
Verifying Micro-Architecture Simulators using Event
Traces

Hui Meen Nyew Nilufer Onder Soner Onder Zhenlin Wang

Department of Computer Science
Michigan Technological University

Houghton, MI 49931
{hnyew,nilufer,soner,zlwang}@mtu.edu

ABSTRACT

Contemporary micro-architecture research inherently relies on cycle-
accurate simulators to test new ideas. Typical simulator imple-
mentations involve tens of thousands of lines of high-level code.
Although general software engineering verification and validation
techniques can be applied, the mere complexity of simulators makes
using formal techniques difficult and calls for domain-specific knowl-
edge to be a part of the verification process. This domain-specific
information includes modeling the pipeline stages and the timing
behavior of instructions with respect to these stages.

We present an approach to simulator verification that uses domain-
specific information to effectively capture a potential mismatch be-
tween the assumed architecture model and its simulator. We first
discuss how a simulator-generated event trace can be fed into an au-
tomatically generated verification program from a first-order logic
specification to verify that the simulator obeys the invariants. We
then show techniques that extract simulator behavior from traces
and present the results to the user in the form of graphs and rules.
While the former seeks an assurance of implementation correctness
by checking that the model invariants hold, the latter attempts to de-
rive an extended model of the implementation and hence enables a
deeper understanding of what was implemented.

Our techniques are applicable to any micro-architecture simula-
tor. We present the application of our techniques to hand-written
simulators as well as to those generated from an architecture spec-
ification language.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: Modeling of computer
architecture; C.1 [Processor Architecture]:

General Terms

Verification

Keywords

Architecture simulation, verification, first order logic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS’14, June 10–13 2014, Munich, Germany.
Copyright 2014 ACM 978-1-4503-2642-1/14/06 ...$15.00.
http://dx.doi.org/10.1145/2597652.2597680 .

1. INTRODUCTION
State of the art micro-architecture research inherently relies on

cycle-accurate simulators to develop and test new ideas. Cycle-
accurate simulators need to correctly model the processor behavior
in sufficient detail so that accurate information about how a given
program will execute under the new design can be quantitatively
estimated. Cycle-accurate simulators are rather complex pieces of
software as their implementation typically takes tens of thousands
of lines of high-level program code, such as C. Cycle-accurate sim-
ulators also serve a crucial role in actual processor development and
their use is essential to finalize the micro-architecture design. Cur-
rently, hand-coded cycle-accurate simulators such as SimpleScalar
[3, 16], RSIM [13], M5 [2], GEM5 [1] as well as those generated
from domain-specific architecture description languages are used
widely both by the industry and academia. Examples of architec-
ture description languages include Mimola, nML, Lisa, Expression,
ASIP Meister, TIE, Madl, ADL++, GNR, among others [11].

While generation from an architecture description language can
facilitate the application of formal validation techniques, using an
architecture description language in itself will not prevent model
representation errors. Furthermore, hand-coded simulators are still
widely used as companies rely on their developed code base to
improve the future versions of existing processors. As a result,
verification of simulators is still a difficult task and remains an
area dominated by ad-hoc techniques, except for simpler embed-
ded processors where a formal specification language can be used
to describe the architectural details. Our motivation therefore is to
develop techniques which can identify model representation errors
and do so in a simulator independent manner.

Our techniques rely on event traces generated from an execu-
tion of the target simulator by using the trace in two complemen-
tary processes. Figure 1 shows the general framework. First, we
develop a first-order logic based language, which we call First-

Order Logic Constraint Specification Language (FOLCSL). Using
the language, the invariants of the model under consideration are
specified. Examples of such invariants include that every fetched
instruction must be decoded, no more than two load instructions
can simultaneously access the cache, or, the execution step of an
integer type instruction takes a single cycle. We then automati-
cally synthesize a verification program from the first-order logic
program as shown in Figure 1(a). This verification program reads
the event trace generated by running the simulator using a particular
benchmark (Figure 1(b) and (c)) and signals whether all invariants
are respected. In this approach, if the constraint specification is
complete and the verification program returns no errors, it can be
stated that the simulator has faithfully followed the model for the
set of benchmark programs tested. Unfortunately, the domain of
invariants is large and even domain experts may omit the necessary

constraint → quantification, statement;

statement → ¬statement

→ statement ∧ statement

→ statement ∨ statement

→ statement ⇔ statement

→ statement ⇒ statement

→ expression relation expression

→ (statement)

→ identifier

expression → expression + expression

→ expression - expression

→ expression * expression

→ expression / expression

→ (expression)

→ terminal

→ identifier

relation →> | ≥ | < | ≤ | = | 6=

quantification → ∀ | ∃

Figure 2: FOLCSL Grammar.

tions are restricted to built-in functions only, and they are implicitly
declared.

2.1 Instrumentation
Trace data is generated by inserting instrumentation statements

into the simulator. Each instrumentation statement outputs an event
in comma-separated value (CSV) format. For example,
printf(“%lld,%lld,%d,%lld”, addr, instance, state, cycles) outputs
an event with 4 attributes. SimpleScalar simulator’s -ptrace option
outputs similar data although it is not in CSV format [3, 16]. We
translate it to CSV using a postprocessing program instead of mod-
ifying the simulator.

Instrumentation statements must be injected into proper loca-
tions in the simulation code. Global events which affect a subset of
instructions require attaching the event to individual instructions.
For example, a rollback is a global event in a processor pipeline
but it affects a subset of instructions, namely, all uncommitted in-
structions that are still in the pipeline. In order to properly handle
these types of events, we attach the rollback state to all affected
instructions whenever a rollback occurs.

2.2 Stream Processing and Sliding Windows
FOLCSL and the associated trace description treat an instruction

as an object which moves through different stages at some time
point. The language allows the user to command the full power
of first-order logic in specifying the invariants which need to hold.
A direct consequence of this flexibility is the enormous size of the
trace data which needs to be processed. As an invariant can ref-
erence arbitrary events, it may be necessary to compare all events
to each other. Given that the number of dynamic instructions for a
benchmark program are in the order of billions and each instruction
will have multiple events, an uncompressed full trace of a single
benchmark program takes many terabytes of storage space. There-
fore, instead of storing the trace and processing it afterwards, we
process the data as a stream. In our approach, whenever all the re-

quired events are available they are immediately processed and all
the expired events are discarded. As a result, a minimum amount

of data is kept in memory during the verification process. In order
to reduce the processing time, we employ sliding windows.

2.2.1 Sliding Window

The sliding window approach views the trace as a chronologi-
cally ordered stream of events. Let ξi be our pivot event. We can
buffer all events from time ti − tb to time ti + tf to form a sliding
window [9] that pivots at time ti. If we assume that an instruction’s
maximum time to live (ttl) in the pipeline is tttl, then a given con-
straint can be verified by just checking events in the sliding window
that pivots at time tz with tb = tf = tttl. Note that, in the event of
a context switch or a roll-back, the ttl values are reset, so the win-
dow is always bounded. The required events are all those events
which reside in the sliding window and the expired events are all
events such that their occurrence time is less than tz − tb. Figure 3
depicts the sliding window for constraint C.1, where tz is the pivot.

P
í
!

O P
í
F PÕ! Pççß !

P
í
E PÙ!

Pççß !

P
í
F PÕ!

Figure 3: Sliding window.

The sliding window data structure provides three advantages.
First, it requires minimal amount of storage space. Second, the
verification process can begin even before the full trace is gener-
ated, allowing traces with an unknown length to be processed, such
as a data stream from a network. Finally, for each pivot event, only
the events residing in the sliding window need to be considered in-
stead of all the events in the full trace. This significantly speeds up
the verification process and processing very large traces becomes
feasible.

2.2.2 Checker

Within a sliding window, all permutations of events are verified
against the constraints. A more efficient way would be to view
the verification process as an assignment of values to event vari-
ables, similar to constraint satisfaction problems (CSP). Using that
view, existing CSP algorithms can be used. Our main checker al-
gorithm is a backtracking search algorithm which uses depth-first
search by assigning values to each variable and backtracking when
a given assertion fails. To further reduce processing time, we prune
the search space by evaluating critical expressions of a constraint
before all variables get assigned a value. In constraint C.2 shown
below, if the evaluation of expression sz = IF is true and ay = az

is false, we know that the constraint is guaranteed to be false re-
gardless of the value x. As a result, we can immediately backtrack
and assign another value for y.

∀z ∈ T ∀y ∈ T ∃x ∈ T,

(sz = IF)⇒ (ay = az) ∧ (tx > ty) (C.2)

More efficient CSP heuristics such as propagation, variable or-
dering and intelligent backtracking [14] can also be applied into the
checker.

2.3 Constraint Examples
While the domain of constraints is fairly large, several classes of

constraints are particularly interesting to look at as they are neces-
sary to catch some of the most common modeling errors. A com-
mon error in simulator development is the violation of resource

constraints. For example, if an architecture provides only two mem-
ory ports, at no time we should have more than two memory oper-
ations performing an access. While such an error would imme-
diately get caught in a real hardware implementation as the hard-
ware would not run, a simulator may continue to execute and yield
incorrect results. In this section, we give examples targeting sev-
eral common modeling errors which occur while modeling the re-
sources involved, the temporal behavior of instructions and mod-
eling competing instructions such as arbitration. In order to easily
specify such constraints, FOLCSL includes several built-in func-
tions. One of these functions is car which computes the cardi-
nality of a set. The following example specifies a constraint that
indicates at most two instructions can simultaneously access the
memory ports. Note how sets are utilized to enforce resource based
invariants.

∀q ∈ T, car(set(∀z ∈ T, (sz = MEMPORT)

∧ (tz = tq))) ≤ 2 (C.3)

Similar to resource constraints, temporal constraints can be vi-
olated without a visible indication that such a violation has oc-
curred. Temporal constraint violations include omission of a simu-
lation step (i.e., a corresponding hardware stage), as well as when
a particular instruction does not respect the latency of a particular
pipeline stage. Such violations are very difficult to catch using ad-
hoc techniques, particularly when these violations occur only for a
small subset of the executed instructions. The following example
encodes the requirement that an instruction that leaves the instruc-
tion fetch stage (IF) must either enter the instruction decode (ID)
stage or the rollback (RB) stage and in doing so, it should take at
least a cycle, but no more than K cycles, where K is a constant:

∀z ∈ T ∃y ∈ T, (sz = IF)⇒ (ay = az) ∧ (cy = cz)

∧ (ty − tz > 0) ∧ (ty − tz ≤ K)

∧ ((sy = ID) ∨ (sy = RB)) (C.4)

When multiple instructions compete for a particular resource a
subset of those instructions are granted access. This process, which
is typically carried out by an arbiter at the hardware level, is partic-
ularly difficult to verify as the combination of the set of instructions
must be taken into account while writing the FOLCSL statements.
In the following example, we specify through constraint C.5 that
LOAD instructions are given priority to move from EX to WB
stage.

∀z ∈ T ∀y ∈ T, ∃x ∈ T ∃w ∈ T

(sz = EX) ∧ (hz = LOAD)

∧ (sy = EX) ∧ (hy 6= LOAD) ∧ (ty = tz)⇒

(ax = az) ∧ (cx = cz) ∧ (aw = ay) ∧ (cw = cy)

∧ [((sx = WB) ∧ (sw = WB) ∧ (tx ≤ tw))

∨ (sx = RB) ∨ (sw = RB)] (C.5)

As it can be seen through our examples, FOLCSL provides a
convenient and easy to use way of specifying the invariants which
must hold during the execution of the simulator. The challenge is
to produce a sound and complete set of constraints for a given sim-
ulator implementation so that the correctness of the simulator can
be trusted with high confidence. We have developed a large num-
ber of constraints targeting these common errors in modeling and
tested two simulators, one automatically synthesized from an Ar-
chitecture Description Language (ADL) [12] specification and the
other for SimpleScalar out-of-order simulator [16]. Both of these

simulators model sophisticated superscalar processor architectures.
We found that both simulators respect the timing and resource con-
straints they are believed to model. During this process, several
“errors” we found turned out to be incomplete constraint specifica-
tions. Because this is an iterative process, each run yielded better
constraint specifications which provided improved coverage. As
both of these simulators are mature and have been verified multiple
times using different means of verification in the past, the lack of
errors is expected.

The fundamental value of our technique is the assurance it pro-
vides when these simulators are modified to model an architectural
variation of the original design. The verifier’s presence will pro-
vide confidence that after the modification the resulting simulator
remains a trustworthy model of the architecture under considera-
tion.

We tested various hand-written constraints in ADL and Sim-
pleScalar simulators. The constraints that we tested include:

1. For each instruction type, the stages that must be visited are
indeed visited.

2. All stage latencies such as integer operations, divide and mul-
tiply latencies, cache access latencies, as well as floating
point calculation latencies are respected.

3. Global events, such as rollback are properly included.

4. Resource constraints, such as the number and type of avail-
able memory ports are respected.

5. The width of each stage, such as the number of instructions
fetched, decoded, and retired match the architecture descrip-
tion.

While the invariant verification provides an assurance and a “yes”
or “no” answer to simulator correctness, micro-architecture research
can benefit immensely from better understanding the implemented
model’s behavior under various execution scenarios. We therefore
extend the utilization of trace data to model extraction. Extracted
models provide the user with the ability to develop further con-
straints and better understand the implications of newly developed
techniques. This is the topic of the next section.

3. DERIVING TEMPORAL MODELS FROM

THE TRACE
Cycle-accurate simulators typically model the flow of instruc-

tions from one pipeline stage to the next, and it is this timing that
eventually provides estimates about how many cycles it would take
to execute the given program under the modeled architecture. De-
pending on the modeled architecture, the number of stages and the
latency through each stage will be different. In addition, a range
of events will affect the flow of instructions through the stages. We
directly derive the pipeline structure, stages simulated, how instruc-
tions flow from one stage to the next as well as various events taking
place from the event trace and represent them on a temporal graph
where the nodes of the graph represents the state (as opposed to the
stage) an instruction is in. This graphical representation is called
an SFTAG (State Flow Temporal Analysis Graph) and used to dis-
play the paths instructions follow through the pipeline as well as
conditions and events under which such flow occurs.

An SFTAG is a labeled, directed graph < N,E >, where N
represents the set of nodes and E represents the set of edges. Each
node includes one or more state titles representing the stage(s) an
instruction is in, and the associated conditions. For example, a node

titled “IF” means that the instruction is in the “Instruction Fetch”
stage. Having multiple titles shows that the instruction is either in
many stages, or additional events took place simultaneously while
the instruction is in that stage. For example, a node titled “II &
W4O” means that the instruction is in the “Instruction Issue” stage
and is waiting for its operands to be ready. Similarly, in the simu-
lated architecture if two sub-operations are performed in the same
clock cycle and the trace contains a separate event data for each
sub-operation, they will be combined into a state which represents
both. For example, if the modeled architecture performs execution
(EX) and register-file write (WB) in the same cycle, the corre-
sponding state will be EX&WB.

In a graph, an edge is a quadruple < ns, I, r, nd >, where, ns

represents the source node, I is an interval representing the time
taken for the transition, r represents the ratio of instructions per-
forming the state transition, and nd represents the destination node.
The titles for ns and nd come from the set SS∪{Start}∪{End},
where SS is the set of states shown in the trace file, Start is the
special start state showing the entrance of the instructions to the
pipeline, and End is the special end state showing the exit of the
instructions from the pipeline. An interval I is shown as a [lower
bound, upper bound] pair. For example, the three edges emanating
from the node titled “II” in Figure 5 show that 2% of the instruc-
tions end at the II stage, 63% of the instructions transition from II
to EX&WB taking between 1 to 2 cycles, and 35% of the instruc-
tions transition to the EX stage taking between 1 to 2 cycles. Note
that the instructions that end at the II stage end due to a rollback.

Algorithm 1 Analyze object transition.

Input: Trace T consisting of event triplets id, state(s), time(t),
Max. Samples maxsamples, Probability prob, Window for-
ward time tf , Window backward time tb

Output: Graph g
1: g ← ∅
2: BINS ← ∅
3: ξ ← first event
4: while length(BINS) < maxsamples do

5: if random() < prob AND ξid /∈ BINS then

6: w ← window(T , ξ, tf , tb)
7: bin← group(w, o, ξid)
8: bin← sort(bin, t)
9: bin← cse(bin, s, t)

10: bin← cpe(bin, s, t)
11: g ← merge(g, bin, s)
12: BINS(ξo)← bin
13: end if

14: ξ ← next event
15: end while

16: return

We use Algorithm 1 to create an SFTAG from a trace. A trace
used to generate an SFTAG contains three attributes, namely, id,
state, and time. The id of an instruction consists of its address
and instance. In Figure 4(a) we show a trace segment with three
instructions. The algorithm uses a sliding window as explained in
Section 2.2 setting the window size such that all events related to a
particular instruction are within the window. The process starts by
grouping instructions into bins based on their unique address and
instance (group on line 7). Each bin is sorted with respect to time
(sort on line 8) and duplicate state names are combined (combine

serial events (cse) on line 9) into one as shown in Figure 4(b). For
example, in the original trace, Instruction 1 is in “Instruction Issue”

(II) state at cycles 3 and 4 before transitioning to “Execute” (EX)
and “Write Back” (WB) states at cycle 5. The bin contains events
< 1, II, 3 >, < 1, EX, 5 > and < 1,WB, 5 > to reflect this
flow.

We generate a temporary flow graph for each bin as shown in
Figure 4(c). In this example, Instruction 1 is in “Execute” and
“Write-back” stages at the same time (cycle 5). Therefore, a new
state representing parallel states EX and WB is created (combine

parallel events (cpe) on line 10). Instruction 2 enters the IF state at
cycle 1 and the ID state at cycle 5. Therefore, the link from IF to
ID is labeled as 4, the time it takes to move from the IF state to the
ID state.

Finally, the temporary flow graphs are combined into a single
SFTAG as shown in Figure 4(d) and line 11 of the algorithm. For
each transition in the SFTAG, the minimum and maximum cycles
needed for the transition are computed and presented next to the
edge in [min,max] format. For example, the transition times from
IF to ID are {1, 4, 1}, hence the label in the SFTAG is [1, 4]. The
decimal value on each edge is the ratio of the instructions that move
to the destination state among the instructions in the source state.
For example, in Figure 4(d), node II has 2 outgoing edges, one to
EX&WB state and one to EX state. Both edges have the ratio of
.50 which means that 50% of instructions in II move to EX&WB
and the remaining 50% move to EX .

4. CASE STUDIES
In this section we present three case studies we conducted us-

ing empirical data. The data traces were obtained from FAST ADL
[12] and SimpleScalar out of order [16] simulators. We manually
instrumented various events in FAST ADL simulator. Instrumented
events included major pipeline stages, various stall events and vari-
ous global events. For SimpleScalar, we used its built-in trace gen-
eration and manually added extra events such as memory port ac-
cess. The first of these studies shows how our technique can extract
both the pipeline structure and the temporal behavior of the simu-
lated model. We also illustrate how a human interpreter can write
new constraints in FOLCSL by examining the temporal graphs. In
the second case study, we compare the temporal graphs obtained
for two variants of SimpleScalar. The first simulator faithfully im-
plements a Rambus DRAM model while the second models the
original SimpleScalar simple DRAM model. Through the gener-
ated histograms we conclude the observed behavior matches to ex-
pected behavior for these two models. Finally, we present an anal-
ysis of a bus arbiter implementation which makes use of the same
algorithms which were used for pipeline temporal models but trans-
poses the data so that instead of modeling instruction flow through
the states, flow of states through instructions is performed. This
transposition exposes resource arbitration by combining all those
instructions which are simultaneously in the same stage. This is a
powerful concept which can also be used to identify the forward-
ing requirements of a given architecture by allowing instructions
to get their data as if full-forwarding is implemented, obtaining the
trace data, analyzing it and implementing a realistic forwarding im-
plementation back in the simulator. We believe each of these case
studies are representative of common, time-consuming analysis ef-
forts spent by the micro-architecture community.

4.1 Pipeline Temporal Information
When the simulator event traces are fed through the algorithms

discussed in the previous section, two graphs shown in Figure 5 and
Figure 6 result. These temporal graphs are obtained directly from
trace data, without human intervention.

<2, IF, 1>

<2, ID, 5>

<2, II, 6>

<2, EX, 7>

<2, WB, 9>

<3, IF, 1>

<3, ID, 2>

<3, RB, 3>

start start start start

end

endend

end EX&WB

<id, state, time>

<3, IF, 1>
<1, ID, 2>
<2, ID, 5>
<3, ID, 2>
<1, II, 3>
<3, RB, 3>

<1, IF, 1>

<1, ID, 2>

<1, II, 3>
<1, IF, 1>
<2, IF, 1>

<1, WB, 5>

<2, EX, 7>

<1, EX, 5>

<2, II, 6>

<2, WB, 9>

<1, EX, 5>

<1, WB, 5>

1: 2: 3:

IF

ID

II

1

1

2

IF

ID

II

EX

WB

IF

ID

RB

4

1

1

2

1

1

[1,4] 1.00

[1,1] 0.33
[1,1] 0.66

[2,2] 0.50
[1,1] 0.50

[2,2] 1.00

IF

ID

II

EX

WB

RB

(b) The bins (c) Instruction temporary flow graphs (d) Resulting SFTAG(a) Trace file

EX&WB

Figure 4: Generating a State Flow Temporal Analysis Graph (SFTAG).

start

IF

 0.47

IF & ROBFULL

 0.53

end

ID

 [1, 1] 1.00

 RB [0, 0] 0.00

II

 [1, 1] 0.18 II & W4O

 [1, 1] 0.81

 RB [0, 0] 0.02

EX

 [1, 2] 0.35

EX & WB

 [1, 2] 0.63

 [0, 0] 0.02

MEM

 [1, 918] 0.98

WB

 RB [0, 0] 0.02 [0, 0] 0.98

 RB [0, 96] 0.04 [0, 7] 0.38

 [1, 108] 0.58

 ROBFull [3, 113] 1.00

 RB [0, 568] 0.10

 [1, 1030] 0.90

 RB [0, 0] 0.06 [0, 0] 0.94

Figure 5: FAST pipeline temporal representation.

Figure 5 can be read as follows: Every instruction starts at IF
state or IF&ROBFull state. The IF&ROBFull state means
that the instruction in IF state and at the same time reorder buffer
(ROB) is full. 47% of them will start at IF and the rest will begin
with IF&ROBFull state. Instructions from both states then move
to ID. Instructions which move from ID have a transition time
of 1 cycle and instructions which originate from ID&ROBFull
have minimum transition time of 3 and maximum transition time of
113. In other words, a full ROB takes minimum 3 cycles and max-
imum 113 cycles to make itself available again. From ID, instruc-
tions can move to II (instruction issue), II&W4O (instruction
issue and waiting for operands) or RB (terminate due to rollback)
state. The rest of the graph can be read in a similar fashion.

Figure 6 is similar to Figure 5 except that it represents Sim-
pleScalar out of order architecture. One major difference depicted
in both graphs is an instruction’s starting state. In FAST, all in-
structions start at IF but in SimpleScalar an instruction can either
start at IF or DA. Looking at the code revealed that SimpleScalar
architecture splits load or store instructions into two instructions
in dispatch stage. The trace treats these instructions as generic in-
structions and since their starting state is in DA (dispatch) and they
never visit IF , they appear as if they fork out from the DA state.
Alternatively, one can tag those instructions as special instructions
and represent them differently but we preferred not to distinguish
them. Our approach is to not modify the simulator at all with the
exception of adding the necessary instrumentation code and thus
keeping the modifications at a minimum. Nevertheless, this is a
clear example of how our approach can provide information about
what the simulator actually implements. Whether the simulator
performed any instruction splitting and if so at which stage were not
known to us at the beginning of the case study. This is an example
of how the perception of the user and what is actually implemented
may differ, which our approach has successfully identified.

Besides showing the user the pipeline temporal information, the
graph can also serve as a guide to construct pipeline constraints
such as C.4. For example, consider the outgoing edges from ID in

sion. GoldMine [20] uses static analysis on RTL design and a
decision tree based supervised learning algorithm on simulation
traces to generate assertions. Mandouh and Wassal [7] propose a
framework that utilizes frequent and sequential pattern mining and
known templates to extract RTL design properties.

7. CONCLUSION AND FUTURE WORK
We presented a micro-architecture simulator verification frame-

work which relies on analytical and visual discovery of patterns, as
well as invariant checking.

We believe a considerable amount of time is spent in the micro-
architecture research community to develop simulators for new tech-
niques and making sure that they faithfully implement the desired
models. Our developed framework is a step forward to increase the
confidence of researchers in their results. While simulator valida-
tion (as opposed to verification) has been carried out for some of the
most widely used simulators, such validation is no guarantee that a
modified version of the same simulator will correctly simulate the
desired model.

Our goal therefore is to develop complete FOLCSL programs
for most commonly used simulators which can be used by the re-
searchers together with a given simulator as they are modified. If
the new modifications should not change the invariant behavior of
the simulator, the FOLCSL specifications can be used as is, or mod-
ified accordingly. It is important to note that a limitation of our
approach is its reliance on traces generated by a given set of bench-
marks. As a result, modeling errors will only be caught if they
are exercised by the set of benchmark programs used. While this
will not affect the correctness of reported outcomes for the studied
benchmark set, uncovered modeling errors may affect future stud-
ies when new benchmarks are added. Utilization of a large set of
benchmarks upfront may improve the chances that modeling errors
will be caught as early as possible.

Our future work involves automatic and semi-automatic deriva-
tion of invariant rules from event traces, in addition to the visual
and analytical techniques we have outlined. We plan to use addi-
tional artificial intelligence techniques to extract further informa-
tion from event streams. Our intention is to make the developed
software available to the micro-architecture research community to
contribute towards building simulation frameworks which can be
trusted, even after extensive modifications.

8. REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The Gem5 simulator. SIGARCH

Comput. Archit. News, 39(2):1–7, Aug. 2011.
[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.

Saidi, and S. K. Reinhardt. The M5 simulator: Modeling
networked systems. IEEE Micro, 26:52–60, 2006.

[3] D. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. SIGARCH Computer Architecture News,
25(3):13–25, June 1997.

[4] P. Clark and T. Niblett. The CN2 induction algorithm.
Machine Learning, 3(4):261–283, March 1989.

[5] J. Demšar, T. Curk, and A. Erjavec. Orange: Data mining
toolbox in Python. Journal of Machine Learning Research,
14:2349–2353, 2013.

[6] D. Drusinsky. The temporal rover and the ATG rover. In
Proceedings of the 7th International SPIN Workshop on

SPIN Model Checking and Software Verification, pages
323–330, London, UK, 2000. Springer-Verlag.

[7] E. El Mandouh and A. Wassal. Automatic generation of
hardware design properties from simulation traces. In
Circuits and Systems (ISCAS), 2012 IEEE International

Symposium on, pages 2317–2320, 2012.
[8] S. Hangal, S. Narayanan, N. Chandra, and S. Chakravorty.

IODINE: A tool to automatically infer dynamic invariants
for hardware designs. In Proceedings of the 42nd Annual

Design Automation Conference, DAC ’05, pages 775–778,
New York, NY, USA, 2005. ACM.

[9] H. Mannila, H. Toivonen, and A. Inkeri Verkamo. Discovery
of frequent episodes in event sequences. Data Mining and

Knowledge Discovery, 1(3):259–289, Jan. 1997.
[10] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system

timing-first simulation. SIGMETRICS Perform. Eval. Rev.,
30(1):108–116, June 2002.

[11] P. Mishra and N. Dutt. Processor Description Languages.
Morgan Kaufmann, San Francisco, CA, USA, 2008.

[12] S. Önder and R. Gupta. Automatic generation of
microarchitecture simulators. In Proceedings of the 1998

International Conference on Computer Languages, ICCL
’98, pages 80–, Washington, DC, USA, 1998. IEEE
Computer Society.

[13] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM reference
manual (version 1.0). Technical Report 9705, Rice
University, Dept. of Electrical and Computer Engineering,
Aug. 1997.

[14] S. Russell and P. Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall Press, Upper Saddle River, NJ,
USA, 3rd edition, 2009.

[15] R. G. Sargent. Verification and validation of simulation
models. In Proceedings of the Winter Simulation Conference,
WSC ’11, pages 183–198. Winter Simulation Conference,
2011.

[16] SimpleScalar LLC. SimpleScalar toolset.
http://www.simplescalar.com. Accessed:
2014-01-01.

[17] O. Sokolsky, K. Havelund, and I. Lee. Introduction to the
special section on runtime verification. International Journal

on Software Tools for Technology Transfer, 14(3):243–247,
2012.

[18] S. Tomic̈, A. Cristal, O. Unsal, and M. Valero. Rapid
development of error-free architectural simulators using
dynamic runtime testing. In Computer Architecture and High

Performance Computing (SBAC-PAD), 2011 23rd

International Symposium on, pages 80–87, Oct 2011.
[19] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome,

and D. I. August. The Liberty simulation environment,
version 1.0. Performance Evaluation Review: Special Issue

on Tools for Architecture Research, 31:2004, 2004.
[20] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy,

and D. Johnson. Goldmine: Automatic assertion generation
using data mining and static analysis. In Proceedings of the

Conference on Design, Automation and Test in Europe,
DATE ’10, pages 626–629, 3001 Leuven, Belgium, 2010.
European Design and Automation Association.

[21] X. Xiang, R. Kennedy, G. Madey, and S. Cabaniss.
Verification and validation of agent-based scientific
simulation models. In Proceedings of the 2005

Agent-Directed Simulation Symposium, volume 37, pages
47–55, 2005.

