EE4800 CMOS Digital IC Design & Analysis

Lecture 12 Packaging, Power and Clock Distributions

Zhuo Feng
Outline

■ Packaging
■ Power Distribution
■ Clock Distribution
Packages

■ Package functions

► Electrical connection of signals and power from chip to board
► Little delay or distortion
► Mechanical connection of chip to board
► Removes heat produced on chip
► Protects chip from mechanical damage
► Compatible with thermal expansion
► Inexpensive to manufacture and test
Package Types

- Through-hole vs. surface mount

Through-hole
- 84-pin PLCC
- 14-pin DIP
- 84-pin PGA
- 560-pin BGA
- 280-pin QFP
- 86-pin TSOP
- 40-pin DIP

Surface Mount
- 44-pin PLCC
- 387-pin PGA Multichip Module
- 296-pin PGA
Multichip Modules

- **Pentium Pro MCM**
 - Fast connection of CPU to cache
 - Expensive, requires known good dice
Chip-to-Package Bonding

Traditionally, chip is surrounded by *pad frame*

- Metal pads on 100 – 200 μm pitch
- Gold *bond wires* attach pads to package
- *Lead frame* distributes signals in package
- Metal *heat spreader* helps with cooling
Advanced Packages

- Bond wires contribute parasitic inductance
- Fancy packages have many signal, power layers
 - Like tiny printed circuit boards
- Flip-chip places connections across surface of die rather than around periphery
 - Top level metal pads covered with solder balls
 - Chip flips upside down
 - Carefully aligned to package (done blind!)
 - Heated to melt balls
 - Also called C4 (Controlled Collapse Chip Connection)
Package Parasitics

- Use many V_{DD}, GND in parallel
 - Inductance, I_{DD}

![Diagram of package parasitics](image)
Heat Dissipation

- 60 W light bulb has surface area of 120 cm2
- Itanium 2 die dissipates 130 W over 4 cm2
 - Chips have enormous power densities
 - Cooling is a serious challenge
- Package spreads heat to larger surface area
 - Heat sinks may increase surface area further
 - Fans increase airflow rate over surface area
 - Liquid cooling used in extreme cases ($$$)
Thermal Resistance

- $\Delta T = \theta_{ja} P$
 - ΔT: temperature rise on chip
 - θ_{ja}: thermal resistance of chip junction to ambient
 - P: power dissipation on chip

- **Thermal resistances combine like resistors**
 - Series and parallel

- $\theta_{ja} = \theta_{jp} + \theta_{pa}$
 - Series combination
Example

- Your chip has a heat sink with a thermal resistance to the package of 4.0° C/W.
- The resistance from chip to package is 1° C/W.
- The system box ambient temperature may reach 55° C.
- The chip temperature must not exceed 100° C.
- What is the maximum chip power dissipation?

\[
\frac{(100-55 \, ^\circ C)}{(4 + 1 \, \text{C/W})} = 9 \, \text{W}
\]
Temperature Sensor

- Monitor die temperature and throttle performance
- Use a pair of pnp bipolar transistors
 - Vertical pnp available in CMOS

\[I_c = I_s e^{\frac{qV_{BE}}{kT}} \rightarrow V_{BE} = \frac{kT}{q} \ln \frac{I_c}{I_c} \]

\[\Delta V_{BE} = V_{BE1} - V_{BE2} = \frac{kT}{q} \left(\ln \frac{I_{c1}}{I_s} - \ln \frac{I_{c2}}{I_s} \right) = \frac{kT}{q} \left(\ln \frac{I_{c1}}{I_{c2}} \right) = \frac{kT}{q} \ln m \]

- Voltage difference is proportional to absolute temp
 - Measure with on-chip A/D converter
Power Distribution

Power Distribution Network functions

- Carry current from pads to transistors on chip
- Maintain **stable voltage** with low noise
- Provide average and peak power demands
- Provide **current return paths** for signals
- Avoid electromigration & self-heating wearout
- Consume little chip area and wire
- Easy to lay out
IR Drop in Power Distribution Network

- **IR drop:** voltage drop due to non-ideal resistive wires
Power Delivery Network

Entire Power Delivery Network

On-Chip Power Delivery Network

12.15 Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010
Power System Model

- **Power comes from regulator on system board**
 - Board and package add parasitic R and L
 - Bypass capacitors help stabilize supply voltage
 - But capacitors also have parasitic R and L

- **Simulate system for time and frequency responses**
Power Delivery Network Modeling

Thousands of nodes

Multi-million nodes

Off-Chip Model

PC Board
Package

On-Chip Model

C4 Bump

Global VDD Grid
Local Grid 1
Local Grid 2

Global GND Grid
On-Chip Power Grid Modeling & Analysis

- Multi-layer interconnects are modeled as 3D RC network
 - Switching gate effects are modeled by time-varying current loadings

DC analysis solves linear system
\[G \cdot \bar{v} = \bar{b} \]

Tens of millions of unknowns!

Transient analysis solves
\[G \cdot \bar{v}(t) + C \cdot \frac{d\bar{v}(t)}{dt} = \bar{b}(t) \]

\[G \in \mathbb{R}^{n \times n} \quad \text{Conductance Matrix} \]
\[C \in \mathbb{R}^{n \times n} \quad \text{Capacitance Matrix} \]
\[\bar{v} \in \mathbb{R}^{n \times 1} \quad \text{Node Voltage Vector} \]
\[\bar{b} \in \mathbb{R}^{n \times 1} \quad \text{Current Loading Vector} \]
Power Requirements

- \(V_{DD} = V_{DDnominal} - V_{droop} \)
- Want \(V_{droop} < +/- 10\% \) of \(V_{DD} \)
- Sources of \(V_{droop} \)
 - IR drops
 - \(L \) di/dt noise
- \(I_{DD} \) changes on many time scales
Important Metrics I

■ **Voltage Droop.**

 - Two sources: IR drops and Ldi/dt noises.

 - Large voltage droop leads to circuit timing failure or function failure.

 - Usually only 5% rail is allowed for 90nm or beyond technologies.

\[V_{dn} = V_{DD} - (V_{DDn} - V_{SSn}) \]

\[V_{dn} \leq 5\%V_{DD} \]
IR Drop

- A chip draws 24 W from a 1.2 V supply. The power supply impedance is 5 mΩ. What is the IR drop?
- \(I_{DD} = \frac{24 \text{ W}}{1.2 \text{ V}} = 20 \text{ A} \)
- IR drop = \((20 \text{ A})(5 \text{ mΩ}) = 100 \text{ mV}\)
A 1.2 V chip switches from an idle mode consuming 5W to a full-power mode consuming 53 W. The transition takes 10 clock cycles at 1 GHz. The supply inductance is 0.1 nH. What is the \(L \frac{di}{dt} \) droop?

\[
\Delta I = \frac{(53 \text{ W} - 5 \text{ W})}{(1.2 \text{ V})} = 40 \text{ A}
\]
\[
\Delta t = 10 \text{ cycles} \times (1 \text{ ns/cycle}) = 10 \text{ ns}
\]
\[
L \frac{di}{dt} \text{ droop} = (0.1 \text{ nH}) \times \left(\frac{40 \text{ A}}{10 \text{ ns}} \right) = 0.4 \text{ V}
\]
Important Metrics II

■ **Current density.**
 - High direct current density leads to electromigration phenomenon.
 - Electromigration decreases reliability or even breaks connections.

\[
J_{\text{avg},m} = \frac{I_{\text{avg},m}}{w_m} \leq \sigma
\]

\[
I_m
\]

\[
I_{\text{avg},m}
\]
Technology Scaling: Challenges

- Scaled down supply voltage vs. increased operating frequency and power densities.
 - Higher percentage of voltage droops.
 - Lower voltage droop tolerance.

- Shrunk chip area vs. increased gated density.
 - Less wiring resources.
 - Larger power delivery network dimensions.

- Fine-grained power management.
 - Power gating.
 - Multiple power domains.
Technology Scaling: Implications

■ Simulation:
 ► Stricter accuracy requirement.
 ► More efficient in terms of runtime and memory.
 ► Full chip simulation with package and integrated components.

■ Verification:
 ► Power-gated power delivery network with multiple power gating configurations.

■ Design:
 ► Optimization for wire sizing.
 ► Detailed tradeoff analysis for on-chip voltage regulation.
 ► Optimization for on-chip voltage regulation.
Frequency Response

- **Multiple capacitors in parallel**
 - Large capacitor near regulator has low impedance at low frequencies
 - But also has a low self-resonant frequency
 - Small capacitors near chip and on chip have low impedance at high frequencies

- **Choose caps to get low impedance at all frequencies**
Example: Pentium 4

- **Power supply impedance for Pentium 4**
 - Spike near 100 MHz caused by package L

- **Step response to sudden supply current chain**
 - 1\(^{st}\) droop: on-chip bypass caps
 - 2\(^{nd}\) droop: package capacitance
 - 3\(^{rd}\) droop: board capacitance

[Wong06]
Clock Distribution

- On a small chip, the clock distribution network is just a wire
 - And possibly an inverter for clkb

- On practical chips, the RC delay of the wire resistance and gate load is very long
 - Variations in this delay cause clock to get to different elements at different times
 - This is called clock skew

- Most chips use repeaters to buffer the clock and equalize the delay
 - Reduces but doesn’t eliminate skew
Example

- Skew comes from differences in gate and wire delay
 - With right buffer sizing, clk₁ and clk₂ could ideally arrive at the same time.
 - But power supply noise changes buffer delays
 - clk₂ and clk₃ will always see RC skew

![Diagram showing differences in gate and wire delay with buffer sizes and capacitances.]

- clk₁: 3 mm, 1.3 pF
- gclk: 3.1 mm
- clk₂: 0.5 mm, 0.4 pF
- clk₃: 0.4 pF
Review: Skew Impact

- Ideally full cycle is available for work
- Skew adds sequencing overhead
- Increases hold time too

\[t_{pd} \leq T_c - \left(t_{pcq} + t_{setup} + t_{skew} \right) \]

\[t_{cd} \geq t_{hold} - t_{ccq} + t_{skew} \]
Solutions

- **Reduce clock skew**
 - Careful clock distribution network design
 - Plenty of metal wiring resources

- **Analyze clock skew**
 - Only budget actual, not worst case skews
 - Local vs. global skew budgets

- **Tolerate clock skew**
 - Choose circuit structures insensitive to skew
Clock Dist. Networks

- Ad hoc
- Grids
- H-tree
- Hybrid
Clock Grids

- Use grid on two or more levels to carry clock
- Make wires wide to reduce RC delay
- Ensures low skew between nearby points
- But possibly large skew across die
Alpha Clock Grids

Alpha 21064

PLL

gclk grid

Alpha 21164

gclk grid

Alpha 21264

Alpha 21064

Alpha 21164

Alpha 21264
H-Trees

- Fractal structure
 - Gets clock arbitrarily close to any point
 - Matched delay along all paths

- Delay variations cause skew

- A and B might see big skew
Itanium 2 H-Tree

- **Four levels of buffering:**
 - Primary driver
 - Repeater
 - Second-level clock buffer
 - Gater

- **Route around obstructions**
Hybrid Networks

- Use H-tree to distribute clock to many points
- Tie these points together with a grid

- Ex: IBM Power4, PowerPC
 - H-tree drives 16-64 sector buffers
 - Buffers drive total of 1024 points
 - All points shorted together with grid