
A Transparent Remote Paging Model for Virtual Machines

Haogang Chen, Yingwei Luo, Xiaolin Wang, Binbin Zhang, Yifeng Sun
Department of Computer Science and Technology, Peking University, P.R.China, 100871

Zhenlin Wang
Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA

Abstract

In virtual machine systems, with the increase in the num-
ber of VMs and the demands of the applications, the
main memory is becoming a bottleneck for the applica-
tion performance. To improve paging performance and
alleviating thrashing behavior for memory-intensive or
I/O-intensive virtual machine workloads, we proposed
hypervisor based remote paging, which allows a virtual
machine to transparently use the memory resource on
other physical machines as a cache between its virtual
memory and virtual disk device.

The goal of remote paging is to reduce disk accesses,
which is much slower than transferring memory pages
over modern interconnect networks. As a result, the im-
pact of thrashing behavior can be alleviated since the av-
erage disk I/O latency is reduced. Remote paging also
benefits some I/O intensive applications, resulting in a
better-than-native performance.

Our remote paging model is totally transparent to the
guest operating system as well as its applications, and is
compatible with existing techniques like ballooning, hy-
pervisor disk cache and page sharing. A combination of
them can provide a more flexible resource management
policy.

1 Introduction

In recent years, virtual machine(VM)[1, 2, 9] technolo-
gies are becoming more and more popular due to its sup-
port for resource encapsulation, hardware independency
and easy manageability[5]. Most of current research fo-
cuses on how to multiplex hardware resources so that
many VMs can run simultaneously on a single physical
machine. As a result, resources available for a VM is
usually restricted within a physical machine boundary.

In a virtual machine system, the memory resource
is virtualized in the manner of partitioning. With the
increase in the number of VMs and the demands of
the applications, the main memory will become an ex-
tremely limited resource. If the memory requirements
of a virtual machine exceeds the available amount, the
VM may suffer severe performance degradation due
to thrashing[13]. Various techniques have been devel-

oped to improve memory resource efficiency in vir-
tual machine systems, including memory sharing[2],
ballooning[19] and demand paging. These techniques
can either reduce memory footprint or adjust memory al-
location among VMs within the same physical machine.
But none of them helps when all the VMs used up their
memory.

Other existing work also aims at integrating hard-
ware resources in a distributed environment using virtu-
alization. For example, vNUMA[3] can create a virtual
NUMA multiprocessor system over cluster of worksta-
tions. Taking the approach of distributed shared memory
(DSM), vNUMA makes the memory resource on each
node accessible for other nodes through a shared address
space. Unfortunately, simulating shared address space
in the system level imposed a significant overhead. The
virtual machine monitor (VMM) has to maintain mem-
ory coherence among nodes, which is very expensive for
write-shared pages[14]. More importantly, the unaware-
ness of the underlying distributed architecture from the
guest operating system (guest OS) can magnify the over-
head, since it does not know how to exploit data locality.

It has been observed that performance thrashing on
many server systems comes from bursty requests[7, 17],
that is, memory requirements proliferate only for a short
period of time. Generally, it is unnecessary to span the
entire system over several machines, but better to tem-
porarily “borrow” some memory from other physical
machines to overcome the burst. In this way, most com-
putation remains on the original machine, so locality is
maintained.

This paper proposes hypervisor based remote paging.
It allows a virtual machine to transparently use the mem-
ory resource on other physical machines as a cache be-
tween its virtual memory and virtual disk device. A pag-
ing request from a VM is intercepted by the hypervisor,
and is preferably satisfied from remote machines (called
memory servers). The goal of remote paging is to reduce
disk accesses, which is much slower than transferring
memory pages over modern interconnect networks.

Virtual machine systems can benefit from the remote
paging in many ways. First, this model speeds up VM
disk I/O transparently so that the impact of thrashing be-
havior can be alleviated. Second, some I/O intensive ap-

1



plications also benefit from remote paging, resulting in
a better-than-native performance. Third, it can be used
together with existing techniques like ballooning, hyper-
visor disk cache and page sharing, to provide a more
flexible resource management policy. Additionally, our
approach is more cost efficient than other methods, such
as migrating and vNUMA, since it respects the princi-
ple of locality and does not require the remote memory
server to have strong computation power.

Our work inherits the ideas of previous studies on re-
mote paging in multicomputer systems[6, 12]. Remote
paging allows a node to use the memory on other nodes
as its fast backing storage. When a node is out of mem-
ory, a set of pages will be sent and cached on remote
memory servers, rather than directly going to the disk
storage. The new caching layer introduced by remote
paging architecturally lies between a node’s local mem-
ory and its disk storage (usually on I/O nodes).

Our hypervisor-based remote paging can be entirely
implemented within the VMM, without any modifica-
tion to the guest OS. Moreover, we do not introduce an-
other level of paging in the hypervisor. Victim pages
are selected by the guest OS itself. A page swap in
guest OS will result in disk I/O that can be intercepted
by the VMM. Under the intervention of VMM, the pag-
ing request is transparently extended to remote memory
servers. In other words, the remote cache can be con-
sidered as a second level cache of VM’s virtual stor-
age. Section 2 describes the characteristics and design
choices of our hypervisor-based remote paging model,
and investigates some cache policies for the remote
cache. A hash-comparing based technique is proposed to
support eviction-based remote cache in our work. Sec-
tion 3 details our implementation of a prototype of our
remote paging model in Xen hypervisor.

2 The Remote Paging Model

In most virtual memory systems, victim pages (i.e. the
pages to be evicted) are selected by the paging routine
itself. Therefore, an intuitive way to implement remote
paging in virtual machine system is to initiate paging
in the hypervisor. Because VMM controls the trans-
lation from guest-physical-address to the correspond-
ing machine-address, this method will automatically ex-
tends VM’s memory space to a remote machine, giving
guest OS the illusion of a larger physical address space.

However, in virtual machine environment, introduc-
ing another level of paging raises several unique perfor-
mance problems: First, VMM cannot wisely choose vic-
tim pages due to lack of information on page usages[19].
The second problem is double paging[9]. Because page
replacement in the hypervisor is transparent to the guest
OS, it is likely that the guest OS will choose to reclaim a

page that has been paged out by VMM. This will cause
the page to be read in just for writing back to the VM’s
swapping area again. The third one is redundant write
back. If an unallocated page is selected by VMM as a
victim page, it will unnecessarily write back the page
content[10]. Even worse, when an access time-based
(such as Least Recently Used, LRU) algorithm is used
in hypervisor, such choice is very likely to happen be-
cause unallocated pages are usually inactive.

Some artifices can be used to walk around certain
problems. For example, VMware ESX Server[19] uses
a randomized page replacement algorithm to alleviate
bad interaction with guest OS; Cellular Disco[10] avoids
double paging by remapping guest disk blocks to hyper-
visor’s swap area. However, these methods do not fun-
damentally solve the above problems. These counter-
effects in all can likely offset the performance benefits
gained by remote paging.

2.1 Basic Design

Rather than introducing another level of paging in the
hypervisor, our design let the guest OS select victim
pages itself, according to its native replacement poli-
cies. This idea is common with ballooning[19], which
can eliminate the anomaly described earlier.

A page swap in the guest OS will result in disk I/O
that can be intercepted by the VMM. The VMM main-
tains a fast cache on remote machines, called memory
servers. A disk request that hits a cached block is di-
rectly satisfied from the remote memory server, which
provides a lower latency than a real disk access. In this
way, a new level of caching is transparently added into
virtual machine’s memory hierarchy. Figure 1 illustrates
this design.

Guest OS

VMM

Disk Storage

Remote 
Memory

VM Memory

Disk
Cache

Disk I/O

Disk I/O

Interconnect

Local Machine Remote Machine
(Memory Server)

… … …

old_bno 0x1ac93...2d

Block No. Hash code

I/O access 
(pfn, bno)

pfn

page
(pfn)

0x1ac93...2d

=

Admit
(page, old_bno)

New hash code

Y

Figure 1: Basic design of hypervsior-based remote paging.
In this paper, we assume the virtual machine uses the local
storages on the same physical machine.

Our remote paging model lies between the virtual ma-
chine’s memory and its virtual storage devices. More

2



specifically, if the guest OS also has its own buffer cache,
the remote cache becomes a second level cache of the
VM’s virtual storage. There are many studies focusing
on low level buffer cache management[4, 20]. Some
recent work also discusses how to make use of second
level buffer cache in virtual machine systems[13, 15].
However, our remote paging model has its own charac-
teristics, which result in some unique design choices:

• Our design should use as little memory as possible
on the local machine. Since our goal is to improve
thrashing behavior, consuming too much memory
in the VMM is meaningless.

• The remote cache lies neither on the same machine
with its upper level (the VM memory), nor on the
same machine with its lower level (the disk stor-
age). In other words, the overhead of cache data
exchange in either direction is non-trivial.

• The distribution of disk cache on different physical
machines introduced reliability risk. Some means
must be taken to to ensure data persistence for fault
tolerance.

In the next two subsections, we will show how these
characteristics affect the design choices of our remote
paging model.

2.2 Page Placement Policy

Page placement policy defines when a block should
be placed into the cache. There are two common
page placement policies: access-based placement and
eviction-based placement. We have implemented both.

Access-based placement Access-based placement
places a missed block into the cache when it is being
accessed. Implementing access-based placement is
straitforward. For a read, the missed request is passed
to the storage device as usual. As soon as the block
data is ready, it is copied to a send buffer built in the
hypervisor, waiting to be sent to the memory server
soon. Meanwhile, the guest OS is acknowledged about
the I/O completion. For a write, the data is copied
to the send buffer, and the guest OS is immediately
acknowledged. The data will be actually written to the
storage device sooner or latter, depending on the write
policy, which we will discuss in the section 2.3.

Eviction-based placement Eviction-based placement
puts a block into the cache when it is evicted from the
upper level cache (the buffer cache in the guest OS in our
case). Previous studies[4, 20] have showed that eviction-
based placement is more suitable for lower-level buffer

cache, since it can provide a better hit rate. However,
adopting eviction-based caching into our design faces
two major challenges.

First, VMM should decide from where the evicted
block is loaded. The block data can either be loaded
from disk, or directly from the guest memory. Although
both methods require the page content to be transfered to
the memory server, loading from disk introduces addi-
tional disk accesses, thus result in a higher miss penalty.
In contrary, if the guest’s storage resides on another ma-
chine (e.g. NFS server), reloading data from the storage
is worthwhile, because data exchange can be done by
memory server and the file server, without the interven-
tion of local machine (i.e. the one running guest OS).

Second, it is difficult to detect buffer cache eviction
of guest OS in a transparent way. Chen et al.[4] pre-
sented a tracking table based approach that can detect
evictions at reuse time. In their approach, the hypervisor
tracks storage block associates with each memory page,
and updates the tracking table at every disk access. A
block number mismatch when updating means a previ-
ous eviction.

However, in virtual machine environment, a memory
page may be reclaimed by the guest OS for the purposes
other than buffer cache. In this case, tracking table based
approach will fail to detect the eviction since no further
disk access will be made on this page. For example, a
clean buffer cache page can be recycled silently, then
serves as the heap memory for an application. Even
worse, the application may latter modify the its con-
tent. Thus, when the same page is reused as buffer cache
again, it may contain obsolete data which is inconsistent
with the storage block recorded in the VMM, making it
impossible to load the page content from guest memory.

Geiger[13] improves the accuracy of tracking ta-
ble based approach by monitoring other activities from
guest OS such as page faults, but its correctness is not
absolutely guaranteed. Lu et al.[15] walk around the
above problems by modifying the guest OS to explic-
itly notify the hypervisor when a clean page is evicted
(before reuse). However, their method contradicts our
transparency goal.

Since our purpose is to reduce disk accesses, impos-
ing additional I/O operations in the VMM is not a wise
choice. In our model, a page always enters the remote
cache from guest memory. To avoid data inconsistency,
we only admit those pages whose contents are identical
with the corresponding disk blocks. Unlike [15], we do
not modify the guest OS to achieve this. When a disk
block is accessed, a hash code is calculated according
to the page content. This hash code is recorded in the
tracking table, indexed by the page frame number (pfn).
When an eviction is detected by the hypervisor, another
hash code is generated for the the evicted page, using the

3



same algorithm. By comparing the code with the previ-
ous one stored in the tracking table entry, we can deter-
mine whether the evicting page is dirty, as illustrated by
Figure 2.

Guest OS

VMM

Disk Storage

Remote 
Memory

VM Memory

Disk
Cache

Disk I/O

Disk I/O

Interconnect

Local Machine Remote Machine
(Memory Server)

… … …

old_bno 0x1ac93...2d

Block No. Hash code

I/O access 
(pfn, bno)

pfn

page
(pfn)

0x1ac93...2d

=

Admit
(page, old_bno)

New hash code

Y

Figure 2: The modified tracking table with hash code. An
unchanged hash code means the page still hold the data of the
block recorded in the tracking table entry.

However, this approach does have limitations. Al-
though, by carefully choosing a hash algorithm, the
probability of hash collision for non-identical pages is
negligible[18], it is not yet risk-free. Some work[11] ar-
gues that compare-by-hash is inapplicable when data in-
tegrity is crucial. Moreover, this method does not guar-
antee every page evicted by guest OS to be admitted into
the cache, thus has negative effects on hit ratio. We are
investigating other means to overcome these limitations.

2.3 Reliability Considerations

The distribution of disk cache in the remote paging
model also introduces reliability or fault-tolerance prob-
lems. A faulty memory server can cause data loss. Pre-
vious work proposes several solutions. For example,
a mirroring approach[12] replicates a caching page on
multiple machines. The cost of mirroring is that it re-
quires more physical machines and multiple page trans-
fers. A parity approach[16] is similar to the well-known
RAID technique, which keeps checksum values on re-
mote server instead of mirrored contents. Both of these
methods are designed for clusters but too expensive in
our environment.

We address the problem by applying different write
policies on the disk cache. In our model, the hypervi-
sor level disk cache can be either write-back or write-
through.

To implement a write-through cache, the VMM com-
mits a intercepted write operation to the physical de-
vice in parallel with transferring its content to the remote
cache. The guest is notified only after the content is ac-
tually written to the the physical device to ensure data
persistency. Write-through policy does not introduce
additional latency, since the transferring to the remote
cache is fully overlapped with the normal disk write.

However, write-through policy does impose I/O over-
head. With write-through, it is also impossible to im-
prove the latency of disk writes by using remote cache.
This is not a problem since in most guest OS, disk writes
usually overlap with the computation and will not lead
to guest suspension. For example, the Linux performs
write-back of its in-memory disk cache in a background
task. In contrast, disk reads usually bound the appli-
cation because applications cannot continue without the
requested data. The fact that most I/O intensive applica-
tion is bounded by disk reads rather than writes means
that improving latency on disk reads is more crucial in
our design.

Obviously, when reliability is not a significant con-
cern, the write-back policy should be used to improve
performance. A write-back cache does not commit block
content to physical storage until a dirty block is evicted
from remote cache. At that time, the page content is
transferred back to the local machine, and the VMM ini-
tials disk writes to commit the change.

2.4 Memory Server Design

The architecture of memory server is quite flexible. It
can be a dedicate machine running the memory service,
or a machine running both the service and other virtual
machines. In the later case, if the VMM supports bal-
looning, the memory service can dynamically change
the physical memory share with other VMs. Actually,
the service acts like another type of “balloon” who can
steal memory across physical machine boundary.

The memory service is in charge of storing block
contents of the paging machine, responding to its page
in/out requests, as well as handling cache eviction when
the server runs out of space. A cache block for a par-
ticular virtual block device can be indexed by the block
number.

The memory service controls its own cache replace-
ment policy, without the regard for the paging machine.
However, what happens after the victim block is selected
differs from the write policy. If write-through is used on
the paging machine, the server can simply discard the
evicting cache block since its content should be identical
with the remote storage. Under write-back policy, how-
ever, the server should be notified about the dirty status
of its cached blocks, so that it initiates a transfer when
the evicting block is dirty.

2.5 Memory Server vs. Live Migration

It is necessary to compare remote paging with live mi-
gration[5]. Although both of remote paging and live mi-
gration require the cooperation of more than one physi-
cal machines, our remote paging model is more suitable
for many scenes.

4



In the case of bursty requests[7], resource require-
ments proliferate only for a short period of time. It is
not worthy to migrate the entire system to another ma-
chine, and soon moving it back. By contrast, remote
paging provided transparent utilization of remote mem-
ory, while keeping majority of resources on the local ma-
chine.

More importantly, migration not only shifts machine
status but also computation tasks to the target machine.
So the target machine is expected to have at least the
same computation power (e.g. CPU and bus power)
as the original one. But in the case of remote paging,
the only requirements for memory servers are sufficient
free memory and adequate network bandwidth. This is
more cost efficient, since modern off-the-shelf PCs usu-
ally meet such requirements.

Additionally, remote paging also gives the opportu-
nity to use distributed memory resources on multiple
machines. But it is pretty hard for live migration to break
the physical machine boundary.

In summary, live migration and remote paging are tar-
geted at different goals. Live migration aimed to load
balancing and quality of service (QoS), while remote
paging targets at bursty request and low-cost resource
integration. We also suggest that the combination of the
two may lead to a more flexible resource management
solution.

3 Prototype Implementation

We have implemented a prototype of remote paging
model on Xen virtual machine monitor (version 3.1.0).
The prototype consists of two modules: local module
and memory server module.

Since every disk access from guest OS passes through
the back-end block driver, we modify it to implement
the local module. Important data structures maintained
in the module includes: a cached block list, which keeps
track of all disk blocks currently cached by the remote
machine, with their dirty status; a tracking table with
hash code, which is consulted to detect page evictions;
and a send buffer and a receive buffer, which are used to
exchange page content with the remote server module.

Both the access-based and eviction-based placements
described in section 2.2 are implemented in the proto-
type. For the eviction-based placement, SHA-1[18] is
used to calculate the hash code. On the memory server,
we simply use LRU as the cache replacement algorithm:
a newly accessed block is added into the end of cached
block list, and an evicting block is always at the head of
the list. For reliability and convenience, a write-through
policy is used. The memory server controls the cache
replacement on its own. There is no interaction between

the memory server and the local machine when a re-
placement occurs.

The memory overhead of our implementation is low.
On a 64-bit machine, both cache block entry and track-
ing table entry occupy 28 bytes. For a machine with
1GB physical memory and 1GB remote cache, the data
structures consume about 15MB RAM on the local ma-
chine (assume 4KB page size). The send buffer and re-
ceive buffer use additional (but fixed amount of) pages,
depending on their capacities. In practice, we found that
4MB of send buffer and 2MB of receive buffer is ade-
quate.

Our page transferring protocol starts with a sequence
of block headers, describing the block addresses to be
transferred or retrieved. For transfer, the headers are fol-
lowed by corresponding page contents. This protocol
allows bursty transferring of multiple pages to improve
throughputs.

Besides cache replacement policy and protocol han-
dling routines, implementing the memory server module
is strait-forward. In our implementation, it is a user level
process who allocates pinned memory from OS to form
the cache. To support fast looking up of block data for a
given block number, a hash table is also maintained.

4 Preliminary Evaluation

We did some preliminary evaluation and studied on the
correctness and cache hit rate on our prototype of re-
mote paging model described in section 3. The goal of
the evaluation is to prove the feasibility of our idea. At
the time of writing, we are still improving the prototype,
and it is not yet strong enough to perform a complete
performance evaluation.

4.1 Experimental Platform

Our experimental platform consists of two PCs. One is
the local paging machine and the other runs the mem-
ory server. Each of the PCs has an Intel Core 2 Duo
6300 1.86 GHz processor, 2 GBytes main memory and
a Seagate ST3160811AS 160 GBytes SATA hard disk.
We installed Xen-3.1.0 on the local machine, patched
with our local module implementation. Its driver do-
main (Domain 0) is configured with 512MB RAM, and
the guest domain for testing is set to various memory
sizes, as will describe below. Both the Domain 0, guest
domain and the remote memory server runs SUSE Linux
Enterprise Server 10 linux distribution, with kernel ver-
sion 2.6.18. The two machines are connected to a D-
Link DES-1016D 1 Gbps switch by Realtek RTL8168B
network adaptors on both sides.

5



4.2 Kernel Compile Benchmark

In this benchmark, we compile the linux kernel (version
2.6.18) in the guest domain, using gcc version 4.0.1 and
an all-yes-config (make allyesconfig). The allyescon-
fig leads all modules to be compiled and included in a
single kernel images. As a result, the total working set
is about 2.1 GBytes, which far exceeds the configured
guest memory of 512 MBytes, leading to guest paging.

0

10

20

30

40

128 256 512 768 1024 2048

Total hit-rate of 512MB guests

H
it
 R

a
te

 %

Remote Cache Size (in megabytes)

Exclusive
Inclusive

0

20

40

60

80

100

128 256 512 768 1024 2048

Read hit-rate of 512MB guests

R
e
a
d

 H
it
 R

a
te

 %

Remote Cache Size (in megabytes)

Exclusive
Inclusive

0

20

40

60

80

100

128 256 512 768 1024

Read hit rate for swap area

R
e
a
d

 H
it
 R

a
te

 (
%

)

Remote Cache Size (in megabytes)

Exclusive
Inclusive

(a)

(b)

Figure 3: Remote cache hit rate of the kernel compile bench-
mark for various remote cache sizes and two different cache
placement policies. The second figure decouples disk reads
from the total disk accesses.

Figure 3 shows the hit rate of the remote cache in
the kernel compile benchmark for various remote cache
sizes and two different cache placement policies. From
the top figure (a), we can see that the total hit rate im-
proves as the size of the remote cache increases, and
the exclusive cache generally out performs the inclusive
one. The result confirms some previous researches in

that exclusive remote cache can make more efficient use
of the second-level storage cache.

However, the hit rate showed in Figure 3 (a) is relative
low. Even when we have 2048 MBytes of remote cache,
which is equivalent to an infinite cache for our workload,
the hit rate is only 32.7%. The reason is that most disk
accesses in kernel compiling are disk writes that gen-
erate object files. These writes result in large amount
of inevitable compulsory misses. Meanwhile, only the
reuse of these object files happens in the linking stage
contribute to cache hits.

As described in Section 2.3, we should only focus on
read hit rate because our write-through policy does not
provide performance improvement for disk writes. Fig-
ure 3 (b) decouples disk reads from the total disk ac-
cesses to provide an insight on the potential performance
gains of the remote paging model. From Figure 3 (b),
we can see that exclusive remote cache has significant
advantages over inclusive one for relatively small cache
sizes. When the remote cache size ranges from 256, 512
to 768 MBtyes, the read hit rate for the exclusive cache
is 18.7%, 43.8% and 66.1% respectively, or 38.7, 4.2 and
2.4 times higher respectively than the inclusive one.

4.3 Quicksort Benchmark

The kernel compile benchmark examines how the re-
mote cache behaves when the guest OS scans through
regular disk files in a sequential manner. We also runs
quicksort micro-benchmark to show the efficiency of re-
mote paging model on the swap area.

The quicksort benchmark reads 1 GBytes of random
integers from the disk, then sort them in application’s
heap memory, using qsort() function provided by stan-
dard C library. Without regards to the initial data loading
phase, the working set size of this benchmark is about
1 GBytes. If the working set is larger than the phys-
ical memory granted to the guest OS (768 MBytes in
our experiment), application will suffer severe thrashing
behavior by accessing its swap partition constantly. Un-
like kernel compile benchmark, the access pattern on the
swap partition is quite arbitrary and exhibits some tem-
poral locality.

The result showed in Figure 4 indicates that our re-
mote paging model performs even better under this
workload. When the remote cache size ranges from 256,
512 to 768 MBtyes, the exclusive cache produces read
hit rate at 70.2%, 88.9% and 99.5% respectively. This
means that with 512 MBytes of remote cache, nearly 90
percent of paging request can be satisfied from remote
cache, without actually reading the physical disk.

The efficiency of the remote cache in this benchmark
lies in the fact that on a swap area, a data block is never
read before being written to. This property eliminates all

6



compulsory read misses on the remote cache. Moreover,
since a swap area usually does not impose data persis-
tency requirement, we can aggressively adopt write-back
policy to improve the write latency.

0

10

20

30

40

128 256 512 768 1024 2048

Total hit-rate of 512MB guests

H
it
 R

a
te

 %

Remote Cache Size (in megabytes)

Exclusive
Inclusive

0

20

40

60

80

100

128 256 512 768 1024 2048

Read hit-rate of 512MB guests

R
e
a
d

 H
it
 R

a
te

 %

Remote Cache Size (in megabytes)

Exclusive
Inclusive

0

20

40

60

80

100

128 256 512 768 1024

Read hit rate for swap area

R
e
a
d

 H
it
 R

a
te

 (
%

)

Remote Cache Size (in megabytes)

Exclusive
Inclusive

(a)

(b)

Figure 4: Remote cache hit rate of the quicksort benchmark
for various remote cache sizes and two different cache place-
ment policies. The guest is configured with 768 MBytes RAM
and the working set size of this workload is roughly 1 GBytes.

5 Related Work

Our work is inspired by remote paging ideas presented
in[6, 12], which are originally designed for multicom-
puters. Remote paging model can take advantages of the
fast interconnect in multicomputer systems to improve
the paging performance on a node, by using memory
on other nodes as its fast backing storage. Some work
shows that remote paging over low bandwidth intercon-
nection (like Ethernet) may speed up the execution time
for real application as well[6, 16]. With the even widen
performance gap between switched network and mag-
netic disks, remote memory model remains a cost effec-
tive way to improve system performance.

Dahlin et al. extends this idea and proposes coopera-
tive caching for file servers[8], which coordinate the file
caches of many client machines to form a more effective
overall file cache. It is shown that cooperative caching
significantly reduced disk accesses and improved file
system response time.

Most previous work aims at multicomputers, and
is requires changes to the operating system. Our
hypervisor-based remote paging enables virtual ma-
chines to utilize memory resources on other physical ma-
chines, without modifying the guest OS. This transpar-
ent fashion provides a more extensive application scope,
and also introduces new design challenges on eviction
page selection and cache placement policies.

Chen et al.[4] have showed that an eviction-based
lower-level cache can provide higher hit ratio than
access-based one. They also presented a tracking table
based approach that can detect evictions at reuse time,
without modifying client software. In a virtual machine
environment, however, the guest OS does not usually use
a dedicated buffer cache, making it difficult to precisely
detect guest evictions.

Some recent works also investigates how to support
eviction-based cache in VMM. Geiger[13] improves the
accuracy of tracking table based approach by monitoring
other activities from guest OS such as page faults. Their
approach can be integrated into our design. Lu et al.[15]
proposes hypervisor exclusive cache to support miss ra-
tio curve prediction in the hypervisor. But their solution
for eviction detection is not fully transparent to the guest
OS.

6 Conclusion

In this paper, we proposed hypervisor based remote pag-
ing, which allows a virtual machine to transparently use
the memory resource on other physical machines to meet
the demands of its applications. The remote paging
model takes advantages of the ever increasing speed gap
between disk accesses and the data transfer over mod-
ern interconnect networks, providing the VM a lower la-
tency of virtual disk access.

Our work differs from previous researches on remote
memory access in that by doing the work in VMM layer,
our method is fully transparent to the operating system
and its software. Rather than introducing another level
of paging in the VMM, the borrowed memory on the re-
mote memory server acts like a cache between the VM’s
virtual memory and its virtual disk device. This avoids
many anomalies imposed by multi-layered, uninformed
resource management. But it also introduced some de-
sign challenges.

We discussed about various design decisions in our re-
mote paging model. For eviction-based placement pol-
icy, we investigated several method to transparently de-
tect page eviction from the guest operating system. We
proposed a hash code aided tracking table approach to
detect clean eviction pages at the reuse time. We also
compared different write policies in our model, present-
ing the trade-off in performance, reliability and imple-
mentation complexity for both write-back and write-
through remote caches.

We have implemented a prototype of remote paging
model on Xen virtual machine monitor. Both the access-
based and eviction-based placements are included in the
local module of the prototype. The prototype uses write-
through policy to ensure data persistency. A simple
memory server is also implemented, but it currently only

7



supports a single virtual machine as its client.
The prototype is able to run a SUSE 10 linux distri-

bution (kernel version 2.6.18) with remote disk cache
working correctly. Our prototype implementation and
preliminary evaluation proves the feasibility of our idea.
At the time of writing, we are still improving the proto-
type, and it is not yet strong enough to perform a com-
plete performance evaluation.

7 Acknowledgement

This work is supported by the National Grand Funda-
mental Research 973 Program of China under Grant
No.2007CB310900, National Science Foundation of
China under Grant No. 90718028, National High Tech-
nology Research 863 Program of China under Grant
No.2008AA01Z112, MOE-Intel Information Technol-
ogy Foundation under Grant No.MOE-INTEL-08-09,
and HUAWEI Science and Technology Foundation un-
der Grant No.YJCB2007002SS.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages
164–177, 2003.

[2] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum.
Disco: running commodity operating systems on scal-
able multiprocessors. ACM Transactions on Computer
Systems (TOCS), 15(4):412–447, 1997.

[3] M. Chapman and G. Heiser. Implementing transparent
shared memory on clusters using virtual machines. Proc.
2005 USENIX Techn. Conf.

[4] Z. Chen, Y. Zhou, and K. Li. Eviction Based Cache
Placement for Storage Caches. Proc. of the USENIX An-
nual Technical Conf., pages 269–282, 2003.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. Proceedings of the 2nd ACM/USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 273–286, May 2005.

[6] D. Comer and J. Griffioen. A new design for distributed
systems: The remote memory model. Proceedings of the
USENIX Summer Conference, pages 127–135, 1990.

[7] M. Crovella and A. Bestavros. Self-similarity in
World Wide Web traffic: evidence and possiblecauses.
IEEE/ACM Trans. on Networking, 5(6):835–846, 1997.

[8] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Co-
operative caching: using remote client memory to im-
prove file system performance. Proceedings of the 1st
conference on USENIX 1994 Operating Systems Design
and Implementation Proceedings, pages 19–19, 1994.

[9] R. Goldberg. Survey of Virtual Machine Research. IEEE
Computer, 7(6):34–45, 1974.

[10] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum.
Cellular disco: resource management using virtual clus-
ters on shared-memory multiprocessors. ACM Trans. on
Computer Systems (TOCS), 18(3):229–262, 2000.

[11] V. Henson. An analysis of compare-by-hash. Proceed-
ings of the 9th Workshop on Hot Topics in Operating Sys-
tems (HotOS IX), pages 13–18, 2003.

[12] L. Iftode, K. Li, and K. Petersen. Memory servers for
multicomputers. Compcon Spring’93, Digest of Papers.,
pages 538–547, 1993.

[13] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau.
Geiger: monitoring the buffer cache in a virtual machine
environment. ACM SIGOPS Operating Systems Review,
40(5):14–24, 2006.

[14] K. Li and P. Hudak. Memory coherence in shared vir-
tual memory systems. ACM Transactions on Computer
Systems (TOCS), 7(4):321–359, 1989.

[15] P. Lu and K. Shen. Virtual Machine Memory Access
Tracing With Hypervisor Exclusive Cache. Proceedings
of the USENIX Annual Technical Conference, pages 29–
43, 2007.

[16] E. Markatos and G. Dramitinos. Implementation of a re-
liable remote memory pager. Proceedings of the Annual
Technical Conference on USENIX 1996 Annual Techni-
cal Conference table of contents, pages 15–15, 1996.

[17] C. Ruemmler and J. Wilkes. UNIX Disk Access Patterns.
Hewlett-Packard Laboratories, 1992.

[18] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam,
and M. Rosenblum. Optimizing the Migration of Virtual
Computers. Proc. of the 5th Symposium on Operating
Systems Design and Implementation (OSDI 2002), 2002.

[19] C. Waldspurger. Memory resource management in
VMware ESX server. ACM SIGOPS Operating Systems
Review, 36(si):181, 2002.

[20] T. Wong and J. Wilkes. My cache or yours? Making stor-
age more exclusive. Proc. of the USENIX Annual Tech-
nical Conf., pages 161–175, 2002.

8


