
Feedback-directed Memory Disambiguation Through Store
Distance Analysis

Changpeng Fang
QLogic Corporation

2071 Stierlin Court, Ste. 200
Mountain View, CA 94043 USA

changpeng.fang@qlogic.com

Steve Carr
Soner Önder
Zhenlin Wang

Department of Computer Science
Michigan Technological University

Houghton MI 49931 USA

{carr,soner,zlwang}@mtu.edu

ABSTRACT
Feedback-directed optimization has developed into an increasingly
important tool in designing optimizing compilers. Based upon pro-
filing, memory distance analysis has shown much promise in pre-
dicting data locality and memory dependences, and has seen use
in locality based optimizations and memory disambiguation. In
this paper, we apply a form of memory distance, called store dis-
tance, to the problem of memory disambiguation in out-of-order
issue processors. Store distance is defined as the number of store
references between a load and the previous store accessing the same
memory location. By generating a representative store distance for
each load instruction, we can apply a compiler/micro-architecture
cooperative scheme to direct run-time load speculation. Using store
distance, the processor can, in most cases, accurately determine
on which specific store instruction a load depends according to its
store distance annotation. Our experiments show that the proposed
store distance method performs much better than the previous dis-
tance based memory disambiguation scheme, and yields a perfor-
mance very close to perfect memory disambiguation. The store dis-
tance based scheme also outperforms the store set technique with
a relatively small predictor space and achieves performance com-
parable to that of a 16K-entry store set implementation for both
floating point and integer programs.

1. INTRODUCTION
Modern superscalar processors allow instructions to execute out

of program order to exploit more instruction level parallelism (ILP).
Because load instructions usually appear on the program’s critical
execution paths, processors must schedule loads as early as pos-
sible. However, to ensure the correctness of program execution,
a load should not be scheduled ahead of any preceding stores that
access the same memory location as the load. Memory disambigua-
tion detects these memory dependences in order to avoid memory
order violations while speculating load instructions.

Previous work has employed numerous static-analysis and hard-
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ware techniques to disambiguate memory references to improve
performance [5, 10, 11, 15, 16, 17]. While many hardware tech-
niques achieve good performance, most require a large on-chip
memory to record memory dependences. In contrast, static depen-
dence analysis does not require the large on-chip memory, but can
only effectively identify load/store dependences for regular array
references in loop nests. In this paper, we explore a compiler/micro-
architecture cooperative solution to the memory disambiguation
problem for superscalar processors. We give a feedback-directed
mechanism based upon memory distance analysis to assist the pro-
cessor in determining the exact memory dependences at runtime.
The proposed scheme does not require a large on-chip memory and
is not limited to array-based codes.

Memory distance is defined as a dynamic quantifiable distance
in terms of memory references between two accesses to the same
memory location. Fang et al. [9] define memory distance to include
reuse distance, access distance and value distance. The reuse dis-
tance of a memory reference is defined as the number of distinct
memory locations accessed between two references to the same
memory location. Both whole-program [7, 28] and instruction-
based [8, 9, 13] reuse distances have been predicted accurately
across all program inputs using a few profiling runs. Reuse dis-
tance analysis has shown much promise in locality-based optimiza-
tions. Access distance is the number of memory references between
a load and its dependent store, while value distance is the access
distance with the consideration that a load depends only on the first
store in a sequence of stores writing to the same address with the
same value. Fang et al. [9] propose a feedback-directed mecha-
nism based upon access distance and value distance to determine
whether or not to speculate a load.

In this paper, we apply a form of memory distance, called store
distance [26], to the problem of memory disambiguation in out-
of-order issue superscalar processors. Store distance is defined as
the number of store instructions between a load and the previous
store accessing the same memory location. Through profiling the
program with one small input, we analyze the instruction-based
store distance distribution and generate a representative store dis-
tance for each static load instruction. Then, a cost effective micro-
architecture mechanism is developed for the processor to determine
accurately on which specific store instruction a load depends ac-
cording to its store distance annotation.

The proposed store distance based mechanism shows very good
results across a set of SPEC CPU2000 benchmarks. Our exper-
imental evaluations indicate that the store distance based method
performs much better than the previous access distance based mem-
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ory disambiguation scheme [9], and yields performance very close
to perfect memory disambiguation, which uses exact knowledge of
memory dependences for each dynamic load instance. The store
distance based scheme also outperforms the store set technique
with a relatively small predictor space and achieves performance
comparable to that of a 16K-entry store set implementation [5] for
both floating point and integer programs. In both cases, store dis-
tance requires a negligible amount of chip space (16 bytes in our
implementation) compared to the several thousand bytes of chip
space used by store set.

We begin the rest of this paper with a review of related work
and background in the field of memory distance analysis and mem-
ory disambiguation. Next, we describe our analysis techniques and
algorithms for measuring and analyzing store distance. Then, we
present the micro-architectural considerations of our work and our
experimental evaluation of store distance based memory disam-
biguation. Finally, we present our conclusions and propose future
work.

2. RELATED WORK AND BACKGROUND
In this section, we first introduce relevant research in memory

distance analysis and dynamic memory disambiguation. Then, we
explain in detail two existing memory disambiguation approaches
to which we will compare our proposed scheme.

2.1 Memory Distance Analysis
Given the high cost of memory operations in modern processors,

compiler analysis and optimization of the memory performance of
programs has become essential in obtaining high performance. To
address the limits of static analysis, much work has been done in
developing feedback-directed schemes to analyze the memory be-
havior of programs using various forms of memory distance. Matt-
son et al. [14] introduce reuse distance (or LRU stack distance)
for stack processing algorithms for virtual memory management.
Others have developed efficient reuse distance analysis tools to es-
timate cache misses [1, 4, 24, 27] and to evaluate the effect of
program transformations [1, 2, 6]. Ding et al. [7, 21, 28] have
developed a set of tools to predict reuse distance across all pro-
gram inputs accurately, making reuse distance analysis a promising
approach for locality based program analysis and optimizations.
They apply reuse distance prediction to estimate whole program
miss rates [28], to perform data transformations [29] and to pre-
dict the locality phases of a program [21]. Beyls and D’Hollander
collect reuse distance distribution for memory instructions through
one profiling run to generate cache replacement hints for an Ita-
nium processor [3]. Marin and Mellor-Crummey [13] incorporate
instruction-based reuse distance analysis in their performance mod-
els to calculate cache misses. Fang et al. [8, 9] introduce the notion
of memory distance to encompass reuse distance, access distance
and value distance. They propose a general analysis framework
to predict instruction-based memory distance, and apply memory
distance analysis to optimizations that require memory or data de-
pendence information.

2.2 Memory Disambiguation
In order to get high performance, load instructions must be is-

sued as early as possible without causing memory order violations.
One way to accomplish this task is to use a memory dependence
predictor to guide instruction scheduling. By caching the previ-
ously observed load/store dependences, a dynamic memory depen-
dence predictor guides the instruction scheduler so that load in-
structions can be initiated early, even in the presence of a large
number of unissued store instructions in the instruction window.

Work in this area has produced increasingly better results [11, 16,
15, 5]. The problem of memory disambiguation and communica-
tion through memory has been studied extensively by Moshovos
and Sohi [15]. The dynamic memory disambiguators proposed
mainly use associative structures aiming to identify the load/store
pairs involved in the communication precisely. Reinman et al. [20]
propose using profile analysis to mark dependences between stores
and loads via tags in store and load instructions to identify oppor-
tunities to communicate values between a store and its dependent
load. They do not apply their technique to memory disambigua-
tion. Various patents [23, 11] also exist that are aimed at identify-
ing those loads and stores that cause memory order violations and
synchronizing them when they are encountered.

Chrysos and Emer [5] introduce the store set concept which uses
direct mapped structures without explicitly aiming to identify the
load/store pairs precisely. With sufficient resources, the store set
scheme provides near oracle performance [5] for a set of SPEC95
benchmarks. We choose this scheme as one of the bases for our
evaluation and describe the algorithm and implementation in detail
in Section 2.3.1. Yoaz et al. [26] present a dynamic store distance
based technique that uses less space than store set, but does not
perform as well. Önder and Gupta [19] have shown that the restric-
tion of issuing store instructions in-order can be removed and store
instructions can be allowed to execute out-of-order if the mem-
ory order violation detection mechanism is modified appropriately.
Furthermore, they have shown that memory order violation detec-
tion can be based on values, instead of addresses. Önder [17] has
proposed a light-weight memory dependence predictor which uses
multiple speculation levels in the hardware to direct load specula-
tion. This scheme outperforms store set algorithm when predictor
space is small.

While the above schemes are based on memory dependence pre-
dictions, Fang et al. [9] have proposed a feedback-directed mem-
ory scheme which use memory distance prediction to determine
whether or not to speculate a load instruction. We examine their
approach in detail in Section 2.3.2.

2.3 Background

2.3.1 Store Set
The store set algorithm relies on the premise that future memory

dependences can be correctly identified from the history of memory
order violations. In this respect, the store set of a load instruction
in a running program is defined to be the set of all store instructions
upon which it has ever depended. The algorithm begins with empty
sets, and speculates load instructions around stores blindly. When
the micro-architecture detects a memory order violation, offending
store and load instructions are allocated store sets and placed into
their respective sets. When the load is fetched, the processor will
determine which stores in the load’s store set were recently fetched
but not yet issued, and create a dependence upon these stores.

Load/Store PC

Store Set ID Table
   (SSIT)

SSID

Store inum

Last Fetched Store Table
(LFST)

Index

Figure 1: Store set implementation

Since a load may depend upon multiple stores and multiple loads
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may depend on a single store, an efficient implementation of the
concept may be difficult. In order to use direct mapped structures,
Chrysos and Emer propose certain simplifying assumptions in their
implementation which limit a store to be in at most one store set at
a time and limit the total number of loads that can have their own
store set. Furthermore, stores within a store set are constrained to
execute in the program order. With these simplifications, they im-
plement the store set algorithm using two direct mapped structures,
as shown in Figure 1. The first is a PC indexed table called the
Store Set ID Table (SSIT) which maintains store sets with a unique
store set identifier (SSID) for each set. The second is called the
Last Fetched Store Table (LFST) and contains dynamic identifi-
cation number (store inum) of the most recently fetched store per
store set. Recently fetched load/store instructions access the SSIT
based on their PC and get their SSID. A load or store with a valid
SSID will access the second table, the LFST, to get the inum of
the store instruction that it should follow at the time of scheduling.
A store instruction also updates its LFST entry with its own inum.
When a mis-speculation is observed, the colliding load and store in-
structions are assigned the same SSID in their corresponding SSIT
entries.

The store set algorithm provides near oracle performance when it
is presented with a sufficiently large SSIT table. However, since the
set information is collected dynamically there is no easy way to use
the same mechanism during compile time to calculate and commu-
nicate instruction dependencies. To be effective, any compile time
only mechanism should guarantee that the dependence information
communicated to the hardware by the compiler will be invariant
across different program inputs. The compiler can only do this if
each store instruction is assigned a unique compile time identifier
and the store set information is collected across all program paths.
This would mean that each store set to which a load belongs would
be overly conservative (a load could have been speculated success-
fully even though it is dependent on a store) and the sets would be
prohibitively large for effective communication to the hardware by
the compiler.

On the contrary, as a feedback-directed method, the proposed
store distance based scheme performs off-line analysis to determine
how the relevant memory dependences will manifest themselves in
the store scheduling window. Doing so, the compiler does not need
to assign a unique static store identifier. In other words, instead
of encoding the exact dependencies among loads and stores where
each is uniquely identifiable, the store distance technique encodes
the distance that will be observed between a store and a dependent
load in the scheduling window. Such information can be communi-
cated to the hardware using a very small integer number. Changes
that would occur with different data sets (i.e., when the program
takes a different path the scheduling distance may change) can be
dealt with by using statistical analysis as is discussed further in the
following sections.

2.3.2 Access Distance Based Memory Disambigua-
tion

Access distance based memory disambiguation is a feedback-
directed method that identifies the load instructions that can be
speculated at runtime using two profile runs of a program. For
speculative execution, if a load is sufficiently far away from the pre-
vious store to the same address, the load will be a good speculation
candidate. Otherwise, it will likely cause a mis-speculation and in-
troduce penalties. The possibility of a mis-speculation depends on
the distance between the store and the load as well as the instruction
window size, the load/store queue size, and machine state. Taking
all these factors into account, Fang et al. [9] define the access dis-

tance of a load as the number of memory references between the
load and the previous store to the same memory address. They pro-
pose to speculate a load instruction if its access distance is greater
than an empirical threshold. Having observed the change of access
distance with data size, Fang et al. use two training runs with small
inputs to estimate the instruction based access distance for a third
input in evaluation.

For those load instructions with a constant access distance, the
threshold is directly used to determine whether the load is spec-
ulative or non-speculative. Those load instructions whose access
distance increases with data size are marked as speculative in fa-
vor of large inputs. All other load instructions are marked as non-
speculative to reduce the possibility of mis-speculations. At run-
time, the processor speculates the load instructions according to
the speculative or non-speculative compiler annotation. The store
distance based scheme that we present in this paper differs from
the access distance based method in that it aims to find the spe-
cific store instruction on which a load depends, and thus is likely to
be more accurate in memory dependence prediction. Additionally,
the store distance based scheme requires only one training run on a
very small input.

3. STORE DISTANCE ANALYSIS
In this section, we first introduce the concept of store distance.

Then, we present our store distance analysis used for memory de-
pendence prediction and load speculation for dynamically sched-
uled superscalar processors. At the end of this section, we briefly
describe how to encode the store distance in a load instruction.

3.1 Store Distance

Figure 2: Store distance example

The store distance of a load is defined as the number of store
instructions between the load and the previous store that accesses
the same memory location. As shown in the code sequence in Fig-
ure 2, instruction 5 (load B) has a store distance of 1, while the
store distance of instruction 8 (load A) is 4. Store distance is a
program property that quantitatively specifies the dependence be-
tween a load and a store. For a load with a store distance of n, we
can find the store (the (n+1)-st one) on which it depends by track-
ing the store execution trace in reverse program order. In modern
superscalar processors, instructions are usually processed in pro-
gram order in the front-end of the pipeline. If the store distance of
a load instruction becomes known as it is decoded, it is not diffi-
cult for the processor to figure out the specific store instruction on
which the load depends, and thus schedule the load accordingly. In
this work, we use profiling with a small input to collect the store
distance of each load instruction, and then develop a novel com-
piler/architecture cooperative mechanism to direct the processor for
efficient and accurate load speculation.

3.2 Store Distance Analysis
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To simplify the compiler/micro-architecture interface, the com-
piler associates one store distance with each static load instruction,
called the summary store distance. We have observed that, on aver-
age, over 82% of the load instructions in SPEC CPU2000 programs
have just one store distance. For these instructions, the store dis-
tance is directly used as the summary distance. However, for the
other instructions, multiple store distances for a static load instruc-
tion can result from a dependence change between different execu-
tions of a load in a single run. Many factors, such as indirect array
references and conditional branches, may cause a dependence to
change. For the instructions in this category, the compiler must ju-
diciously select a summary distance to ensure correct speculations
for most cases. We have developed an efficient summary store dis-
tance selection algorithm that we present later in this section. Our
algorithm first collects store distance based on a profiling run on
a small input. The summary distance is then chosen based on the
distance distribution of each instruction.

To collect the store distance distribution for each static load in-
struction, we run a program using a small training input. To calcu-
late the store distance, we keep a global store instruction counter to
represent the store cycle. For each store, we insert its address into a
hash table along with the current store cycle. Each load only needs
to search the hash table and compare the current store cycle with
the previous one for the same address to obtain its store distance.
For the purpose of memory dependence prediction in superscalar
processors, we only need to consider short store distances. If the
store distance is greater than or equal to a threshold distance, e.g.,
the reorder buffer size, the load instruction is not likely to depend
on any stores in the current pipeline. We refer to this threshold
distance as the speculating distance. If a load has a store distance
greater than or equal to the speculating distance, we set the store
distance to be the speculating distance. For such a load, the proces-
sor may always speculate it with a very low probability of incurring
a mis-speculation.

To compute the store distance, we keep a counter for each dis-
tinct store distance ranging from 0 to the speculating distance. A
store distance for a single load is considered as the dominant dis-
tance if the instances of this distance account for at least 95% of
the total accesses for this instruction.

To select the summary store distance, we begin by initializing
every load instruction’s summary store distance to the speculat-
ing distance (rule 0). Then, according to the profiling results, if
a load instruction has a dominant distance, we output this distance
as its summary store distance (rule 1). Otherwise, we choose the
minimum distance with a non-zero counter for its summary store
distance (rule 2). Rule 0 applies to those load instructions not
appearing in the training run, and we choose to speculate those
load instructions always because blind speculation outperforms no
speculation in most cases [5]. Rule 1 makes it likely that a dom-
inant number of load instances will be correctly speculated. For
rule 2, choosing the minimum distance reduces the number of mis-
speculations. We illustrate the three rules using the following loop:

DO I = 1, N-1
A(I) = B(I)
B(I) = A(N) + A(I) + A(2)

No dependence exists from the store to A(I) to the load from A(N),
and A(N)’s summary store distance is set as the speculating dis-
tance. Additionally, the load from A(I) always depends on the
previous store to A(I), giving a store distance of 0. This indicates
that A(I) should never bypass any preceding store instruction. Fi-
nally, the load from A(2) has two store distances: 0 when I equals
2 and a very large distance otherwise. Since the large store distance

dominates in this case, our algorithm chooses to speculate A(2) al-
ways by generating the speculating distance as its summary store
distance. The store set approach cannot speculate in this case once
a memory order violation occurs. However, the proposed approach
correctly speculates a dominant number of load instances while in-
curring just a few mis-speculations. In Section 5, our evaluations
show that the store distance based scheme outperforms store set in
similar situations on several SPEC CPU2000 benchmarks.

Store distance based memory disambiguation must consider the
case where the store distance changes across program inputs. A
change in store distance implies that the summary store distance
does not exactly represent the memory dependences for inputs other
than the profiled one. Our method assumes that small store dis-
tances are independent of input size. Fang et al. [9] have observed
that over 80% of the memory instructions in SPEC CPU2000 have
constant memory distances. For short store distances, this percent-
age is even higher. If a dependence is loop-independent or carried
by the innermost loop, or the loop bound is constant, the store dis-
tance of a load instruction is likely to be independent of the input
size. To see why, consider the loops in Figure 3. The dependence
between A(I,J+3) and A(I,J) in Figure 3(a) is carried by the in-
nermost J loop, and the store distance of A(I,J) is 2 for all possible
inputs. On the other hand, if the dependence is carried by an outer
loop, as the case in Figure 3(b), the store distance is normally very
large (on the order of N in the example loop). Even though the store
distance may change with inputs, our scheme still considers it as
constant because we can always speculate these load instructions
likely without incurring mis-speculations since the store distance
is greater than the speculating distance. As shown in Section 5,
most loads have a store distance that can be considered constant
for the purposes of memory disambiguation, whether they be con-
stant across inputs or always larger than the speculating distance.
In cases where the influence of input size upon store distances is
not negligible, the memory distance analysis framework proposed
by Fang et al. [9] can be applied to enhance our mechanism by
predicting store distances.

Finally, we would like to note here that the store distance pro-
filing in this work is cost effective. Only a single, small input is
required for the profiling run and the cost to calculate the store dis-
tance for each reference is just a small constant. Because we only
consider short store distances, the memory requirement is limited,
only on the order of the number of static load instructions, which is
normally just several thousand for a SPEC CPU2000 program.

3.3 Store Distance Encoding
In order to encode the store distance in a load instruction, we

must first determine the store distance range under consideration,
which depends on the speculating distance. If the speculating dis-
tance is too small, loads with a store distance beyond this range
may cause mis-speculations. On the other hand, if the speculating
distance is too large, the encoding will require too many bits in the
instruction field. As discussed previously, all loads with a store
distance greater than or equal to the speculating distance should be
able to be speculated blindly without causing memory order viola-
tions. The reorder buffer size is an upper bound for the speculating
distance. For a specific machine configuration, the speculating dis-
tance is determined by machine parameters such as the width and
depth of the pipeline, the instruction window size, the number of
memory ports and the load/store queue size, as well as some pro-
gram properties like the store instruction density in the code se-
quence. While an analytical model may be difficult to obtain, in
Section 5 we use an empirically determined value for the speculat-
ing distance by observing the number of mis-speculations for a set
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    A(I,J+3) = A(I,J) + 10.0
  DO J = 1, N−3
DO I = 1, N

(a) Innermost loop carried dependence

DO I = 1, N−1
  DO J = 1, N
    A(I+1,J) = A(I,J) + 10.0

(b) Outer loop carried dependence

Figure 3: Constant store distance

of benchmarks using various speculating distances .
Given that the summary store distance is in the range from 0 to

s, where s is the speculating distance, we can use blog(s)c+ 1 bits
of the offset field of a load to encode the store distance into the
load instruction. Even though using bits from the offset field may
increase register usage and address computation, Wang [25] has
observed only a negligible performance difference (usually none)
by reducing the offset from 16 to 12 bits in the Alpha instruction
set.

4. MICRO-ARCHITECTURE DESIGN
With the summary store distance encoded in the load instruc-

tions, the major task of the micro-architecture design is to find the
appropriate store upon which a load depends using this informa-
tion. For this purpose, we implement a store table, as shown in
Figure 4. Each entry of the table contains a store instruction’s ID,
which can uniquely identify this store in the current pipeline. In
this work, we use the reorder buffer index to identify the load and
store instructions. Cur is a pointer that points to the most recently
decoded store instruction. The store table is addressed using cur
and an offset. When a store instruction is decoded, cur is advanced
and the store instruction puts its ID in the cur position of the store
table. As a load instruction is decoded, it uses its summary store
distance as the offset to get the ID of the store on which it is sug-
gested to depend and remembers it in the reorder buffer for a later
speculation decision. In our experiment, we implement the store
table using a small circular buffer. If the encoded summary store
distance is the speculating distance, the load instruction may be
speculated blindly because no dependent store will be found in the
table.

 

store table 

1. store A 
2. store B 
3. load  C //  SSD = s 
4. store D 
55..  llooaadd    AA  ////    SSSSDD  ==    22  

ID1 
ID2 
ID4 cur 

0 

Figure 4: Store table implementation

For the example code sequence in the right-hand side of Fig-
ure 4, instruction 3 will always be speculated, and for instruction
5, because its store distance is 2, this load instruction depends on
instruction 1 by using cur and 2 as an offset to address the store
table.

As mentioned earlier, the encoded distance may not represent
the store distances for all instances of a static load instruction, and
mis-speculations are still possible, especially for cases where the

actual store distance is shorter than the summary store distance.
In this work, we use a mis-speculation handling mechanism very
similar to that proposed by Önder and Gupta [19]. Detection of
the memory order violations is performed by recording the load in-
struction’s effective address, the load’s ID and the producer store’s
ID in a table called the speculative load table when a load instruc-
tion is issued speculatively. If the load obtains the value from mem-
ory, its producer store’s ID is set to a number out of the range of
the reorder buffer index. Each load instruction is associated with
an exception bit in the speculative load table. This bit is set or reset
by the store instructions. We allow the store instructions to be is-
sued out of program order, and the checking of the speculative load
table is delayed until the retire time of the store instructions. The
speculative load table is probed with the address used by the store
instruction. For a matching address, the producer store resets the
exception bit and all other stores set this bit. This is to make sure
only those stores that a load has actually bypassed can be effec-
tively involved in memory order violation checking for this load.
Once the load instruction is ready to retire, it checks its exception
bit. If the bit is set, a roll-back is initiated and the fetch starts with
the excepting load instruction. Otherwise, the load instruction’s
entry is deallocated from the speculative load table.

Once equipped with the ability to detect memory order violations
and roll back appropriately, the micro-architecture becomes capa-
ble of exploiting dependences through memory. For various ap-
proaches the difference lies in how the speculating load instructions
are selected. In this paper, we assume that the micro-architecture
examines load and store instructions from oldest to youngest. If
a store instruction is ready to issue and resources are available, it
is issued. If a load instruction has completed address computation,
i.e., is ready to issue, it is issued unless the store in the store table on
which it depends is not ready. Finally, if a load or store instruction
has not completed its address computation, it is skipped.

In this paper, we use the same memory order violation handling
mechanism and similar load/store issue logic for the various mem-
ory disambiguation schemes. Therefore, the major cost difference
among the various schemes comes from the predictor space. The
access distance based scheme uses no predictor and the proposed
store distance based scheme uses an extremely small store table
(16 bytes in our implementation) to resolve memory dependences.
However, store set requires a large SSIT which usually consumes
several thousand bytes of on-chip memory in order to achieve good
performance.

5. EXPERIMENTAL EVALUATION
In this section, we explore the potential of using store distance as

a metric to determine memory dependences in dynamically sched-
uled superscalar processors. We begin with a discussion of our
experimental design and then examine the performance of store
distance based memory disambiguation on a subset of the SPEC
CPU2000 benchmark suite.
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5.1 Experimental Design
To examine the performance of store distance based memory dis-

ambiguation, we use the FAST micro-architectural simulator based
upon the MIPS instruction set [18]. The simulator models the su-
perscalar pipeline and is cycle accurate. The major parameters of
the baseline machine are shown in Table 1(a). We implement a
32KB directed mapped non-blocking L1 cache with a latency of
2 cycles and a 1MB 2-way set associative LRU L2 cache with an
access latency of 10 cycles and a miss latency of 50 cycles. Both
caches have a line size of 64 bytes.

To evaluate the relative performance of store distance, we have
implemented six different memory disambiguation schemes which
are listed in Table 1(b). For the access distance based scheme [9]
as described in Section 2.3.2, we use the test and train input sets
of SPEC CPU2000 for the two training runs. SS1K, SS4K and
SS16K are three store set schemes with store set identifier tables of
1K, 4K and 16K entries, respectively. For store set, we implement
a 256-entry last fetched store table, and apply cyclic clearing every
one million instructions to invalidate all SSIT entries [5]. Perfect
memory disambiguation never mis-speculates with the assumption
that it always knows ahead the addresses accessed by a load and
store operation.

For our test suite, we use a subset of the C and Fortran 77 bench-
marks in the SPEC CPU2000 benchmark suite. The programs miss-
ing from SPEC CPU2000 include all Fortran 90 and C++ programs,
for which we have no compiler, and 3 programs (254.gap, 255.vor-
tex, and 200.sixtrack) which could not be compiled and run cor-
rectly with our simulator. For compilation, we use gcc-2.7.2 with
the -O3 optimization flag. We use the test input sets for the training
run to generate the summary store distance, and then examine the
performance using the reference inputs. To reduce the simulation
time, we fast forward the first one billion instructions and collect
results for the next one billion instructions.

In this work, we add instrumentation to our micro-architectural
simulator to collect the store distance statistics for every load in-
struction. However, tools like ATOM [22] and PIN [12] may be
used on many architectures to reduce the profiling cost over simu-
lation.

In this experiment, we augment the MIPS instruction set to in-
clude the summary store distance for the processor to determine
which store instruction a load depends on at runtime. To encode
the store distance of a load in the instruction, we use a speculating
distance of 15 for our simulated micro-architecture. This is based
on the observation that almost no mis-speculations are caused by
those loads with a store distance greater than or equal to 15, even
though they are blindly speculated. Given a speculating distance of
15, we use 4 bits from the 16-bit offset of a MIPS load instruction
to encode the summary store distance.

5.2 Results
In this section, we report the results of our experiment on our

benchmark suite. First, we report the store distance characteris-
tics of SPEC CPU2000 benchmarks that we used in our experi-
ment. Then, we report raw IPC data using a number of speculation
schemes.

5.2.1 Store Distance Characteristics
As discussed in Section 3, store distance based memory disam-

biguation can often more effectively predict memory dependences
if the store distance of a load does not change across inputs. A con-
stant store distance allows store distance analysis to be applied to
a single training run, rather than the multiple training runs used in
previous memory distance analysis [7, 8, 13, 29]. An analysis of

the benchmarks in our suite shows that 99.1% of the load instruc-
tions in CFP2000 programs and 94.9% of the load instructions in
CINT2000 programs have constant store distances across test and
reference input sets with over half of these distances being greater
than or equal to the speculating distance used in our experiments.
Note that we consider any distance greater than or equal to the spec-
ulating distance to be the speculating distance since anything larger
than the speculating distance will allow speculation even if it grows
with the data size. This result validates using a single training run
to compute store distance.

Given the summary store distance from a single training run, the
effectiveness of our scheme depends on how accurately the com-
piler generated summary store distance represents the actual store
distance of the load instructions in the actual run. To determine
the accuracy of store distance analysis, we compare the store dis-
tance of each instance of the load instructions for the reference in-
put with its summary store distance, which is obtained from the
training run using the test input. For a load instruction, if the ac-
tual store distance equals its summary one (EXACT), its dependent
store instruction can be correctly identified at runtime and this load
can be successfully speculated according to the micro-architecture
design in Section 4. If the actual store distance is greater than the
summary store distance (LONGER), our scheme will direct the load
instruction to depend on a later store instruction, and false depen-
dences may be introduced. Finally, when the actual store distance
is less than the summary store distance (SHORTER), the load in-
struction may be mis-speculated. The goal of our summary store
distance selection algorithm is to maximize the cases of EXACT to
ensure correct speculation, while keeping SHORTER cases as low
as possible in order to avoid mis-speculation.

We classify load instructions into the above three categories for
our set of SPEC CPU2000 programs, as shown in Figure 5. For
floating point programs, 95.4% load instructions fall into the EX-
ACT category, and 0.2% fall into the SHORTER category, on aver-
age. 177.mesa is the only program that has more than 0.2% of the
load instructions whose actual store distance is shorter than its sum-
mary store distance. This is because a number of the loads do not
appear in the training run, making them speculated blindly. Some
of these blind speculations, in turn, result in mis-speculations.

As shown in Figure 5(b), the integer programs have 88.3% EX-
ACT and 1.1% SHORTER load instructions. This implies that the
store distance based scheme may generate more mis-speculations
and false dependences on the integer programs than on the floating
point programs. 164.gzip, 253.perlbmk, 256.bzip2 and 300.twolf
incur a larger percentage of loads in the SHORTER category than
the other programs. For 256.bzip2 and 300.twolf, a number of loads
do not appear in the training run, resulting in blind speculation.
These loads then experience mis-speculations during execution on
the reference input. For 164.gzip, in some cases the distribution of
short and long reuse distances changes for a multiple store distance
load. In these instances, a larger percentage of short reuse distances
occur in the reference run due to variations in the execution paths
taken. Finally, for 253.perlbmk the change in input from test to ref-
erence results in a different distribution of store distances that favor
a shorter distance. Note that in each of the above cases, the mis-
prediction of store distance only occurs for a very small percentage
of loads. As shown in the next section, even with these cases store
distance does an effective job of predicting memory dependences.

Whether or not a SHORTER load instruction will cause mis-
speculation or a LONGER load instruction will cause a false de-
pendence depends upon the runtime situation. For example, even
if a load instruction with an actual store distance of 4 is speculated
because its summary store distance is larger, the fifth previous store
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parameter configuration
issue/fetch/retire width 8/8/8
instruction window size 128
reorder buffer size 256
load/store queue size 128
functional units issue width symmetric
branch predictor 16K gshare
memory ports 2
data cache L1: 32KB, D-Mapped

L2: 1MB,2-way

(a) Configuration

scheme description
access access distance
SD store distance
SS1K store set, 1K SSIT
SS4K store set, 4K SSIT
SS16K store set, 16K SSIT
perfect perfect disambiguation

(b) Disambiguators

Table 1: Machine configuration and memory disambiguators
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(b) CINT2000

Figure 5: Instruction distribution around summary store distance

instruction may have already been executed when the processor is-
sues the load instruction, resulting in no mis-speculation.

5.2.2 IPC
Given the effectiveness of store distance analysis as shown in the

previous section, in this section we detail the run-time performance
of store distance based memory disambiguation (SD). Overall, SD
yields performance better than access distance based speculation
(access), store set using a 1K SSIT (SS1K) and store set using a
4K SSIT (SS4K) for both the integer and floating-point programs in
our benchmark suite. Specifically, on floating-point programs SD
achieves a harmonic mean performance improvement of 9% over
both access and SS1K and 4% over SS4K. On integer programs,
SD obtains a harmonic mean improvement of 10% over access,
8% over SS1K and 4.5% over SS4K. When compared with store
set with a 16K SSIT (SS16K) and perfect memory disambiguation
(perfect), SD yields performance comparable to both. On floating-
point programs, SD achieves a 1% harmonic mean improvement
over SS16K and comes within 1% of the harmonic mean perfor-
mance of perfect. On integer programs, SD comes within 1% of
SS16K and within 2% of perfect. In the rest of this section, we
focus on the relative performance of SD versus SS1K and SS16K
since these latter two schemes give us a comparison with current
well-known hardware techniques. We note the differences of SS4K
and SS16K near the end of the section. For the performance of

all disambiguation techniques, see Figures 6 and 7. In addition, Ta-
bles 2 and 3 detail the effectiveness of each disambiguation method
in terms of the number of mis-speculations, the total number of
speculations and the number of false dependences incurred.

We have found two main factors that contribute to a performance
advantage for SD over both store set schemes. First, SD has an
advantage when aliasing occurs in the SSIT. Since the SSIT is ac-
cessed using the PC as an index into the direct-mapped structure,
multiple PCs map to the same entry in the table. This may cause
a load and store that never incur a memory order violation to be
mapped to the same SSID, preventing load speculation. Increasing
the SSIT size and clearing the table periodically reduce the prob-
lem, but do not eliminate aliasing completely. As described in Sec-
tion 3, the second factor giving SD a performance advantage is that
dependences between a load and store may only occur occasion-
ally. In this situation, SS1K and SS16K will cease load speculation
upon the first occurrence of a memory order violation, even if the
violation only occurs rarely thereafter. In contrast, SD recognizes
the rarity of the dependence and sacrifices a few mis-speculations
for increased performance in the majority of cases.

Several floating-point programs incur problems with aliasing that
reduce performance. For SS1K, 168.wupwise, 171.swim, 179.art,
183.equake and 301.apsi exhibit a performance degradation with
respect to SD due to aliasing. Table 2 shows that SS1K exhibits
significantly more false dependences than SD. These dependences
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result from aliasing in the SSIT. For SS16K, only 301.apsi incurs a
significant amount aliasing in the SSIT as shown by the increase in
the false dependences when compared with SD.

173.applu exhibits the second phenomenon mentioned above. As
reported in the original store set paper [5], some load instructions
in 173.applu only depend on neighboring stores occasionally. Store
distance analysis recognizes the rare occurrence of a dependences
and allows speculation. Both SS1K and SS16K limit the number of
speculations because of this frequently false dependence as illus-
trated in Table 2.

Considering integer programs, 176.gcc and 300.twolf exhibit sig-
nificant aliasing for SS1K. This is due to a large number of static
load instructions in both programs. However, SS16K is able to
overcome this problem. Examining the number of false depen-
dences per one thousand loads found in Table 3, SS1K incurs sig-
nificantly more false dependences than both SD and SS16K with
SD incurring more false dependences than SS16K.

In examining the cases where the store set technique performs
better than SD, we have found three major reasons giving store set
an advantage. First, SD must summarize the store distance with
a single value, choosing a minimum store distance if a dominant
distance does not exist. In some cases, the store distance of a load
correlates to the execution path in the program. Consider the exam-
ple in Figure 8. If execution follows path 1, the load at instruction 9
exhibits a store distance of 5. However, if execution follows path 2,
the load exhibits a store distance of 1. If neither distance is domi-
nant, SD selects 1 as the store distance. Thus, every time execution
follows path 1, a false dependence may occur. The store set algo-
rithm puts both instructions 1 and 7 into the store set for instruction
9. When execution follows path 1 and instruction 1 retires, specu-
lation of instruction 9 is possible.

 

11..  ssttoorree  AA  
2. store B 
3. store C 
4. store D 
5. store E 
6. store F 

77..  ssttoorree  AA  
 8.   store E 
  

99..  llooaadd  AA  

path 1 path 2 

Figure 8: Path-correlated store distance

The second reason causing SD to perform worse than store set
occurs when load instructions do not appear in the training run. In
this case, SD may incur more mis-speculations than store set due
to blind speculation, reducing performance. Finally, the third phe-
nomenon giving store set an advantage occurs when the influence
of input size change causes SD to incur an increase in false depen-
dences. This occurs due to a failure to detect that the store distance
has increased with the data size. This last phenomenon can be over-
come using the memory distance prediction developed by Fang et
al. [9].

When comparing SD and SS16K, SD suffers from issues re-
lated to path-correlated store distance on 168.wupwise, 176.gcc and
300.twolf. However, the negative effects of multiple store distances
counter balance the effect of aliasing in SS1K giving SD an advan-
tage. SD performs worse than both store set schemes on 256.bzip2.
This occurs since 11% of the load instructions appearing in the ref-
erence run do not appear in the test run. In these cases, SD’s use
of blind speculation yields a performance degradation. Finally, SD
performs worse on 177.mesa because the store distance calculation
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Benchmark mis-speculation total speculation false dependences
SD SS1K SS4K SS16K SD SS1K SS4K SS16K SD SS1K SS4K SS16K

168.wupwise 2.44 1.96 0.13 0.54 874 771 873 874 30.62 91.2 3.83 1.88
171.swim 0.02 0.27 0.07 0.04 964 930 959 964 0.32 30.54 12.16 2.63
172.mgrid 0.12 0.05 0.01 0.01 816 813 816 816 0.03 1.41 0.29 0.16
173.applu 2.62 0.97 0.01 0.01 851 832 815 815 28.88 54.42 55.5 58.56
177.mesa 2.64 1.32 0.91 0.05 713 710 715 718 6.68 13.28 2.42 0.25
179.art 0.02 0.04 0.04 0.04 724 697 724 724 0.30 30.25 0.01 0.01
183.equake 0.00 14.44 2.24 0.07 550 478 522 551 0.00 18.43 5.62 0.10
188.ammp 1.09 0.25 0.35 0.11 149 134 149 152 0.16 7.43 1.64 0.03
301.apsi 2.64 18.16 12.68 0.08 806 498 582 758 37.25 117.34 107 53.73
Average 1.29 4.16 1.83 0.11 716 651 684 708 11.58 40.48 20.94 13.04

Table 2: Mis-speculations, total speculations and false dependences per thousand loads for CFP2K

Benchmark mis-speculation total speculation false dependences
SD SS1K SS4K SS16K SD SS1K SS4K SS16K SD SS1K SS4K SS16K

164.gzip 2.03 0.79 0.04 0.04 265 273 277 277 39.84 11.55 11.48 11.45
175.vpr 0.16 1.31 0.66 0.65 430 425 437 437 5.28 16.15 2.98 0.65
176.gcc 5.50 7.98 7.08 0.24 587 298 421 600 5.78 150.96 104.01 2.49
181.mcf 0.00 0.01 0.01 0.01 608 608 608 608 28.18 27.89 27.75 27.71
186.crafty 0.10 1.44 0.08 0.08 242 235 243 243 0.88 6.10 0.32 0.17
197.parser 0.66 2.13 0.12 0.06 330 326 343 345 8.42 19.03 1.04 0.71
253.perlbmk 0.06 0.62 0.17 0.17 385 384 389 390 6.67 11.26 2.71 1.26
256.bzip2 8.53 0.05 0.04 0.04 380 382 383 383 14.30 41.56 39.33 39.33
300.twolf 5.47 6.11 4.26 0.89 631 300 466 649 35.90 100.68 63.1 14.21
Average 2.50 2.27 1.38 0.24 429 359 396 437 16.14 42.83 28.08 10.89

Table 3: Mis-speculations, total speculations and false dependences per thousand loads for CINT2K

is sensitive to the change in data size between the test and reference
input sets.

As mentioned previously, Tables 2 and 3 summarize the number
of mis-speculations, total speculations and false dependences for
SD, SS1K and SS16K. In general, SD incurs fewer mis-speculations
and false dependences and more total speculations than SS1K on
floating-point programs with the same trend on integer programs
except that SD incurs slightly more mis-speculations than SS1K.
Compared with the performance of SS16K on floating-point pro-
grams, SD incurs fewer false dependences and more total specula-
tions, but incurs a higher number of mis-speculations. On integer
programs, SD incurs a higher number of mis-speculations and false
dependences and fewer total speculations than SS16K. The reason
that SD does better on floating-point programs than on integer pro-
grams can be traced to Figure 5 in Section 5.2.1. As shown in
this figure, the predicted store distance falls into the EXACT cate-
gory more often for floating-point programs than integer programs.
Thus, store distance analysis is more accurate for floating-point
codes and can yield better performance results.

SS4K and SS16K yield similar results except on four programs:
176.gcc, 300.twolf, 183.equake and 301.apsi. On each of these
four program SS4K exhibits significantly more mis-speculations
and false dependences than SS16K. In these cases, the reduction
in table size yields an increase in aliasing, resulting in significantly
lower performance.

SD outperforms access by over 8% on both integer and floating-
point programs. Access yields better performance than SD on only
one program – 256.gzip. In 256.bzip2, most load instructions ap-
pear in only one of the runs using the test or train inputs. Because
access uses both the test and train input sets, access is able to
use one or the other input set measurements rather than use blind
speculation as SD does. SD could regain the performance loss if
we chose to use multiple training runs to compute store distance.

In all programs other than 256.bzip2, the additional hardware and
dynamic dependence checking performs better than the single bit
used to denote speculative loads in access.

Finally, we note that using fewer than 4 bits to encode the store
distance yields worse results for SD. Using 3 bits for the store dis-
tance decreases the performance of SD between 8 and 10% over
using 4 bits. Additionally, using 5 bits to encode the store distance
yields no appreciable improvement.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have developed a novel compiler and micro-

architecture cooperative mechanism for dynamic memory disam-
biguation in superscalar processors. Based upon store distance
analysis, the compiler generates a representative store distance for
each load instruction and passes this information through an in-
struction annotation to the micro-architecture. Guided by the store
distance annotation, the processor can accurately identify the spe-
cific store instruction on which a load depends and make specula-
tion decisions accordingly.

The store distance based mechanism shows very promising re-
sults across a set of SPEC CPU2000 benchmarks. Our experi-
mental evaluations indicate that the store distance based method
performs much better than the access distance based memory dis-
ambiguation scheme and yields a performance very close to perfect
memory disambiguation. The store distance based scheme also out-
performs the store set technique with a small predictor space and
achieves a performance comparable to a 16K-entry store set imple-
mentation for both floating point and integer programs.

We are currently adding path information to our computation of
memory distance to help disambiguate store distances on multiple
paths. In the future, we plan to incorporate this analysis into our
speculation scheme to enhance store distance based memory dis-
ambiguation.
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