
Instruction Based Memory Distance Analysis and its Application to Optimization∗

Changpeng Fang
cfang@mtu.edu

Steve Carr
carr@mtu.edu

Soner Önder
soner@mtu.edu

Zhenlin Wang
zlwang@mtu.edu

Department of Computer Science
Michigan Technological University

Houghton MI 49931-1295 USA

Abstract

Feedback-directed optimization has become an increasingly
important tool in designing and building optimizing compilers as
it provides a means to analyze complex program behavior that is
not possible using traditional static analysis. Feedback-directed
optimization offers the compiler opportunities to analyze and op-
timize the memory behavior of programs even when traditional
array-based analysis is not applicable. As a result, both floating-
point and integer programs can benefit from memory hierarchy
optimization.

In this paper, we examine the notion of memory distance as it
is applied to the instruction space of a program and to feedback-
directed optimization. Memory distance is defined as a dynamic
quantifiable distance in terms of memory references between two
accesses to the same memory location. We use memory distance
to predict the miss rates of instructions in a program. Using the
miss rates, we then identify the program’s critical instructions –
the set of high miss instructions whose cumulative misses account
for 95% of the L2 cache misses in the program – in both integer
and floating-point programs. Our experiments show that memory-
distance analysis can effectively identify critical instructions in
both integer and floating-point programs.

Additionally, we apply memory-distance analysis to memory
disambiguation in out-of-order issue processors, using those dis-
tances to determine when a load may be speculated ahead of a pre-
ceding store. Our experiments show that memory-distance-based
disambiguation on average achieves within 5-10% of the perfor-
mance gain of the store set technique which requires a hardware
table.

1. Introduction

With the widening gap between processor and memory speeds,
program performance relies heavily upon the effective use of a
machine’s memory hierarchy. In order to obtain good applica-
tion performance on modern systems, the compiler and micro-
architecture must address two important factors in memory sys-
tem performance: (1) data locality and (2) load speculation. To
improve locality in programs, compilers have traditionally used

∗This work was partially supported by NSF grant CCR-0312892.

either static analysis of regular array references [12, 23] or pro-
filing [1] to determine the locality of memory operations. Unfor-
tunately, static analysis has limited applicability when index ar-
rays or pointer operations are used in addressing and when de-
termining locality across multiple loop nests. On the other hand,
profiling-based techniques typically cannot adapt to program in-
put changes. Similarly, numerous hardware techniques exist for
determining when a load may be speculatively issued prior to the
completion of a preceding store in order to improve superscalar
performance [3, 14, 15], but compiler-based solutions typically do
not yield good results across a wide spectrum of benchmarks.

Recently, reuse distance analysis [4, 5, 10, 24], has proven to
be a good mechanism to predict the memory behavior of programs
over varied input sets. The reuse distance of a memory reference
is defined as the number of distinct memory locations accessed be-
tween two references to the same memory location. Both whole-
program [4, 24] and instruction-based [5, 10] reuse distance have
been predicted accurately across all program inputs using a few
profiling runs. Reuse-distance analysis uses curve fitting to predict
reuse distance as a function of a program’s data size. By quantify-
ing reuse as a function of data size, the information obtained via a
few profiled runs allows the prediction of reuse to be quite accurate
over varied data sizes.

In this paper, we expand the concept of reuse distance to en-
compass other types of distances between memory references. We
introduce the concept of memory distance, where the memory dis-
tance of a reference is a dynamic quantifiable distance in terms
of memory references between two accesses to the same memory
location. In our terminology, reuse distance is a form of memory
distance. We present a new method for instruction-based mem-
ory distance analysis that handles some of the complexities exhib-
ited in integer programs and use that analysis to predict both long
and short memory distances accurately. We apply the improved
memory distance analysis to the problem of identifying critical in-
structions – those instructions that cause 95% of the misses in a
program – and to the problem of memory dependence prediction.
Predicting miss rates and identifying critical instructions requires
our analysis to predict large memory distance accurately. In con-
trast, determining when a particular load instruction may be issued
ahead of a preceding store instruction requires us to predict short
memory distance accurately.

Across a set of the SPEC2000 benchmark suite we are able to

predict short and long memory distances accurately (above a 90%
accuracy in most cases). In addition, our experiments show that
we are able to predict L2 miss rates with an average 92% accuracy
and identify an average of 92% and 89% of the critical instruc-
tions in a program using memory distance analysis for floating-
point and integer programs, respectively. Furthermore, our ex-
periments show that using memory distance prediction to disam-
biguate memory references yields performance competitive with
well-known hardware memory disambiguation mechanisms, with-
out requiring hardware to detect when a load may be issued ahead
of a preceding store speculatively. The static schemes achieve per-
formance within 5% of a 16K-entry store set implementation for
floating point programs and within 10% for integer programs [3].

We begin the rest of this paper with a review of reuse distance
analysis. Then, we present our memory-distance analysis and ex-
periments examining instruction-based memory distance predic-
tion, cache miss-rate prediction, critical instruction detection, and
memory-distance based memory disambiguation. We conclude
with a discussion of work related to locality analysis and mem-
ory disambiguation, and a discussion of future work.

2. Reuse-distance Analysis

In this section, we describe the reuse distance and whole-
program locality analysis of Ding et al. [4]. Their work uses a
histogram describing reuse distance distribution for the whole pro-
gram. Each bar in the histogram consists of the portion of memory
references whose reuse distance falls into the same range. Ding et
al. investigate dividing the consecutive ranges linearly, logarith-
mically, or simply by making the number of references in a range
a fixed portion of total references.

Ding et al. define the data size of an input as the largest reuse
distance. Given two histograms with different data sizes, they find
the locality histogram of a third data size is predictable in a se-
lected set of benchmarks. The reuse-distance prediction step gen-
erates the histogram for the third input using the data size of that
third input. The data size of the third input can be obtained via
sampling. Typically, one can use this method to predict a locality
histogram for a large data input of a program based on training
runs of a pair of small inputs.

Let d1
i be the distance of the ith bin in the first histogram and

d2
i be that in the second histogram. Assuming that s1 and s2 are

the data sizes of two training inputs, we can fit the reuse distances
through two coefficients, ci and ei, and a function fi as follows.

d1
i = ci + ei ∗ fi(s1)

d2
i = ci + ei ∗ fi(s2)

Once the function fi is fixed, ci and ei can be calculated and the
equation can be applied to another data size to predict reuse dis-
tance distribution. Ding et al. try several types of fitting functions,
such as linear or square root, and choose the best fit.

Memory distance may be computed at any granularity in the
memory hierarchy. For predicting miss rates and identifying criti-
cal instructions, we compute memory distance at the granularity of
the cache line. For memory disambiguation, we compute memory
distance at the granularity of a memory address.

Ding et al. compute reuse distances for each address refer-
enced in the entire program without relating those distances to

the instructions that cause the memory access. We observe that
Ding et al.’s model can be extended to predict various input-related
program behaviors, such as memory distance and execution fre-
quency, at the instruction level. We examine mapping the memory
distances to the instructions that cause the memory accesses and
then compute the memory distances for each load instruction. In
addition, we develop a scheme to group related memory distances
that improves prediction accuracy. Sections 3 through 5 discuss
our extensions for predicting memory distance at the instruction
level and the application of memory distance to optimization.

3. Reuse Distance Prediction

Reuse distance is one form of memory distance that is appli-
cable to analyzing the cache behavior of programs. Although
previous work has shown that the reuse distance distribution of
the whole program [4] and each instruction [5] is predictable for
floating-point programs, it is unclear whether the reuse distances
of an instruction show the same predictability for integer pro-
grams. Our focus is to predict the reuse distance distribution and
miss rate of each instruction for a third input given the collected
and analyzed reuse distances of each instruction in two training
inputs of different size. When collecting reuse distance statistics,
we simply map the reuse distances of an address to the instructions
that access the address. Thus, the reuse distance for an instruc-
tion is the set of reuse distances of the addresses that the instruc-
tion references. In this section, we discuss our methods to pre-
dict instruction-based reuse distance, including an enhancement to
improve predictability of integer programs. We use the predicted
reuse distances to estimate cache misses on a per instruction basis
in Section 4.

To apply per instruction reuse distance and miss rate prediction
on the fly, it is critical to represent the reuse distances of the train-
ing runs as simply as possible without sacrificing much prediction
accuracy. For the training runs, we collect the reuse distances of
each instruction and store the number of instances (frequency) for
each bin. We also record the minimum, maximum, and mean dis-
tances within each bin. A bin is active if there exists an occurrence
of reuse in the bin. We note that at most 8 words of information
(min, max, mean and frequency) are needed for most instructions
in order to track their reuse distances since most instructions need
only two bins. Our work uses logarithmic division for distances
less than 1K and uses 1K bins for distances greater than 1K.

Although we collect memory distance using fixed bin bound-
aries, those bins do not necessarily reflect the real distribution,
particularly at the instruction level. For example, the set of re-
lated reuse distances may cross bin boundaries. We define a lo-
cality pattern as the set of nearby related reuse distances for an
instruction. One instruction may have multiple locality patterns.
To construct locality patterns, adjacent bins can be merged into a
single pattern. Fang et al. [5] merge adjacent bins and assume a
uniform distribution of distance frequency for the resulting local-
ity pattern [5]. Assuming a uniform distribution works well for
floating-point programs but, as we show in Section 4, performs
poorly for integer programs, particularly for miss-rate prediction.
Reuse distance often does not exhibit a uniform distribution in in-
teger programs. In this section, we propose a new bin merging
method that performs well on both integer and floating-point pro-

input: the set of memory-distance bins B
output: the set of locality patterns P

for each memory reference r {
Pr = /0; down = false; p = null;
for (i = 0; i < numBins; i++)

if (Bi
r .size > 0)

if (p == null ‖(Bi
r.min− p.max > p.max−Bi

r.min)‖
(down&&Bi−1

r . f req < Bi
r. f req)) {

p = new pattern; p.mean = Bi
r .mean;

p.min = Bi
r .min; p.max = Bi

r .max;
p.freq = Bi

r .freq; p.maxf = Bi
r .freq;

Pr = Pr ∪ p; down = false;
}
else {

p.max = Bi
r .max; p.freq += Bi

r .freq;
if (Bi

r .freq > p.maxf) {
p.mean = Bi

r .mean; p.maxf = Bi
r .maxf;

}
if (!down && Bi−1

r . f req > Bi
r. f req)

down = true;
}

else
p = null;

}

Figure 1. Pattern-formation Algorithm

grams. The new technique computes a linear distribution of reuse
distances in a pattern using the minimum, maximum, mean and
frequency of the reuse distance.

Once the reuse-distance data has been collected, we construct
reuse-distance patterns for each instruction by merging bins us-
ing the algorithm in Figure 1. The algorithm scans the original
bins from the smallest distance to largest distance and iteratively
merges any pair of adjacent bins i and i+1 if

mini+1 −maxi ≤ maxi −mini.

This inequality is true if the difference between the minimum dis-
tance in bin i + 1 and the maximum distance in bin i is no greater
than the length of bin i. The merging process stops when it reaches
a minimum frequency and starts a new pattern for the next bin.
The set of merged bins for an instruction make up its locality pat-
terns. We observe that this additional merging pass reflects the
locality patterns of each instruction and notably improves predic-
tion accuracy since the patterns of reuse distance may cross the
predefined bin bounds. As illustrated in Figure 2, the first four
bins are merged as one pattern and the remaining two merged as
the other. We represent the constructed locality patterns just as
with the original bins using a mean, max, mean and frequency for
the pattern. For a pattern, its mean is the mean of the bin with the
maximum frequency and its frequency records the total frequency
of all merged bins. Using min, max, mean, and frequency of each
pattern, we indeed model up to two linear frequency distributions
in each pattern split by its mean.

Following the prediction model discussed in Section 2, the
reuse distance patterns of each instruction for a third input can
be predicted through two training runs. For each instruction, we
predict its ith pattern by fitting the ith pattern in each of the train-
ing runs. The fitting function is then used to find the minimum,
maximum, and mean distance, and the frequency of the predicted

Frequency

min1 mean1 max1
min2 max2 Distance

mean2

Pattern

2
Pattern

1

Pattern curve

Figure 2. Pattern formation

pattern. Note that this prediction is simple and fast, making it a
good candidate for inclusion in adaptive compilation.

For reuse distance prediction, we compute both the prediction
coverage and the prediction accuracy. Prediction coverage indi-
cates the percentage of instructions whose reuse distance distribu-
tion can be predicted. Prediction accuracy indicates the percent-
age of covered instructions whose reuse distance distribution is
correctly predicted by our model. An instruction’s reuse distance
distribution can be predicted if and only if the instruction occurs
in both of the training runs and all of its reuse distance patterns
are regular. A pattern is said to be regular if the pattern occurs in
both training runs and its reuse distance does not decrease in the
larger input size. Although irregular patterns do not occur often
in all our experimental benchmarks (7-8% of the instructions on
average), they occur more often in the integer programs.

An instruction’s reuse distance distribution is said to be cor-
rectly predicted if and only if all of its patterns are correctly pre-
dicted. In the experiments, we cross-validate this prediction by
comparing the predicted locality patterns with the collected pat-
terns through a real run. The prediction is said to be correct if the
predicted pattern and the observed pattern fall into the same set of
bins, or they overlap by at least 90%. Given two patterns A and B
such that B.min < A.max ≤ B.max, we say that A and B overlap by
at least 90% if

A.max−max(A.min,B.min)

max(B.max−B.min,A.max−A.min)
≥ 0.9.

We have chosen an overlap factor of 90% because it yields the nec-
essary accuracy for us to predict miss rates effectively. Since we
use floating-point fitting functions to predict reuse distance some
error must be tolerated. We note that, however, the effect on pre-
diction accuracy varies by less than 1% if we require predicted
patterns to have a 95% overlap with the actual patterns.

3.1 Experimental Methodology

To compute reuse distance, we instrument the program bina-
ries using Atom [20] to collect the data addresses for all mem-
ory instructions. The Atom scripts incorporate Ding and Zhong’s
reuse-distance collection tool [4, 24] into our analyzer to obtain
reuse distances. During profiling, our analysis records the cache-
line based reuse distance distribution for each individual memory
instruction using a cache-line size of 64 bytes.

We examine 11 programs from SPEC CFP2000 and 11 pro-
grams from SPEC CINT2000. Tables 1 and 2 list the programs
that we use. The remaining four benchmarks in CFP2000 and
CINT2000 are not included because we could not get them to
compile correctly on our Alpha cluster. We use version 5.5 of the
Compaq compilers using the -O3 optimization flag to compile the

programs. Since SPEC CPU2000 does not provide two train input
sets for feedback-directed optimization with all benchmarks, we
use the test and the train input sets. Using the reuse distances mea-
sured for the test and train input sets, we predict for the reference
input sets. Even though Hsu et al. [9] show that the test input set
does not represent the cache behavior of the program well due to
its small size, we obtain good results since we can characterize the
effects of a change in data size on the cache behavior using small
inputs and translate those changes into the cache effects for a large
input without using that large input set. We verify this claim in
Section 4.

In the data reported throughout the rest of this paper, we report
dynamic weighting of the results. The dynamic weighting weights
each static instruction by the number of times it is executed. For
instance, if a program contains two memory instructions, A and
B, we correctly predict the result for instruction A and incorrectly
predict the result for instruction B, and instruction A is executed
80 times and instruction B is executed 20 times, we have an 80%
dynamic prediction accuracy.

In the remainder of this paper, we present the data in both tex-
tual and tabular form. While the most important information is
discussed in the text, the tables are provided for completeness and
to give a summary view of the performance of our techniques.

3.2 Reuse Distance Prediction Results

This section reports statistics on reuse distance distribution,
and our prediction accuracy and coverage. Tables 1 and 2 list
reuse distance distribution, the prediction coverage and accuracy
on a per instruction basis. For both floating point and integer pro-
grams, over 80% reuse distances remain constant with respect to
the varied inputs and 5 to 7% of distances are linear to the data
size, although both percentages for integer programs are signifi-
cantly lower than those of floating-point programs. A significant
number of other patterns exist in some programs. For example, in
183.equake, 13.6% of the patterns exhibit a square root (sqrt) dis-
tribution pattern. For 200.sixtrack and 186.crafty, we do not report
the patterns since all data sizes are identical. Our model predicts
all constant patterns.

For floating-point benchmarks, the dynamically weighted cov-
erage is 93.0% on average, improving over the 91.3% average of
Fang et al. [5]. In particular, the coverage of 188.ammp is im-
proved from 84.7% to 96.7%. For all floating-point programs ex-
cept 189.lucas, the dynamic coverage is well over 90%. In 189.lu-
cas, approximately 31% of the static memory operations do not ap-
pear in both training runs. If an instruction does not appear during
execution for both the test and train data sets, we cannot predict its
reuse distance. The average prediction accuracy and coverage of
integer programs are lower than those of floating-point programs
but still over 90%. The low coverage of 164.gzip occurs because
the reuse distance for the test run is greater than that for train. This
occurs because of the change in alignment of structures in a cache
line with the change in data size.

As mentioned previously, an instruction is not covered if one of
the three following conditions is not satisfied: (1) the instruction
does not occur in at least one training run, (2) the reuse distance of
test is larger than that for train, or (3) the number of patterns for the
instruction does not remain constant in both training runs. Overall,

an average of 4.2% of the instructions in CFP2000 and 2.2% of the
instruction in CINT2000 fall into the first category. Additionally,
0.3% and 4.4% of the instructions fall into the second category
for CFP2000 and CINT2000, respectively. Finally, 2.5% of the
CFP2000 instructions and 1.8% of the CINT2000 instructions fall
into the third category.

Benchmark Patterns Coverage Accuracy
%constant %linear (%) (%)

168.wupwise 95.4 3.9 97.4 99.7
171.swim 83.7 10.7 98.4 92.1
172.mgrid 85.8 3.8 93.9 97.8
173.applu 80.2 5.0 95.9 97.8
177.mesa 92.3 4.1 97.8 99.9
179.art 88.4 5.2 99.7 98.3
183.equake 76.9 8.1 97.0 97.4
188.ammp 85.2 10.3 96.7 97.0
189.lucas 81.3 13.5 52.0 98.3
200.sixtrack N/A N/A 99.9 99.9
301.apsi 82.0 12.0 94.0 95.6

average 85.1 7.7 93.0 97.6

Table 1. CFP2000 reuse distance prediction

Benchmark Patterns Coverage Accuracy
%constant %linear (%) (%)

164.gzip 82.3 3.4 74.9 94.7
175.vpr 86.3 7.2 98.8 94.2
176.gcc 76.9 3.1 97.8 94.7
181.mcf 63.6 10.7 82.9 88.0
186.crafty N/A N/A 97.5 95.8
197.parser 77.4 5.9 94.8 96.6
252.eon 95.9 2.4 99.4 99.7
254.gap 79.8 3.5 85.2 93.3
255.vortex 89.9 1.1 97.3 92.0
256.bzip2 87.6 3.0 88.0 91.4
300.twolf 72.4 10.6 91.2 91.7

average 81.2 5.1 91.6 93.8

Table 2. CINT2000 reuse distance prediction
For floating-point benchmarks, our model predicts reuse dis-

tance correctly for 97.6% of the covered instructions on average,
slightly improving the 96.7% obtained by Fang [5]. It predicts the
reuse distance accurately for over 95% of the covered instructions
for all programs except 171.swim which is the only benchmark on
which we observe significant over-merging. For integer programs,
our prediction accuracy for the covered instructions remains high
with 93.8% on average and the lowest is 181.mcf which gives 88%.
One major reason for the accuracy loss on 181.mcf is because sev-
eral reuse patterns in the reference run would require super-linear
pattern modeling which we do not use. The other major loss is
from the cache-line alignment of a few instructions where we pre-
dict a positive distance which indeed is zero for the reference run.

In addition to measuring the prediction coverage and accuracy,
we measured the number of locality patterns exhibited by each in-
struction. Table 3 below shows the average percentage of instruc-
tions that exhibit 1, 2, 3, 4, or more patterns during execution. On
average, over 92% of the instructions in floating-point programs
and over 83% in integer programs exhibit only one or two reuse-
distance patterns. This information shows that most instructions
have highly focused reuse patterns.

Benchmark 1 2 3 4 ≥ 5
CFP2000 81.8 10.5 4.8 1.4 1.5
CINT2000 72.3 10.9 7.6 4.6 5.3

Table 3. Number of locality patterns

To evaluate the effect of merging bins as discussed in Section 3,
we report how often instructions whose reuse pattern crosses the
original 1K boundaries are merged into a single pattern. On aver-
age 14.1% and 30.8% of the original bins are merged for CFP2000
and CINT2000, respectively. This suggests that the distances in
floating-point programs are more discrete while they are more con-
tinuous in integer programs. For both integer and floating-point
programs, the merging significantly improves our reuse distance
and miss rate prediction accuracy.

4. Miss Rate Prediction

Given the predicted reuse distance distribution, we can predict
the miss rates of the instructions in a program. For a fully associa-
tive cache of a given size, we predict a cache miss for a reference
to a particular cache line if the reuse distance to its previous access
is greater than the cache size. For set associative caches, we pre-
dict the miss rate as if it were a fully associative cache. This model
catches the compulsory and capacity misses, but neglects conflict
misses.

If the minimum distance of a pattern is greater than the cache
size, all accesses in the pattern are considered misses. When the
cache size falls in the middle of a pattern, we estimate the miss
rates by computing the percentage of the area under the pattern
curve that falls to the right of the cache size.

In our analysis, miss-rate prediction accuracy is calculated as

1−
| actual − predicted |

max(actual, predicted)
.

We glean the actual rates through cache simulation using the same
input. Although the predicted miss rate does not include conflict
misses, the actual miss rate does. While cache conflicts may af-
fect miss rates significantly in some circumstances, reuse distance
alone will not capture conflicts since we assume a fully associative
cache. For the SPEC2000 benchmarks that we analyzed, in spite
of not incorporating conflict misses in the prediction, our predic-
tion of miss rates is highly accurate. Note that the prediction for
L2 cache is identical to that for L1 cache with the predicted L1
cache hits filtered out.

The miss rates reported include all instructions, whether or not
they are covered by our prediction mechanism. If the instruction’s
reuse distance is predictable, then we use the predicted reuse dis-
tance distribution to determine the miss rate. If the instruction
appears in at least one training run and its reuse distance is not
predictable, we use the reuse distance of the larger of the training
runs to predict the miss rate. If the instruction does not appear in
either training run, we predict a miss rate of 0%.

4.1 Experimental Methodology

For miss-rate prediction measurements, we have implemented
a cache simulator and embedded it in our analysis routines to col-
lect the number of L1 and L2 misses for each instruction. We use

a 32K, 2-way set associative L1 cache and a 1MB, 4-way set as-
sociative L2 cache. Each of the cache configurations uses 64-byte
lines and an LRU replacement policy.

To compare the effectiveness of our miss-rate prediction, we
have implemented three miss-rate prediction schemes. The first
scheme, called predicted reuse distance (PRD), uses the reuse dis-
tance predicted by our analysis of the training runs to predict the
miss rate for each instruction. We use the test and train input sets
for the training runs and verify our miss rate prediction using the
reference input sets. The second scheme, called reference reuse
distance (RRD), uses the actual reuse distance computed by run-
ning the program on the reference input data set to predict the miss
rates. RRD represents an upper bound on the effectiveness of us-
ing reuse distance to predict cache-miss rates. The third scheme,
called test cache simulation (TCS), uses the miss rates collected
from running the test data input set on a cache simulator to pre-
dict the miss rate of the same program run on the reference input
data set. For comparison, we report L2 miss rate and critical in-
struction prediction using Fang’s approach that assumes a uniform
distribution of reuse distances in a pattern (U-PRD) [5].

4.2 Miss-rate Prediction Accuracy

Table 4 reports our miss-rate prediction accuracy for an L1
cache. Examining the table reveals that our prediction method
(PRD) predicts the L1 miss rate of instructions with an average
97.5% and 94.4% accuracy for floating-point and integer pro-
grams, respectively. On average PRD more accurately predicts the
miss rate than TCS, but is slightly less accurate than RRD. Even
though TCS can consider conflict misses, PRD still outperforms
it on average. Conflict misses tend to be more pronounced in the
integer benchmarks, yielding a lower improvement of PRD over
TCS on integer codes. In general, PRD does better when the data
size increases significantly since PRD can capture the effects of
the larger data sets. TCS does better when the data sizes between
test, train and reference are similar since TCS includes conflict
misses.

Suite PRD RRD TCS
CFP2000 97.5 98.4 95.1
CINT2000 94.4 96.7 93.9

Table 4. L1 miss rate prediction accuracy

Table 5 presents our prediction accuracies for our L2 cache
configuration for floating-point and integer programs, respectively.
Table 6 provides a summary of the results for three other L2 asso-
ciativities. As can be seen, these results show that PRD is effective
in predicting L2 misses for a range of associativities. We will limit
our detailed discussion to the 4-way set associative cache. On av-
erage, smaller associativity sees slightly worse results.

PRD has a 92.1% and 92.4% miss-rate prediction accuracy
for floating-point and integer programs, respectively. PRD out-
performs TCS on all programs in CFP2000 except 189.lucas and
200.sixtrack. In general, the larger reuse distances are handled
much better with PRD than TCS, giving the larger increase in
prediction accuracy compared to the L1 cache. For 200.sixtrack,
the data size does not change, so TCS outperforms both PRD and
RRD. For 189.lucas, a significant number of misses occur for in-
structions that do not appear in either training run.

CFP2000 U-PRD PRD RRD TCS CINT2000 U-PRD PRD RRD TCS
168.wupwise 97.7 98.2 98.9 95.2 164.gzip 98.0 99.3 99.9 99.9
171.swim 91.7 92.8 98.0 86.0 175.vpr 90.1 95.1 96.0 90.0
172.mgrid 97.3 97.6 99.3 90.3 176.gcc 88.8 92.0 95.5 89.9
173.applu 96.6 97.3 99.0 91.1 181.mcf 59.4 67.3 93.8 46.8
177.mesa 92.8 97.2 97.2 95.8 186.crafty 99.9 99.9 99.9 99.9
179.art 82.6 81.5 81.6 78.7 197.parser 79.2 91.4 96.6 88.7
183.equake 93.1 94.3 95.0 85.9 252.eon 99.9 99.9 99.9 99.9
188.ammp 82.6 82.7 84.4 81.5 254.gap 76.9 86.6 94.3 86.0
189.lucas 82.7 83.4 92.1 90.6 255.vortex 90.8 97.6 99.6 97.7
200.sixtrack 95.9 95.9 95.9 98.1 256.bzip2 93.7 95.4 98.6 94.9
301.apsi 92.3 92.6 93.6 88.9 300.twolf 91.8 92.4 95.7 88.9
average 91.4 92.1 94.1 89.3 average 88.0 92.4 97.3 89.3

Table 5. 4-way L2 miss rate prediction accuracy

Suite 2-way 8-way FA
PRD RRD TCS PRD RRD TCS PRD RRD TCS

CFP2000 91.0 93.0 87.1 92.4 94.4 88.4 96.8 99.9 91.2
CINT2000 90.6 94.7 87.5 92.6 97.5 89.7 93.6 99.9 89.1

Table 6. Effect of associativity on L2 miss rate prediction accuracy

For CINT2000, PRD outperforms TCS on all programs except
164.gzip where the gain of TCS is negligible. For 164.gzip, the L2
miss rate is quite low (0.02%). In addition, the coverage is low be-
cause the reuse distance for the test dataset for some instructions
is larger than the reuse distance for train due to a change in align-
ment in the cache line. As a result, TCS is better able to predict
the miss rate since PRD will overestimate the miss rate.

PRD outperforms U-PRD for all programs except 179.art. For
this program, U-PRD predicts a larger miss rate, but due to conflict
misses, the miss rate is realized. The difference between PRD and
U-PRD is more pronounced for integer programs than floating-
point programs. This shows that assuming a uniform distribution
of reuse distances in a pattern leads to less desirable results. This
difference in effectiveness becomes more pronounced when iden-
tifying critical instructions as shown in the next section.

In general, PRD is much more effective than TCS for large
reuse distances. This is extremely important since identifying L2
misses is significantly more important than L1 misses because of
the miss latency difference. In the next section, we show that TCS
is inadequate for identifying the most important L2 misses and that
PRD is quite effective.

4.3 Identifying Critical Instructions

For static or dynamic optimizations, we are interested in the
critical instructions which generate a large fraction (95%) of the
cumulative L2 misses. In this section, we show that we can pre-
dict most of the critical instructions accurately. We also observe
that the locality patterns of the critical instructions tend to be more
diverse than non-critical instructions and tend to exhibit fewer con-
stant patterns.

To identify the actual critical instructions, we perform cache
simulation on the reference input. To predict critical instructions,
we use the execution frequency in one training run to estimate the
relative contribution of the number of misses for each instruction
given the total miss rate. We then compare the predicted critical
instructions with the real ones and show the prediction accuracy
weighted by the absolute number of misses. Table 7 presents the

percentage of critical instructions identified using all four predic-
tion mechanisms for our cache configuration. Additionally, the
table reports the percentage of loads predicted as critical (%pred)
by PRD and the percentage of actual critical loads (%act).

The prediction accuracy for critical instructions is 92.2% and
89.2% on average for floating-point and integer programs, respec-
tively. 189.lucas shows a very low accuracy because of low pre-
diction coverage. The unpredictable instructions in 189.lucas con-
tribute a significant number of misses. The critical instruction ac-
curacy for 181.mcf is lower than average because two critical in-
structions are not predictable. In the train run for 181.mcf, the
instructions exhibit a reuse distance of 0. However, in the test
run, the reuse distance is very large. This is due to the fact that
the instructions reference data contained within a cache line in the
train run and data that appear in different cache lines in the test run
due to the data alignment of the memory allocator. In 256.bzip2,
a number of the critical instructions only appear in the train data
set. For this data set, these instructions do not generate L2 misses
and are, therefore, not critical. Since we use the train reuse dis-
tance to predict misses in this case, our mechanism is unable to
identify these instructions as critical. For 300.twolf, a number of
the critical instructions have unpredictable patterns. This makes
predicting the reference reuse distance difficult and prevents PRD
from recognizing these instructions as critical. Note that we do not
report statistics for 252.eon because the L2 miss rate is nearly 0%.

Comparing the accuracy of TCS in identifying critical instruc-
tions, we see that TCS is considerably worse when compared with
its relative miss-rate prediction accuracy. This is because TCS
mis-predicts the miss rate more often for the longer reuse distance
instructions (more likely critical) since its prediction is not sensi-
tive to data size. U-PRD performs significantly worse than PRD,
on average, for CINT2000. This is because the enhanced pat-
tern formation presented in Section 3 is able to characterize the
reuse distance patterns better in integer programs. For 181.mcf
and 254.gap, U-PRD identifies more of the actual critical loads,
but it also identifies a higher percentage of loads as critical that are
not critical. In general, U-PRD identifies 1.6 times as many false

CFP2000 U-PRD PRD RRD TCS %pred %act CINT2000 U-PRD PRD RRD TCS %pred %act
168.wupwise 99.9 99.9 99.9 88.3 0.77 0.77 164.gzip 1.2 92.9 99.9 0.0 0.59 0.80
171.swim 99.9 99.9 99.9 99.9 3.61 3.09 175.vpr 67.8 89.9 94.4 0.0 0.30 0.45
172.mgrid 99.7 99.9 99.9 55.9 2.61 2.11 176.gcc 78.5 96.5 99.6 87.3 1.22 1.27
173.applu 98.0 98.5 99.9 85.5 2.23 1.78 181.mcf 80.1 73.3 99.9 28.1 2.18 1.50
177.mesa 99.9 99.9 99.9 99.9 0.06 0.06 186.crafty 97.1 97.1 97.2 99.9 0.4 0.49
179.art 99.9 99.9 99.9 96.4 1.82 0.83 197.parser 81.7 96.6 98.9 67.3 1.16 1.14
183.equake 91.4 95.9 99.6 0.0 2.35 2.52 252.eon – – – – – –
188.ammp 90.2 90.9 96.3 10.9 0.41 0.41 254.gap 96.9 93.2 99.7 56.5 0.22 0.17
189.lucas 24.1 35.2 99.9 5.0 1.77 4.54 255.vortex 59.1 98.1 98.9 97.8 0.32 0.15
200.sixtrack 98.7 98.7 91.5 21.6 1.05 0.60 256.bzip2 65.9 82.5 99.9 84.2 1.07 1.65
301.apsi 89.9 95.9 94.5 0.0 1.51 1.56 300.twolf 69.8 72.0 96.0 6.1 0.99 1.12
average 90.2 92.2 98.3 51.2 1.66 1.67 average 63.5 89.2 98.4 52.7 0.94 0.97

Table 7. 4-way set-associative L2 critical instruction prediction comparison

critical instructions compared to PRD, even though the absolute
number is quite low on average for both techniques.

We tested critical instruction prediction on the other three as-
sociativities listed in Table 6 and, on average, the associativity of
the cache does not affect the accuracy of our prediction for crit-
ical instructions significantly. The only noticeable difference oc-
curred on the 2-way set associative cache for 301.apsi, 175.vpr
and 186.crafty. For this cache configuration, conflict misses play a
larger role for these three applications, resulting in a lower critical
instruction prediction accuracy.

Finally, Table 7 shows that the number of critical instructions
in most programs is very small. These results show that reuse dis-
tance can be used to allow compilers to target the most important
instructions for optimization effectively.

Critical instructions tend to have more diverse locality patterns
than non-critical instructions. Table 8 reports the distribution of
the number of locality patterns for critical instructions using dy-
namic weighting. We find that the distribution is more diverse than
that shown in Table 3. Although less than 20% of the instructions
on average have more than 2 patterns, the average goes up to over
40% when considering only critical instructions.

Benchmark 1 2 3 4 ≥ 5
CFP2000 22.1 38.4 20.0 12.8 6.7
CINT2000 18.7 14.5 25.5 22.5 18.0

Table 8. Critical instruction locality patterns

Critical instructions also tend to exhibit a higher percentage of
non-constant patterns than non-critical instructions. Critical in-
structions in CFP2000 have an average of 12.7% all constant pat-
terns and an average of 10.8% in CINT2000. Since this data re-
veals that critical instructions are more sensitive to data size, it
is important to predict reuse distance accurately in order to apply
optimization to the most important memory operations.

5. Memory Disambiguation

Mis-speculation of memory operations can counteract the per-
formance advantage of speculative execution. When a mis-
speculation occurs, the speculative load and dependent instruc-
tions need to be re-executed to restore the state. Therefore, a good
memory disambiguation strategy is critical for the performance of
speculative execution. This section describes a novel profile-based
memory disambiguation technique based on the instruction-based

memory distance prediction model discussed in Section 3 with a
few extensions. In this section, we introduce two new forms of
memory distance – access distance and value distance – and ex-
plore the potential of using them to determine which loads in a
program may be speculated. The access distance of a memory ref-
erence is the number of memory instructions between a store to
and a load from the same address. The value distance of a refer-
ence is defined as the access distance of a load to the first store in
a sequence of stores of the same value. Differing from cache miss
prediction which is sensitive to relatively large distances, we fo-
cus on shorter access and value distances that may cause memory
order violations.

5.1 Access Distance and Speculation

For speculative execution, if a load is sufficiently far away
from the previous store to the same address, the load will be
a good speculative candidate. Otherwise, it will likely cause a
mis-speculation and introduce penalties. The possibility of a mis-
speculation depends on the distance between the store and the load
as well as the instruction window size, the load/store queue size,
and machine state. Taking all these factors into account, we exam-
ine the effectiveness of access distance in characterizing memory
dependences. Although it is also advisable to consider instruction
distance (the number of instructions between two references to the
same address) with respect to instruction window size, we observe
that instruction distance typically correlates well to access distance
and using access distance only is sufficient.

When we know ahead of real execution the backward access
distance of a load, we can mark the load speculative if the distance
is greater than a threshold. We mark the load as non-speculative,
otherwise. During execution, only marked speculative loads are al-
lowed for speculative scheduling. In Section 5.4, our experimental
results show that a threshold value of 10 for access distance yields
the best performance for our system configuration.

The access distance prediction is essentially the same as the
reuse distance prediction. Instead of collecting reuse distances in
the training runs, we need to track access distances. A difficulty
here is that we need to mark speculative loads before the real ex-
ecution using the real inputs. Reuse distance prediction in Sec-
tion 3 uses sampling at the beginning of the program execution to
detect the data-set size and then applies prediction to the rest of
the execution. For a system supporting adaptive compilation, the
compiler may mark loads after the input data size is known and
adaptively apply access distance analysis. In our method, we do

�����
�����
�����

�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

threshold

(a) Splitting

�����
�����
�����

�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

threshold

(b) Intersection

Figure 3. PMSF Illustration

not require knowledge of the data size ahead of the real execu-
tion and thus do not require either sampling or adaptive compila-
tion. Instead, we base our access-distance prediction solely on two
training runs.

Our method collects the access distances for two training runs
and then predicts the access distance pattern for each load instruc-
tion for a presumably larger input set of unknown size. Two facts
suggested by Tables 1 and 2 make this prediction plausible: most
access distances are constant across inputs and a larger input typi-
cally increases the non-constant distances. Since a constant pattern
does not change with respect to the data size, the access distance
is predictable without data-size sampling. We also predict a lower
bound for a non-constant access distance assuming that the new in-
put size is larger than the training runs. Since the fitting functions
are monotonically increasing, we take the lower bound of the ac-
cess distance pattern for the larger training set as the lower bound
on the access distance. If the predicted lower bound is greater than
the speculation threshold, we mark the load as speculative.

We define the predicted mis-speculation frequency (PMSF) of a
load as the frequency of occurrences of access distances less than
the threshold. We mark a load as speculative when its PMSF is
less than 5%. The PMSF of a load is the ratio of the frequencies of
the patterns on the left of the threshold over the total frequencies.
When the patterns are all greater or all less than the threshold, it
is straightforward to mark the instruction as speculative or non-
speculative, respectively. For the cases illustrated by Figures 3(a)
and 3(b), the threshold sits between patterns or intersects one of
the patterns. We presume that the occurrences of distances less
than the threshold will more likely cause mis-speculations but the
occurrences greater than the threshold can still bring performance
gains. When the threshold does not intersect any of the access
distance patterns, the PMSF of a load is the total frequencies of
the patterns less than the threshold divided by the total frequency
of all patterns. When the threshold value falls into a pattern, we
calculate the mis-speculation frequency of that pattern as

(threshold−min)

(max−min)
∗ frequency of the pattern.

5.2 Value Distance and Speculation
Önder and Gupta [17] have shown that when multiple succes-

sive stores to the same address write the same value, a subsequent
load to that address may be safely moved prior to all of those stores
except the first as long as the memory order violation detection
hardware examines the values of loads and stores. Given the fol-
lowing sequence of memory operations,

1: store a1, v1
2: store a2, v2
3: store a3, v3
4: load a4, v4

where a1 through a4 are memory addresses and v1 through v4 are
the values associated with those addresses. If a1 = a2 = a3 = a4,
v2 = v3 and v1 6= v2, then the load may be moved ahead of the third
store, but not the second using a value-based approach.

We call the access distance of a load to the first store in a se-
quence of stores of the same value the value distance of that load.
To compute the value distance of a load, we modify our access
distance tool to ignore subsequent stores to the same memory lo-
cation with the same value. In this way, we only keep track of the
stores that change the value of the memory location.

Similar to access distance prediction, we can predict value dis-
tance distribution for each instruction. Note that the value distance
of an instance of a load is no smaller than the access distance. By
using value distances and the supporting hardware, we can mark
more instructions as speculative.

5.3 Experimental Design

To examine the performance of memory distance based mem-
ory disambiguation, we use the FAST micro-architectural simula-
tor based upon the MIPS instruction set [16]. The simulated ar-
chitecture is an out-of-order superscalar pipeline which can fetch,
dispatch and issue 8 operations per cycle. A 128 instruction cen-
tral window, and a load store queue of 128 elements are simulated.
Two memory pipelines allow simultaneous issuing of two mem-
ory operations per cycle, and a perfect data cache is assumed. The
assumption of perfect cache eliminates ill effects of data cache
misses which would affect scheduling decisions as they may al-
ter the order of memory operations. We believe the effectiveness
of any memory dependence predictor should be evaluated upon
whether or not the predictor can correctly identify the times that
load instructions should be held and the times that the load in-
structions should be allowed to execute speculatively. However,
for completeness we also examine the performance of the bench-
mark suite when using a 32KB direct-mapped non-blocking L1
cache with a latency of 2 cycles and a 1 MB 2-way set associative
LRU L2 cache with a latency of 10 cycles. Both caches have a line
size of 64 bytes.

For our test suite, we use a subset of the C and Fortran 77
benchmarks in the SPEC CPU2000 benchmark suite. The pro-
grams missing from SPEC CPU2000 include all Fortran 90 and
C++ programs, for which we have no compiler, and five programs
(254.gap, 255.vortex, 256.bzip2, 200.sixtrack and 168.wupwise)
which could not be compiled and run correctly with our simulator.
For compilation, we use gcc-2.7.2 with the -O3 optimization flag.
Again, we use the test and train input sets for training and generat-
ing hints, and then test the performance using the reference inputs.

Since we perform our analysis on MIPS binaries, we cannot use
ATOM as is done in Section 3. Therefore, we add the same instru-
mentation to our micro-architectural simulator to gather memory
distance statistics. To compute which loads should be speculated
we augment the MIPS instruction set with an additional opcode to
indicate a load that may be speculated.

5.4 Results

In this section, we report the results of our experiment using
access distance for memory disambiguation. Note that we do not
report access and value distance prediction accuracy since the re-

sults are similar to those for reuse distance prediction. Given this,
we report the raw IPC data using a number of speculation schemes.

5.4.1 IPC with Address-Based Exception Checking
We have run our benchmark suite using five different memory
disambiguation schemes: access distance, no speculation, blind
speculation, perfect disambiguation and store sets using varied ta-
ble sizes [3]. The no-speculation scheme always assumes a load
and store are dependent and the blind-speculation scheme always
assumes that a load and store are independent. Perfect memory
disambiguation never mis-speculates with the assumption that it
always knows ahead the addresses accessed by a load and store
operation. The store set schemes use a hardware table to record
the set of stores with which a load has experienced memory-order
violations in the past. Figures 4 and 5 report the raw IPC data
for each scheme where only address-based exception checking is
performed.

0

1

2

3

4

5

6

sw
im

m
gr

id
ap

pl
u

m
es

a ar
t

eq
ua

ke

am
m

p
ap

si

m
ea

n

IP
C

access no blind perfect store1K store16K

 Figure 4. CFP2000 address-based IPC

As can be seen in Figure 4, on the floating-point programs, the
access-distance-based memory disambiguation scheme achieves a
harmonic mean performance that is between 1K-entry and 16K-
entry store set techniques. It reduces the 34% performance gap
for blind speculation to 13% with respect to the perfect mem-
ory disambiguation. It also performs within 5% of the 16K-entry
store set. This 5% performance gap is largely from 171.swim,
177.mesa, and 183.equake, where the 16K store set outperforms
our profile-based scheme by at least 8%. For these three bench-
marks, we observe that the access-distance-based scheme suffers
over a 1% miss speculation rate. A special case is 188.ammp,
for which all speculation schemes degrade the performance. The
16K store set degrades performance by 13%. The access-distance-
based scheme lowers this performance degradation to less than
1%. 188.ammp has an excessive number of short distance loads.
The access-distance-based technique blocks speculations for these
loads. Although the store set scheme does not show a substan-
tially higher number of speculated loads, we suspect that its perfor-
mance loss stems from some pathological mis-speculations where
the penalty is high.

Figure 5 reports performance for the integer benchmarks. The
average gap between blind speculation and the perfect scheme is
23%, compared to an average 34% performance gap for CFP2000,
suggesting a smaller improvement space. The blind scheme is
marginally better than no speculation. This negligible improve-

ment is due to high mis-speculation rates and fewer opportunities
for speculation. The access-distance-based scheme reduces the
23% performance gap of blind speculation with respect to perfect
disambiguation to 13%. Access distance performs close to a 1K-
entry store set scheme and within 10% of the 16K-entry scheme.
Three benchmarks, 164.gzip, 176.gcc, and 300.twolf, contribute
most of this performance disparity. These three benchmarks show
the highest mis-speculation rates for the access-distance scheme.

0

1

2

3

4

5

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

tw
ol

f
m

ea
n

IP
C

access no blind perfect store1K store16K

 Figure 5. CINT2000 address-based IPC
The mis-speculation rates for the memory-distance schemes

are generally higher than those of store set, but much lower than
those of blind speculation. The relative high mis-speculation rate
of the profile-based schemes are mostly because they cannot adjust
to dynamic program behaviors. Our memory-distance schemes
mark a load as non-speculative when 95% of its predicted memory
distances are greater than a threshold. This could cause up to 5%
mis-speculation of an instruction. The mis-speculation rate and
performance are sensitive to the threshold values. We examined
thresholds of 4, 8, 10, 12, 16, 20 and 24. On average, a thresh-
old value of 10 is the best. However, other thresholds yield good
results for some individual benchmarks. For instance, 177.mesa
favors a threshold of 12.

Table 9 gives the harmonic mean IPC of our benchmark suite
using address-based exception checking with the cache model in-
stead of a perfect memory hierarchy. As can be seen by the re-
sults, the relative performance of our technique remains similar
for CFP2000, but improves for CINT2000. The performance im-
proves because cache misses hide the effects of the reduced pre-
diction accuracy obtained by our access distance model.

store set
Bench no access 1KB 16KB
CFP2000 0.91 1.55 1.45 1.61
CINT200 1.13 1.53 1.43 1.60

Table 9. Address-based IPC with Cache

5.4.2 IPC with Value-Based Exception Checking
Value-distance-based speculation, the store set technique, and
blind speculation can all take advantage of value-based excep-
tion checking in order to reduce memory order violations. Fig-
ures 6 and 7 show the performance of these three schemes where
the value-based exception checking is used. Table 10 reports the

harmonic mean IPC achieved using the cache model instead of
the perfect memory hierarchy. For all schemes, on average, the
value-based exception checking improves performance over the
corresponding address-based schemes since some of the address
conflicts can be ignored due to value redundancy.

For floating-point benchmarks, blind speculation gains over
12% because of a significant reduction in the mis-speculation rate.
On average, the value-distance-based scheme and store set im-
prove 3 to 5%. Although the value-distance scheme still per-
forms below the store set technique, value-distance prediction is
still needed when using value-based exception checking.

For integer programs, the improvement obtained by using
value-based exception checking is notably smaller than that for
floating-point programs. The value-distance scheme shows an im-
provement of 3% while the store set techniques all improve less
than 2.5%. We attribute this to fewer value redundancies in inte-
ger benchmarks and the smaller performance gap between blind
speculation and perfect memory disambiguation.

0

1

2

3

4

5

6

sw
im

m
gr

id
ap

pl
u

m
es

a ar
t

eq
ua

ke

am
m

p
ap

si

m
ea

n

IP
C

value blind store1K store16K

 Figure 6. CFP2000 value-based IPC

0

1

2

3

4

5

gz
ip vp

r
gc

c
m

cf

cr
aft

y

pa
rs

er

pe
rlb

m
k

tw
olf

mea
n

IP
C

value blind store1K store16K

 Figure 7. CINT2000 value-based IPC

store set
Bench no value 1KB 16KB
CFP2000 0.91 1.59 1.52 1.63
CINT200 1.13 1.55 1.48 1.65

Table 10. Value-based IPC with Cache

6. Related Work
In addition to the work discussed in Section 3, Ding et al.

predict reuse distances to estimate the capacity miss rates of a
fully associative cache [24], to perform data transformations [25]
and to predict the locality phases of a program [19]. Beyls and
D’Hollander detect reuse distance patterns through profiling and
generate hints for the Itanium processor [1]. It’s unclear whether
their profiling and experiments are on the same input or not, how-
ever, our work can be used to generate their hints. Marin and
Mellor-Crummey [10] use instruction-based reuse distance in the
prediction of application performance. Their analysis may require
significantly more space than ours. Pinait, et al. [18], statically
identify critical instructions by analyzing the address arithmetic
for load operations.

Cache simulation can supply accurate miss rates and even per-
formance impact for a cache configuration; however, the simula-
tion itself is costly and impossible to apply during dynamic op-
timization on the fly. Mattson, et al., present a stack algorithm
to measure cache misses for different cache sizes in one run [11].
Sugumar and Abraham [22] use Belady’s algorithm to character-
ize capacity and conflict misses. They present three techniques for
fast simulation of optimal cache replacement.

Many static models of locality exist and may be utilized by the
compiler to predict cache misses [2, 6, 12, 13, 23]. Each of these
models is restricted in the types of array subscript and loop forms
that can be handled. Furthermore, program inputs, which deter-
mine, for instance, symbolic bounds of loops, remain a problem
for all aforementioned static analyses.

Work in the area of dynamic memory disambiguation has
yielded increasingly better results [3, 7, 14]. Moshovos and
Sohi have studied memory disambiguation and the communica-
tion through memory extensively [14]. The predictors they have
designed aim at precisely identifying the load/store pairs involved
in the communication. Various patents [21, 7] also exist which
identify those loads and stores that cause memory order violations
and synchronizing them when they are encountered.

Chrysos and Emer [3] introduce the store set concept which al-
lows using direct mapped structures without explicitly aiming to
identify the load/store pairs precisely. Önder [15] has proposed
a light-weight memory dependence predictor which uses multi-
ple speculation levels in the hardware to direct load speculation.
Önder and Gupta [17] have shown that the restriction of issuing
store instructions in-order can be removed and store instructions
can be allowed to execute out-of-order if the memory order vi-
olation detection mechanism is modified appropriately. Further-
more, they have shown that memory order violation detection can
be based on values, instead of addresses. Our work in this paper
uses this memory order violation detection algorithm.

7. Conclusions and Future Work

In this paper, we have demonstrated that memory distance is
predictable on a per instruction basis for both integer and floating-
point programs. On average, over 90% of all memory operations
executed in a program are predictable with a 97% accuracy for
floating-point programs and a 93% accuracy for integer programs.
In addition, the predictable reuse distances translate to predictable
miss rates for the instructions. For a 32KB 2-way set associative

L1 cache, our miss-rate prediction accuracy is 96% for floating-
point programs and 89% for integer programs, and for a 1MB 4-
way set associative L2 cache, our miss-rate prediction accuracy is
over 92% for floating-point and integer programs. Most impor-
tantly, our analysis accurately identifies the critical instructions in
a program that contribute to 95% of the program’s L2 misses. On
average, our method predicts the critical instructions with a 92%
accuracy for floating-point programs and a 89% accuracy for in-
teger programs for a 1MB 4-way set associative L2 cache. In ad-
dition to predicting large memory distances accurately for critical
instruction detection, we have shown that our analysis can effec-
tively predict small reuse distances. Our experiments show that
without a dynamic memory disambiguator we can disambiguate
memory references using access and value distance and achieve
performance within 5-10% of a store-set predictor.

The next step in our research will apply critical instruction
detection to cache optimization. We are currently developing a
mechanism based upon informing memory operations [8] to over-
lap both cache misses and branch misprediction recovery. We
also believe that our work in memory disambiguation has signif-
icant potential for EPIC architectures where the compiler is com-
pletely responsible for identifying and scheduling loads for spec-
ulative execution. We are currently applying memory-distance-
based memory disambiguation to speculative load scheduling for
the Intel IA-64. We expect that significant performance improve-
ment will be possible with our technique.

In order for significant gains to be made in improving pro-
gram performance, compilers must improve the performance of
the memory subsystem. Our work is a step in opening up new
avenues of research through the use of feedback-directed and dy-
namic optimization in improving program locality and memory
disambiguation through the use of memory distance.

References

[1] K. Beyls and E. D’Hollander. Reuse distance-based cache
hint selection. In Proccedings of the 8th International Euro-
Par Conference, August 2002.

[2] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck.
Exact analysis of the cache behaviour of nested loops. In
Proceedings of the SIGPLAN 2001 Conference on Program-
ming Language Design and Implementation, pages 286–297,
Snowbird, Utah, June 2001.

[3] G. Z. Chrysos and J. S. Emer. Memory dependence predic-
tion using store sets. In Proceedings of the 25th International
Conference on Computer Architecture, pages 142–153, June
1998.

[4] C. Ding and Y. Zhong. Predicting whole-program locality
through reuse distance analysis. In Proceedings of the 2003
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 245–257, San Diego, Cali-
fornia, June 2003.

[5] C. Fang, S. Carr, S. Önder, and Z. Wang. Reuse-distance-
based miss-rate prediction on a per instruction basis. In Pro-
ceedings of the 2nd ACM Workshop on Memory System Per-
formance, pages 60–68, Washington, D.C., June 2004.

[6] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis
for program transformations with caches of arbitrary associa-
tivity. In Proceedings of the Eighth International Conference

on Architectural Support for Programming Languages and
Operating Systems, pages 228–239, San Jose, CA, Oct. 1998.

[7] J. Hesson, J. LeBlanc, and S. Ciavaglia. Apparatus to dy-
namically control the Out-Of-Order execution of Load-Store
instructions. US. Patent 5,615,350, Filed Dec. 1995, Issued
Mar. 1997.

[8] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith.
Informing memory operations: memory performance feed-
back mechanisms and their applications. ACM Trans. Com-
put. Syst., 16(2):170–205, 1998.

[9] W.-C. Hsu, H. Chen, P.-C. Yew, and D.-Y. Chen. On the
predictability of program behavior using different input data
sets. In Proceedings of the Sixth Annual Workshop on Inter-
action between Compilers Computer Architectures, 2002.

[10] G. Marin and J. Mellor-Crummey. Cross architecture per-
formance predictions for scientific applications using param-
eterized models. In Proceedings of the Joint International
Conference on Measurement and Modeling of Computer Sys-
tems, New York, NY, June 2004.

[11] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evalua-
tion techniques for storage hierarchies. IBM Systems Journal,
9(2):78–117, 1970.

[12] K. S. McKinley, S. Carr, and C. Tseng. Improving data
locality with loop transformations. ACM Transactions on
Programming Languages and Systems, 18(4):424–453, July
1996.

[13] K. S. McKinley and O. Temam. Quantifying loop nest local-
ity using SPEC’95 and the Perfect benchmarks. ACM Trans-
actions on Computer Systems, 17(4):288–336, Nov. 1999.

[14] A. I. Moshovos. Memory Dependence Prediction. PhD the-
sis, University of Wisconsin - Madison, 1998.

[15] S. Önder. Cost effective memory dependence prediction us-
ing speculation levels and color sets. In International Confer-
ence on Parallel Architectures and Compilation Techniques,
pages 232–241, Charlottesville, Virginia, September 2002.

[16] S. Önder and R. Gupta. Automatic generation of microar-
chitecture simulators. In IEEE International Conference on
Computer Languages, pages 80–89, Chicago, May 1998.

[17] S. Önder and R. Gupta. Dynamic memory disambigua-
tion in the presence of out-of-order store issuing. Jour-
nal of Instruction Level Parallelism, Volume 4, June 2002.
(www.microarch.org/vol4).

[18] V.-M. Pinait, A. Sasturkar, and W.-F. Wong. Static identifica-
tion of delinquent loads. In Proceedings of the International
Symposium on Code Generation and Optimization, San Jose,
CA, Mar. 2004.

[19] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction.
In Proceedings of the Eleventh International Conference on
Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS-XI), Boston, MA, Oct. 2004.

[20] A. Srivastava and E. A. Eustace. Atom: A system for build-
ing customized program analysis tools. In Proceeding of
ACM SIGPLAN Conference on Programming Language De-
sign and Inplementation, June 1994.

[21] S. Steely, D. Sager, and D. Fite. Memory reference tagging.
US. Patent 5,619,662, Filed Aug. 1994, Issued Apr. 1997.

[22] R. A. Sugumar and S. G. Abraham. Efficient simulation of
caches under optimal replacement with applications to miss
characterization. In Proceedings of the ACM SIGMETRICS
Conference on Measurement & Modeling Computer Systems,
pages 24–35, Santa Clara, CA, May 1993.

[23] M. E. Wolf and M. Lam. A data locality optimizing algo-
rithm. In Proceedings of the SIGPLAN ’91 Conference on
Programming Language Design and Implementation, pages
30–44, Toronto, Canada, June 1991.

[24] Y. Zhong, S. Dropsho, and C. Ding. Miss rate prediction
across all program inputs. In Proceedings of the 12th Inter-
national Conference on Parallel Architectures and Compila-
tion Techniques, pages 91–101, New Orleans, LA, September
2003.

[25] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array re-
grouping and structure splitting using whole-program refer-
ence affinity. In Proceedings of the 2004 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, Washington, D.C., June 2004.

