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Abstract

Data prefetching is an effective technique to hide memory
latency and thus bridge the increasing processor-memory
performance gap. Our previous work presents guided
region prefetching (GRP), a hardware/software coopera-
tive prefetching technique which cost-effectively tolerates
L2 latencies. The compiler hints improve L2 prefetch-
ing accuracy and reduce bus bandwidth consumption com-
pared to hardware only prefetching. However, some use-
less prefetches remain to degrade memory performance.
This paper first explores a more aggressive GRP prefetch-
ing scheme which pushes L2 prefetches into the L1, sim-
ilar to the IBM Power 4 and 5 cache designs. This ap-
proach yields some additional performance improvements.
This work then combines GRP with evict-me, a compiler-
assisted cache replacement policy. This combination can
reduce cache pollution introduced by useless prefetches and
further improve memory system performance.

1 Introduction
Memory system remains a key to the performance of mod-
ern architectures. Two previous techniques, guided region
prefetching (GRP) and evict-me caching improve cache
performance using a hardware/software cooperative ap-
proach [34, 35]. The compiler marks good candidates
for prefetching or replacing in set associative caches, and
misses to the marked data causes the architecture to act on
this information. Thus, if the caches are performing well
(i.e., accesses hit), the architecture ignores the hints, but
when the caches miss, the architecture uses the compiler
guidance to help refine prefetching and cache replacement
decisions. This work investigates the combination and in-
teraction of these two techniques, and the utility of pushing
data into the L1 cache of prefetched data, similar to the IBM
Power 4 and 5 prefetching designs [24, 32].

We begin with SRP, scheduled region prefetching, which
is an aggressive L2 region prefetch mechanism [19]. On a
miss, SRP generates prefetches of the large region of lines
around the miss. It services them only when no demand
misses are outstanding, gives priority to the lines near the
miss, and sets the replacement bits on the fetched lines to
the lowest priority (LRU–least recently used). GRP ex-

tends an aggressive hardware-only prefetching by introduc-
ing compiler hints to control the prefetching engine [34].
GRP prefetches only on the misses that compiler marks as
having spatial reuses. GRP thus reduces prefetch bandwidth
needs and improves its accuracy. We observe that a better
cache replacement policy can reduce the side effects of use-
less prefetches and displacement of simultaneously useful
data.

Evict-me caching uses the compiler to help control re-
placement decisions [35]. The compiler marks data as evict-
me when it will not be reused in the future, or its reuse
distance is larger than the cache capacity. On a miss, the
architecture chooses to replace the line whose evict-me bit
is set. If no such line is in the replacement set, it defaults to
the LRU bits. With the appropriate compiler analysis, this
policy always matches or improves over LRU [35].

This paper first investigates using GRP to push prefetch
data into the L1 cache. Since the compiler provides accurate
GRP prefetches, we can hide additional latency by pushing
the prefetched lines into the L1 cache. The pushing scheme
places additional pressure on cache replacement decisions
in both cache levels. The L1 pushes cause write-back re-
placements into the L2 which place additional pressure on
the L2 cache. We investigate a variety of cache replacement
policies and show how some alleviate this pressure. In par-
ticular, we compare pushing data into LRU or MRU (most
recently used) slots, where LRU is the conservative choice,
and MRU is effective only when the line is used quickly.
In general, using MRU in both the L1 and L2 with GRP
and pushing is the best choice. The average improvement is
about 2%, but a few programs improved by up to 13%.

We then combine the compiler-guided evict-me cache
with GRP and GRP with pushing. The evict-me cache
replacement policy helps reduce pollution resulting from
prefetching. It reduces cache misses and is thus orthogonal
to region prefetching techniques, which tolerate latencies.
Since on-demand misses trigger region prefetches, reduc-
ing the L2 misses by using evict-me will also reduce total
prefetches as well as total memory traffic. However, the
combination does not necessarily bring additional perfor-
mance gains if region prefetching has already hidden these
same latencies. We find that the combination reduces cache
miss rates, but due to inaccuracies in our L1 cache model
our simulation improvements are small. We intend to fix



these inaccuracies the near future.
The remainder of this paper is organized as follows. Sec-

tion ?? briefly overviews how GRP and evict-me caching
work. We then describe the L1 push scheme we use. The
next sections present the simulation environment and our
evaluation of pushing, modifying the replacement bits, and
combining GRP and evict-me.

2 Background
In this section, we briefly introduce how GRP and evict-me
caching work.

2.1 Guided Region Prefetching

Guide region prefetching is built upon an aggressive
hardware prefetching technique, called scheduled region
prefetching (SRP). Scheduled region prefetching (SRP) ag-
gressively exploits spatial locality by attempting to prefetch
large (4 KB) memory regions on each L2 cache miss [19].
The two negative effects of aggressive prefetching—
memory bus contention and cache pollution—are addressed
directly by reducing the priority of prefetches in memory
bus request scheduling and in replacement decisions, re-
spectively. However, manipulating prefetching priority and
replacement decisions is not sufficient to negate all the neg-
ative effects. GRP alleviates the problem by introducing
compiler hints. Rather than prefetching a 4K region on ev-
ery miss, GRP issues prefetches only when a miss on a load
marked as spatial. The compiler marks a load as spatial
when it has spatial reuse exploitable by the current cache
settings. The previous work on GRP develops a series com-
piler analyses to detect spatial locality and shows that the
compiler is able to single out most spatial reuses [34].

2.2 Evict-me Cache

Evict-me caching uses the compiler knowledge to assist
cache replacement.Compiler analyses estimate the reuse
distance of each reference in a loop and mark the reference
as evict-me if its reuse distance is greater than twice of the
cache size. Each cache line also contains an additional bit
called the evict-me bit. The bit is set when a marked load
instruction is executed. On a cache miss, the cache line with
its evict-me set is preferred to be replaced. The replacement
still follows LRU policy if no lines are set.

The challenge to the evict-me caching scheme lies in the
difficulty to calculate reuse distances statically, in particular,
for the loop with symbolic bounds. The previous work uses
a simple heuristic to estimate the reuse distance based data
volume. If a reuse of a reference crosses nests whose total
volume is greater than twice of cache size, the reference is
marked as evict-me [35]. When the loop bounds are known
at compile time, it is easy to calculate the volume. For a
loop with symbolic bounds, the other heuristic is applied.
If the nested level of a loop is greater than 1, the total data

volume of the loop is considered beyond the threshold, i.e.,
twice the cache size.

3 An L1 Push Scheme
In this section, we discuss our data push scheme, which
pushes prefetched L2 cache lines into the L1 cache. We first
describe the hardware implementation. We then experiment
with various combinations of two different cache placement
polices: MRU and LRU.

3.1 Hardware Description

We implement the push engine in the L2 cache controller. It
is a pure hardware scheme, but it is implicitly driven by the
compiler if the L2 prefetcher is compiler-guided. A pull-
based prefetcher would follow a request-service-response
path. First, the prefetches sends a request to the next lower
level of the memory hierarchy. The lower memory will
then send the data back when it is ready. A push-based
prefetcher is simpler. It needs only a response process:
when a prefetched block in the lower level is ready, the
prefetcher simply pushes it to the higher level. In our de-
sign, the push stream shares a common response queue with
the regular responses. The L2 cache line size is usually no
smaller than the L1 cache line size. When the L2 cache line
is bigger, we break an L2 cache line into units of L1 cache
line size and push all the units into the L1 cache.

Following the default LRU cache replacement policy, a
pushed or prefetched line will evict the LRU line in a set and
be loaded into the MRU slot. By manipulating the LRU bits,
we can make the new line reside in the LRU slot, the MRU
slot, or other positions in the set. Previous work, which does
not use compiler guidance, shows that keeping L2 prefetch
lines in the LRU slots yields the best performance [19]. In
Section 3.2, we examine the impact of the MRU and LRU
placement policies.

One major concern about this push scheme is address
translation. In our implementation, the L2 cache is phys-
ically indexed and the L1 cache is virtually indexed. We
need to translate a physical address to a virtual address
when pushing a line into the L1 cache. The translation
can be done using an ITLB (inverted translation look aside
buffer). In contrast to a TLB, an ITLB is a small cache in-
dexed by physical page addresses and each entry contains a
virtual page address. Since the L2 prefetching region size
is aligned and no bigger than a page size, all requests of a
region sit in a single page. This ensures that all pushes of a
region typically yield no more than one ITLB miss.

An alternative technique is to keep track of the virtual
addresses of L2 prefetches. We can extract the virtual page
address from an L2 demand miss. A region prefetching re-
quest is enqueued with this address. When a prefetch is
issued, the prefetching MSHR for the prefetch will keep
the virtual address and the push engine can use this address
when the data is ready for pushing.



3.2 Results of the Push Scheme

For our experiments,We simulate program binaries on a ver-
sion of sim-outorder [2] with guied region prefetching [34]
added to the simulator. We use the Alpha-ISA and configure
the simulator as a 1.6 GHZ, 4-way issue, 64-entry RUU (re-
order buffer), out-of-order core with 64K 2-way split level
one caches and a unified 4-way 1MB level 2 cache. This
cache hierarchy is combined with an effective 800-Mhz, 4-
channel Rambus memory system. The L1 and L2 latencies
are 3 and 12 cycles, respectively. Each cache contains 8
MSHRs. We use the SimPoint [28] tool set to select a repre-
sentative starting point beyond the program’s initialization
phase. We simulate for 200M instructions from that point.

We use the same set of benchmarks as in the guide
region prefetching paper [34], which involve 16 Spec
CPU2000 benchmarks and sphinx, a speech recognition ap-
plication [18].

Push Performance

Table 1 shows our results with the L1 push scheme. For
each benchmark, the leftmost five columns list the bench-
mark name and the IPC for the base case, perfect L1 cache,
perfect L2 cache, and GRP using the default LRU place-
ment policy (GRP/LRU). The rightmost five columns are
percentage performance improvements over GRP/LRU. On
average, the placement policies of the prefetched or pushed
lines have a very small impact on performance. The worst
case, GRP/LRU plus Push/LRU, is within a half percent
of the best case, GRP/LRU plus Push/MRU. Compared
to GRP/LRU, GRP/MRU shows little improvement or de-
grades performance for all but mcf, where it improves the
performance by 12%. GRP/MRU performs 6.7% worse
than GRP/LRU for art, although it still improves over the
base by 18%. The gap between GRP/MRU and GRP/LRU
for art comes from a short bandwidth-bounded loop where
the prefetches have short reuse distances and placing them
into the LRU slots causes less pressure on the L2 cache
when the prefetches are useless.

The push scheme brings us an additional 2% perfor-
mance improvement over GRP/LRU. The best combination,
GRP/LRU plus Push/MRU, offers an 11% performance
boost for applu, 9% for equake, and 6% for art. For four
benchmarks, wupwise, mgrid, applu, and equake, the com-
bination of GRP and data pushing is able to beat a perfect
L2 cache.

Push Accuracy and Coverage

Push accuracy is the number of used pushed lines divided
by the total number of pushes. A pushed line is used if it is
hit before its eviction. Since the push scheme is built upon
the region prefetcher, we use the miss reduction over GRP
as a measurement of coverage. Table 2 lists the L1 and L2
miss rates of GRP/LRU in the leftmost two columns. The

miss reduction of GRP/LRU plus Push/MRU is shown in
the middle two columns and the rightmost column lists its
push accuracy. Because the L1 miss reduction affects the
raw L2 miss rates, the L2 miss rates shown in this table are
L2 misses over all data accesses. The push scheme is able
to reduce L1 misses by at least 40% for 7 benchmarks over
GRP and up to 87% for applu. Although the average miss
reduction is 30%, we only see a 2.3% performance improve-
ment for two reasons. First, the L1 gap is smaller: miss re-
duction at L1 yields less performance gain than at L2. Sec-
ond, the push scheme causes additional pressure on the L2
cache, in fact increasing the L2 misses by 9% compared to
GRP. However, the 9% increase does not cause much per-
formance loss since the L2 miss rates of GRP are typically
very low. Push accuracy is 53% on average, lower than the
69% accuracy of GRP on L2. This suggests that there is
higher replacement pressure on the smaller L1 cache.

Table 3 shows the coverage and accuracy of the other
schemes. The push accuracies are very close across differ-
ent schemes. The small gap on the average coverage among
the four schemes does not reflect that there is large variance
on some benchmarks. For example, the miss reduction is
82% for mgrid with GRP/LRU plus Push/MRU compared
to only 45% with GRP/MRU plus Push/LRU. In general,
varied placement policies have more impact on performance
and coverage for specific benchmarks than for the overall
average.

The push scheme cache does not hide the latencies of
those L1 misses that hit the L2 cache. Those misses are
mostly L1 capacity misses that are contained by the larger
L2 cache. They do not trigger L2 prefetching and thus
do not bring in pushed lines, which could hide their laten-
cies. A prefetching engine that triggers prefetches upon L1
misses will solve this problem; we leave this option to fu-
ture work.

4 Combination of Evict-me and Prefetching
Prefetched cache blocks may pollute the cache if the blocks
are useless. Several techniques seek to reduce cache pol-
lution. For instance, hardware can detect stride accesses
and selectively prefetch blocks that are expected to be use-
ful [25]. Compilers can help reduce the impact of cache
pollution introduced by hardware prefetching in two ways.
First, the cache pollution of a prefetched cache block may
be harmless if it evicts a block that is marked as evict-me. In
this situation, the marked line is probably useless anyway.
Second, compilers can use locality analysis to decide when
prefetching is necessary. Previous work examined the sec-
ond option, where the compiler hints are generated to guide
an aggressive hardware prefetcher [34]. In this section, we
explore the first option. GRP enhances an aggressive hard-
ware prefetcher and tolerates L2 miss latencies. In Section
3, we described a push scheme that hides L1 miss laten-
cies. The evict-me cache replacement policy helps reduce



IPC Improvement over GRP/LRU (%)
Base Perf Perf GRP/LRU GRP/MRU GRP/LRU GRP/MRU GRP/LRU GRP/MRU

L2 L1 Push/LRU Push/LRU Push/MRU Push/MRU
gzip 1.98 2.05 2.09 1.98 0.00 0.00 0.00 0.00 0.00
wupwise 2.29 2.74 2.90 2.71 0.18 3.21 3.17 3.54 3.35
swim 0.70 2.34 3.04 1.51 0.80 -3.64 0.66 -1.92 2.12
mgrid 2.42 2.95 3.08 2.88 0.00 3.19 0.83 3.44 0.90
applu 1.41 2.36 2.67 2.30 0.52 8.34 8.69 11.42 11.82
vpr 1.62 1.97 2.09 1.89 -0.05 2.01 1.37 2.70 1.85
mesa 2.52 2.57 2.61 2.53 0.12 -0.16 0.08 -0.28 0.00
art 0.55 1.44 2.18 0.70 -6.70 5.85 -6.28 6.85 -6.42
mcf 0.15 0.74 2.01 0.22 12.44 0.00 12.90 -0.46 12.90
equake 1.01 1.76 1.96 1.69 0.65 8.24 8.72 9.07 9.43
ammp 1.83 2.11 2.39 1.83 -0.33 0.05 -0.33 0.05 -0.38
parser 1.32 1.80 2.13 1.54 -0.32 3.89 4.15 3.82 4.08
gap 2.78 2.96 2.98 2.87 0.00 0.24 0.24 0.24 0.24
bzip2 1.26 1.59 1.83 1.40 0.07 0.36 0.79 0.57 0.93
twolf 1.23 1.59 2.06 1.23 -0.41 0.08 -0.41 0.00 -0.41
apsi 2.59 2.68 2.70 2.67 0.00 0.23 0.23 0.23 0.23
sphinx 1.36 2.25 2.64 1.45 -1.45 1.66 -0.07 1.72 -0.07
mean 1.33 2.01 2.40 1.62 0.27 1.93 1.95 2.35 2.28

Table 1. Performance impact of the L1 push scheme and placement policies

GRP/LRU GRP/LRU + Push/MRU
Miss Rate Coverage Accuracy
L1 L2 L1 L2

gzip 1.03 0.21 0.00 0.00 71.96
wupwise 1.74 0.02 67.82 16.67 52.17
swim 11.23 2.80 48.17 -43.37 95.71
mgrid 0.91 0.07 82.42 -11.43 86.68
applu 3.58 0.10 87.71 -86.73 88.09
vpr 2.24 0.13 35.27 2.29 36.46
mesa 0.35 0.02 -11.43 -4.76 3.45
art 49.59 17.90 11.72 6.69 59.48
mcf 51.87 22.71 -1.08 -0.04 9.53
equake 8.38 0.11 67.78 -14.02 84.49
ammp 4.54 0.46 -0.44 1.09 13.56
parser 5.09 0.50 25.93 -5.58 78.63
gap 0.29 0.08 48.28 -9.33 98.6
bzip2 5.26 0.48 8.56 -6.95 42
twolf 9.03 0.89 -0.55 0.34 5.89
apsi 0.22 0.01 40.91 0.00 65.23
sphinx 3.64 1.43 15.11 1.82 16.13
average 9.35 2.82 30.95 -9.02 53.42

Table 2. Coverage and accuracy of the L1 push scheme, GRP/LRU plus Push/MRU

GRP/LRU GRP/MRU GRP/MRU
Push/LRU Push/LRU Push/MRU

L1 L2 Accu L1 L2 Accu L1 L2 Accu
gzip 0.00 0.00 71.43 0.00 0.00 73.79 0.00 0.00 71.15
wupwise 58.62 11.11 44.10 56.90 22.22 44.48 64.37 22.22 51.79
swim 44.61 -42.90 85.68 45.33 -12.30 91.18 48.62 -12.44 97.58
mgrid 78.02 -10.00 82.59 45.05 -1.43 80.09 46.15 0.00 81.76
applu 67.04 -69.39 66.28 66.48 18.37 70.21 87.43 17.35 91.20
vpr 28.57 0.00 28.21 31.25 -19.08 36.65 38.84 -19.85 46.82
mesa -5.71 -4.76 3.34 -2.86 4.76 6.59 -5.71 4.76 6.71
art 10.32 5.46 54.07 10.43 -5.77 55.30 11.53 -6.10 60.25
mcf -0.37 -0.03 9.40 -0.27 0.49 9.77 -0.94 0.51 9.91
equake 63.13 -15.89 74.12 63.37 12.15 76.08 68.74 11.21 86.31
ammp -0.22 1.09 12.71 -0.22 -2.19 12.30 -0.44 -2.19 13.14
parser 25.93 -5.58 78.06 26.33 -1.99 78.92 26.13 -1.79 79.71
gap 48.28 -9.33 96.26 48.28 0.00 96.23 48.28 0.00 98.61
bzip2 7.79 -6.95 36.38 7.41 1.05 34.52 8.17 0.84 40.17
twolf -0.22 0.34 4.73 -0.11 -1.46 5.30 -0.33 -1.34 6.58
apsi 40.91 -14.29 64.45 40.91 0.00 64.50 40.91 0.00 65.28
sphinx 15.66 1.47 14.65 17.31 -3.91 14.99 17.03 -3.84 16.77
average 28.37 -9.39 48.62 26.80 0.64 50.05 29.34 0.55 54.34

Table 3. Coverage and accuracy of the other push schemes



cache misses and can interact with the prefetching and push-
ing techniques. This section provides results of combining
GRP, evict-me, and data pushing.

4.1 Performance

For our experiments, we use the same system configura-
tions as described in Section 3.2 except that we change
the L1 cache line size to 32 bytes and make it 4-way set-
associative. The Level 1 cache size does not change. We
change the L1 cache line size so that we can examine the
performance impact when the cache line sizes of the two
levels of caches differ. We merge the Fortran benchmarks
used in two previous papers [35, 34]. We do not include
C benchmarks from SPEC CPU2000 because our compiler
currently does not support dependence testing in C code
very well.

Figure 1 compares the performance of GRP, evict-me
(EM), and their combination. Evict-me is turned on for both
levels of cache. GRP and Push use LRU and MRU place-
ment policies respectively. Evict-me does not offer much
performance improvement over the base, although there are
no degradations. It improves mgrid and arc2d by about 4%
and boosts overall performance by 1.5% on average across
all benchmarks. GRP, which tolerates most L2 misses for
these Fortran benchmarks, improves performance by 30.5%
on average. Combining GRP and Evict-me adds an addi-
tional 1.7% and the Push scheme adds an extra 2.7%. The
combination of GRP, Push, and evict-me boosts the base
performance by 36.5% on average, adding an additional 6%
over GRP. The performance gain mostly arises from swim,
jacobi, and vpenta, with improvements over GRP by 13.2%,
14.9%, and 10.2%, respectively. For all but vpenta, combin-
ing the three techniques beats any single one or two com-
bined. For vpenta, GRP/Push/EM is negligibly worse than
GRP/EM because of the slight degradation of GRP/Push.

4.2 Cache Pollution

We use a pseudo direct-mapped structure to measure the
pollution caused by L1 pushes. The structure uses the same
line size as the L1 cache and its total number of lines equals
the number of sets of the L1 data cache. When a pushed
line evicts a cache line, we record the evicted line’s ad-
dress in the pseudo structure. On a demand L1 miss, we
check if it hits the structure. If so, we consider the previ-
ously pushed line as having polluted the cache. Figure 2
shows the normalized L1 pollution caused by pushed lines
of GRP/Push and GRP/Push/EM. Above each set of bars is
the pseudo structure hit rate with GRP/Push, which we use
as a metric of cache pollution. The overall pollution caused
by pushed lines is small. Evict-me reduces this pollution by
over a half. For three benchmarks, apsi, jacobi, and tom-
catv, evict-me eliminates almost all pollution.

4.3 Discussion

The evict-me cache shows less performance improvement
here than reported in the previous paper [35]. We attribute
this to three reasons. First, the ISAs are different. The pre-
vious work targeted the SPARC V8 ISA, while here we use
the Alpha. Different back-end optimizations have an im-
pact on data layout and data access patterns, which affect
cache replacement. Second, we use two different simu-
lators, URSIM and SimpleScalar. URSIM is designed to
model multi-processor systems. It implements strict cache
inclusion while SimpleScalar does not. This choice has a
significant impact on cache replacement decisions. In an
inclusion system, an L2 replacement will invalidate the cor-
responding L1 cache lines. On an L1 miss, an invalid line, if
it exists, will be evicted before an evict-me line or an LRU
line. Third, cache ports are not modeled in SimpleScalar,
which makes the caches in SimpleScarlar very aggressive
and assumes infinite parallelism in cache accesses. It will
be interesting to see how evict-me performs in SimpleScalar
when we implement a stricter cache model. We envision the
stricter model will make cache performance more critical
and create more improvement space for GRP and Evict-me.

5 Related Work
Most pertinent to this work are two previous papers. First,
guided region prefetching, proposed by Wang et al. [34],
uses compiler hints to guide an aggressive region prefetch-
ing engine. We extend GRP by adding a push scheme to
push the prefetched lines from L2 to L1 to hide L1 laten-
cies. Second, Wang et al. [35] propose evict-caching which
uses compiler hints to assist cache replacement. We com-
bine evict-me caching with GRP to investigate the impact
of cache replacement on the effectiveness of prefetching.
These work including the current paper distinguishes them-
selves in their hardware/software cooperative approach. Be-
low we first investigate related prefetching work and then
justify our unique contribution on combining data prefetch-
ing and cache replacement.

Enormous amount of previous work on prefetching typ-
ically focuses on either software prefetching or hardware
prefetching. Software prefetching relies on non-binding
prefetch instructions that bring the indicated block of mem-
ory into the cache, much like a load instruction. Because the
compiler only inserts prefetches for known (or very likely)
loads, software prefetch accuracy is typically high. How-
ever, the performance of software prefetching is typically
low due to two key challenges in data prefetching to the
compiler: selection and scheduling.

Accurate compile-time identification (selection) of the
loads that will cause cache misses at runtime is complex,
requiring both knowledge of hardware parameters (cache
block size, capacity, and associativity) and sophisticated
code analysis (e.g., to determine the volume of other data
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accessed between references to a particular block) [5, 11,
23, 36]. The compiler also faces the difficult challenge of
issuing the prefetches sufficiently early to hide the mem-
ory latency, but not so early that useful data are need-
lessly evicted. While this constraint is not significant
for arrays [4, 23], it limits compiler-based greedy pointer
prefetching [3, 21, 27]. Jump pointers bypass this limita-
tion by identifying records several links ahead in the struc-
ture, but require much more sophisticated analysis, dynamic
updates, and the addition of a jump pointer to each object
[3, 21, 27]. Other approaches prefetch pointer arguments at
call sites [20], and decouple prefetches from the main pro-
gram using a separate thread context [9, 16, 22].

The converse approach is hardware-only prefetching, in
which the hardware predicts prefetch addresses by observ-
ing a program’s runtime behaviors [1, 6, 25, 10, 14, 26, 13,
30, 31, 37]. Since prefetches do not not incur overhead
in the processor itself, the hardware need not be as selec-
tive about issuing prefetch operations. However, unlike the
compiler, the hardware has no direct knowledge of future
memory references; the key challenge in hardware-based
prefetching is determining a reasonable set of predicted ad-
dresses to use as prefetch targets. Hardware prefetching
thus suffers relative to software prefetching in both accu-
racy (because the predictions may be wrong) and coverage
(because some addresses may require the compiler’s scope
to predict).

GRP combines the advantages of both software and
hardware prefetching in a scheme that is simple yet effec-
tive. It conveys sophisticated compiler analysis by associat-
ing a range of hints with loads, which an aggressive, simple,
and general hardware prefetcher uses only when necessary.
Thus, the pertinent compiler analysis is communicated to
the hardware without requiring extensive static lookahead,
software guarantees, or high instruction overhead.

The limited previous work use an cooperative approach
has either exploited prefetching for restricted classes of ac-
cess patterns, or provided an interface that is overly gen-
eral and complex. On the conservative side, Gornish and
Veidenbaum [12] let software select the number of con-
tiguous blocks to prefetch upon a miss, whereas Chen and
Baer [7, 8] use the compiler to supply address and stride in-
formation to augment a reference prediction table. Skepp-
stedt and Dubois use a trap handler to trigger prefetching
using similar information [29]. In the Power 5 prefetching
design, a sequence of L1 misses trigger aggressive prefetch-
ing of up to 8 streams into the L1 and further ahead into the
L2. It paces itself to stay one line ahead in the L1 and 10 in
the L2. In addition, the software may indicate the length and
initiating address of a stream [32, 24]. Karlsson et al. [15]
use prefetch arrays to enable a hardware engine to perform
a generalized variant of greedy and jump-pointer prefetch-
ing. Zhang and Torrellas [38] use the compiler to mark

blocks in memory as belonging to contiguous spatially lo-
cal regions or containing indirection pointers. Their scheme
requires additional bits in main memory and significant sup-
port in the memory controller. Finally, fully programmable
prefetch engines provide flexibility but require significant
memory system support and have not yet demonkstrated
that the required compiler support is realistic [31, 33, 37].

Although the previous work on region prefetching allevi-
ates the pressure on cache replacement by prefetching data
into the LRU lines [19], it is still lack of a though inves-
tigation how cache replacement policy interacts with data
prefetching. One close report in this area is by Lai et al. [17]
who use a hardware history table to predict when a cache
block is dead and which block to prefetch to replace the
dead one. Their technique is hardware-only and thus does
not benefit from static compiler knowledge.

6 Conclusion
In this paper, we evaluate the synergy among GRP, data
pushing, and evict-me. We show that both the push scheme
and evict-me bring an additional performance improvement
over GRP. The three techniques together add an additional
6% over GRP. The evict-me cache does not perform as
well in SimpleScalar as in URSIM. We attribute this to dif-
ferences in the compiler, in the accuracy of the L1 cache
models, and that cache inclusion is not enforced in Sim-
pleScalar. However, it is worth further investigation to ex-
amine where exactly the gap arises. Even in the aggres-
sive cache model of SimpleScalar, we observe that evict-
me is very effective at reducing cache pollution caused by
prefetched or pushed lines. It eliminates half the L1 cache
pollution from the data push scheme. This result suggests
our cooperative techniques have potential to interact well to
improve memory system performance.
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