16n + 14). That means we have reduced

the problem to showing, for m = 16n + 14,

ν2(m) =
1

2

(
m−1∑
k=1

d(k)d(m − k) + d(m)

)
≡ 0 (mod 4).

Next, observe that d(m) ≡ d
(
m
2

)2
(mod 8), and both are

divisible by 4.

Divisors of m can be grouped as x , 2x , px , and 2px , and the total
is either 0 or 4 mod 8. Half of this is either 0 or 2 mod 4, but
when we square this we obtain either 0 or 4 mod 8 respectively.



Modular techniques

Thus, you can toss out the d(m) and the term k = m/2. Finally,
since k 6= m − k for k 6= m/2, we get each pair (k ,m − k) twice,
and so it suffices to show that either half of the remaining sum is 0
mod 4:

m−2
2∑

k=1

d(k)d(m − k) ≡ 0 (mod 4).



Modular techniques

m−2
2∑

k=1

d(k)d(m − k) ≡ 0 (mod 4).

Now, notice that d(k) is only odd when k is a square. Otherwise,
factors come in pairs. But, 16n + 14 ≡ 6 (mod 8), so it can never
be the sum of two squares (squares are always 0, 1, or 4 mod 8).

So either k or m− k is a nonsquare. If both are, the term is 0 mod
4, so we reduce to cases where one of them is a square.



Modular techniques

m−2
2∑

k=1

d(k)d(m − k) ≡ 0 (mod 4).

Furthermore, if either d(k) or d(m − k) is 0 mod 4, we can throw
that term out, so the nonsquare term will have to be 2 mod 4:
d(k) or d(m − k) must be d(py2) where p is some prime that
divides y to an even power, say 2j . Then
d(py2) = (4j + 2)d(y2) ≡ 2 (mod 4).



Modular techniques

Thus we reduce to the following claim:

Theorem

The number of representations of m = 16n + 14 in the form
x2 + py2, where p is a prime that divides y to an even power, is
even.

If this is the case, then we will have an even number of terms (one
for each k the smaller of x2 and py2) contributing 2 mod 4, and
everything else contributing 0 mod 4, and the total will be divisible
by 4.



Modular techniques

If x2 + py2 ≡ 6 (mod 8), it is either the case that x is twice an
odd number, p = 2, and y is odd, or that x is odd, y is odd, and
p ≡ 5 (mod 8).

We now have two very important congruences:

F (q) :=
∞∑
n=0

σ1(2n + 1)q2n+1 ≡
∞∑
n=1

q(2n+1)2 (mod 2)

and

G (q) :=
1

2

∞∑
n=0

σ1(8n + 5)q8n+5 ≡
∑

p≡5 (mod 8)
y≥1,2|sp(y)

qpy2
(mod 2).



Modular techniques

F (q) :=
∞∑
n=0

σ1(2n + 1)q2n+1 ≡
∞∑
n=1

q(2n+1)2 (mod 2)

G (q) :=
1

2

∞∑
n=0

σ1(8n + 5)q8n+5 ≡
∑

p≡5 (mod 8)
y≥1,2|sp(y)

qpy2
(mod 2)

That F (q) is a modular form of weight 2 and level 4 can be proved
by hand, using the generators for Γ0(4). G (q) is one of the terms
of its dissection, and it can be shown that such a term is also a
form of the same weight and higher level (in this case, N = 256).
This is rather tricky and so we won’t dwell on it.



Modular techniques

F (q) :=
∞∑
n=0

σ1(2n + 1)q2n+1 ≡
∞∑
n=1

q(2n+1)2 (mod 2)

G (q) :=
1

2

∞∑
n=0

σ1(8n + 5)q8n+5 ≡
∑

p≡5 (mod 8)
y≥1,2|sp(y)

qpy2
(mod 2)

The proofs of the congruences rely on several facts about σ1(n):
σ1(c2) ≡ 1 (mod 2) if c is odd; σ1(n) is multiplicative; and
σ1(pn) = 1 + p + p2 + · · ·+ pn.

Strongly Recommended Student Exercise: prove the above
congruences using the given facts.



Modular techniques

The generating function for the number of representations of
8n + 6 of the form x2 + py2 is congruent mod 2 to

H(q) = F (q4)F (q2) + F (q)G (q).

Why? Recall that F (q) ≡
∑∞

n=1 q(2n+1)2 (mod 2), so

F (q4) ≡
∑∞

n=1 q4(2n+1)2 (mod 2), the generating function for the

squares of twice the odd numbers. Then F (q2) ≡
∑∞

n=1 q2(2n+1)2

(mod 2) counts 2y2 with y odd. Likewise, F (q)G (q) counts
x2 + py2 where p ≡ 5 (mod 8).



H(q) = F (q4)F (q2) + F (q)G (q)

We’ve done two new things here, so we need two more facts about
modular forms:

If f (q) is a modular form of weight k and level N, then f (q`) is a
modular form of weight k and level `N, and

if g(q) is also a modular form of weight ` and level N, then
f (q)g(q) is a modular form of weight k + ` and level N.

Putting these together, we obtain that H(q) is a modular form of
weight 4 and level 256.



Modular techniques

The Sturm bound for a modular form of weight 4 and level 256 is
4
12256

(
1 + 1

2

)
= 128, and we calculate that all coefficients of H(q)

up to the Sturm bound are even. (In fact, all of those that are not
in the progression 8n + 6 are 0.) Thus, they all are.

H(q) counts the number of representations of 8n + 6, including
16n + 14, that give terms 2 mod 4 in

m−2
2∑

k=1

d(k)d(m − k).

Since there are an even number of such terms, the full sum is 0
mod 4. Hence ν2(16n + 14) ≡ 0 (mod 4), as claimed. �



Modular techniques

The functions νk(n) are not much explored, but they seem quite
interesting. It’s easy to show that there are quite a lot of
progressions where ν2(An + B) ≡ 0 (mod 2). There are a number
of different open questions that might be tackled:

1 Predict An + B for which ν2(An + B) ≡ 0 (mod 4).

2 ν3(An + B) ≡ 0 (mod 2) occurs occasionally. Find more.

3 ν3(An + b) ≡ 0 (mod 2) seems to occur only if
ν2(An + B) ≡ 0 (mod 4) (not only if). Is that true?

4 If so, what is a sufficient condition for the linkage?

5 Does a congruence mod anything other than 2 or 4 ever
occur? I have not found one yet.

6 Does ν4 or higher ever have congruences? I suspect not.



Partition Theory

I hope you’ve enjoyed this series and learned a little bit about what
partition theorists like to study, and how we study it. I’m happy to
discuss proof techniques and research questions in detail with
anyone who would like to ask. For giving me four sessions of the
Combinatorics Seminar,

THANK YOU!


