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ABSTRACT

COOPERATIVE HARDWARE/SOFTWARE CACHING FOR
NEXT-GENERATION MEMORY SYSTEMS

FEBRUARY 2004

ZHENLIN WANG

B.S., BEIJING UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kathryn S. McKinley

The memory system remains a major performance bottleneck in modern and future

architectures. In this dissertation, we propose a hardware/software cooperative approach

and demonstrate its effectiveness. This approach combines the global yet imperfect view

of the compiler with the timely yet narrow-scope context of the hardware. It relies on a

light-weight extension to the instruction set architecture to convey compile-time knowledge

(hints) to the hardware. The hardware then uses these hints to make better decisions.

Our work shows that a cooperative hardware/software approach to (1) cache replace-

ment, (2) prefetching, and (3) their combination eliminates or tolerates much of the mem-

ory performance bottleneck. (1) Our work enhances cache replacement decisions using

compiler hints. The compiler detects which data will or will not be reused and annotates

loads accordingly. The compiler sets one bit (the evict-me bit) to denote a preferred evic-

tion candidate. On a miss, the cache replacement algorithm preferentially replaces a cache
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line with its evict-me bit set. Otherwise, it follows the LRU policy. The evict-me replace-

ment scheme improves cache replacement decisions and is effective in both L1 and L2

caches. (2) We also use compiler hints to direct aggressive hardware region prefetching

and content-aware pointer prefetching. The original SRP (scheduled region prefetching)

engine queues prefetching requests on every outstanding L2 miss and tolerates latencies at

the cost of dramatically increasing the memory traffic. GRP (guided region prefetching)

enhances SRP by restricting prefetching to compiler-marked loads. Our compiler algo-

rithms effectively mark spatial reuses across the SPEC CPU2000 benchmarks, and thus

GRP achieves the performance of SRP with only one eighth of the additional traffic. (3)

The evict-me cache replacement scheme helps alleviate the side effects of cache pollu-

tion introduced by useless region prefetches. The combination of evict-me caching and

region prefetching further improves cache performance. These results demonstrate signif-

icant promise for overcoming the memory bottleneck with cooperative hardware/software

techniques.
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CHAPTER 1

INTRODUCTION

In this dissertation we propose a hardware/software cooperative approach to improve

computer system performance. We demonstrate that this approach is very effective and

promising for the memory system, improving cache replacement, data prefetching, and

their combination.

Modern processor speed continues to outpace memory speed [45]. Researchers project

the performance gap will be even larger in the next ten years [3]. Hennessy and Patter-

son [45] illustrate the trend of memory-processor speed disparity as shown in Figure 1.1.

The figure is based on the assumption that processor performance increases 55% per year

from 1987 on, and 35% per year until 1986. In contrast, memory speed shows only 7%

growth each year. This figure more or less reflects the reality of commercial systems. Fig-

ure 1.2 shows the gap of an Intel family [37], where each bar displays the peak number of

instructions per memory access. It is easy to observe that there is an exponential increase

of the bar height.

Both Figure 1.1 and Figure 1.2 describe the worst case scenario. In reality, a typical

commercial architecture relies on a memory hierarchy to alleviate memory bottlenecks. A

modern system usually contains two or more levels of cache, starting with the fastest Level

1 cache, which is closest to the CPU. Caches, which exploit program locality, perform well

for some applications but are not always effective. Applications that have poor locality

or large working sets often show poor cache performance. Several modern architectural

features, such as out-of-order execution and lock-up free caches, effectively hide the Level

1 latencies for many programs [17, 100], though not all. These techniques, however, cannot
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Figure 1.1. Processor and memory performance trend

hide the latencies of the Level 2 cache and beyond. Hundreds of cycles that result from

DRAM accesses cannot be tolerated, thus causing significant performance degradation. For

the SPEC CPU2000 benchmarks running on a modern high-performance microprocessor,

over half of the time is spent stalling for loads that miss in the Level 2 cache [69]. We

observe similar results in our simulations for a subset of SPEC CPU2000 benchmarks and

sphinx, a speech recognition application [68]. Figure 1.3 compares the performance of a

system with a configuration of a modern processor and a realistic memory hierarchy with

two levels of cache versus a system with a perfect L1 cache and one with a perfect L2 cache

with the stacked bar for each benchmark. The benchmarks are sorted by the size of the gap

between a realistic system and one with a perfect L2 cache. The geometric mean of this

performance gap is 33.7%.

Despite an enormous amount of research, memory stalls remain a challenge to com-

puter performance. One reason is that past work does not fully exploit the strengths of both

software and hardware. As we shall discuss in Chapter 2, existing techniques dominantly

lean towards either a pure software solution, such as loop transformations and software
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prefetching, or a pure hardware solution, such as the victim cache and hardware prefetch-

ing. Even the limited amount of research on hardware/software cooperation that we dis-

cuss in Section 2.3.3 is typically restrained by the current hardware/software interfaces. In

this dissertation, we propose a novel hardware/software cooperative approach with a new

hardware/software interface to address the increasing performance gap between the main

memory and the processor.
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1.1 Our Hardware/Software Cooperative Approach

Memory system performance can be improved with closer cooperation between soft-

ware and hardware. Software has the advantage of its global view of the whole program,

which is obtained through static compiler analysis. This static knowledge is typically

coarse-grained and imprecise. For example, at compile time it is easy to detect if an ar-

ray is accessed in a loop nest and reused in the following nest. But it is hard or impossible

to calculate exactly how many array elements are reused if the loop bounds are unknown.

However, even this imprecise view can serve as valuable guidance for run-time decisions.

Run-time knowledge is typically precise but its scope is very limited. The information

of the future execution at a point is unknown. Prediction from past behavior is usually

restricted by a limited history because retaining a complete history of run-time status is

prohibitive due to its very high storage and retrieval cost. By combining the strengths of

software and hardware, the run-time system attains greater power to predict. Relying on

compiler prediction combined with current run-time status and limited history, the run-time

system can achieve high performance with relatively low cost. This dissertation investi-

gates the memory system, but this approach can also be used to improve instruction level

parallelism in a processor core and in other circumstances.

In the past, a limited amount of research has used a similar hardware/software approach

to improve performance. As we discuss in Chapter 2, that research is typically specific to a

particular application domain and restricted by poor interfaces between hardware and soft-

ware. In most modern computer architectures, the hardware/software interface is limited

to simple load/store instructions. The compiler generates memory access instructions. At

run time, the processor sends requests to the memory system upon the execution of these

instructions. It has no control beyond that. A memory request contains an address used

to look up a value in the main memory or the cache. The request does not specify more

details such as which slot the accessed data should sit in a cache set in order to exploit the

best cache performance.
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Our work extends the instruction set architecture (ISA) with a few bits in the memory

instructions. The compiler encodes its global view of the whole problem into these bits.

Combined with precise run-time status, the hardware is enhanced to use these bits to control

memory system behavior and thus is able to utilize system resources better. This disser-

tation shows that this ISA extension is effective given its light-weight hardware support

and compiler implementation. However, as the memory-processor performance gap keeps

getting larger, we expect to need a richer interface, which can convey more information.

The cooperative approach can be applied to improve almost every aspect of the memory

system including cache replacement, data prefetching, memory disambiguation, and cache

coherence, to name a few.

1. Cache replacement. A typical cache replacement decision is made based on run-

time history. Using the cooperative approach, the decision can be improved with

knowledge of the future access pattern detected statically through compiler analysis.

2. Data prefetching. Cooperative data prefetching can achieve both the accuracy of soft-

ware prefetching and the high performance of hardware prefetching. We can enhance

hardware prefetching with compile-time locality information. We can depend on the

run-time status to schedule prefetch requests and the compiler analysis to select what

to prefetch.

3. Memory disambiguation. The interaction of the compiler and the hardware can sup-

ply us with a cost-effective run-time memory disambiguation technique to increase

parallelism of memory instructions. Specifically, compile-time dependence testing

and alias analysis can speed up speculative execution by predicting if a RAW (read

after write) dependence exists between a store and a load.

4. Cache coherence. One application is to use the compiler to mark if a read or write is

non-shared. This can reduce false sharing misses and speed up parallel execution.
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In this dissertation we focus on application of our approach to cache replacement and

data prefetching, aiming to improve cache performance. To achieve high cache perfor-

mance we can rely on 1) hardware advances, which reduce the cycle penalty of cache

misses, 2) techniques to reduce cache misses, or 3) approaches to tolerate latencies [45].

Our cache replacement work falls into the second category and our prefetching work into

the third. Our work emphasizes the importance of software/hardware interaction to improve

memory system performance.

1.2 Guided Cache Replacement

To attain fast cache access times, current microarchitectures have direct-mapped or low,

2 or 4-way, set-associative organizations [45, 47]. This choice trades off lower cache hit

rates for higher clock rates to achieve better total performance. In set-associative caches,

cache replacement policies determine which line to evict on a miss and will cause extra

misses when making poor decisions. Current cache replacement policies typically rely

only on run-time knowledge to make replacement choices. These policies do not always

use cache memory effectively; i.e., even though the cache has sufficient capacity to retain

data that will be reused in the future, they do not retain it [3, 14, 79]. Using a cooperative

approach, we propose a novel compiler and architecture mechanism that uses compiler pre-

diction of future accesses to improve cache replacement decisions directly. We particularly

focus on enhancing the widely used LRU (least recently used) replacement policy.

Our new compiler mechanism guides cache replacements by selectively predicting

when data will or will not be reused. We encode the compile-time prediction into mem-

ory instructions. We develop a comparative model that uses dependence and array section

analysis to determine static locality patterns in a program. In Chapter 3, we first prove

that our model matches or improves hit rates when compared to LRU. We then present an

implementation that uses a single tag bit called the evict-me bit. On a miss, the architecture

replaces a line with this bit set. Our compiler algorithm aggressively marks data as evict-
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me if the data volume accessed between its reuse is (or it predicts the reuse is) greater than

twice the cache size. The compiler can mark data aggressively since, if all the data fits in

the cache, there will be no replacements. By applying the evict-me bit to both Level 1 and

Level 2 caches, we observe up to 21% simulated performance improvements for current

technology on a selection of scientific benchmarks and 34% for a technology prediction

for 5 years from now [3]. On average, we reduce simulated execution time on our bench-

marks by 5% to 16%, depending on the cache configuration. These results suggest that

run-time cache replacements can benefit from the static compiler oracle, which tells data

reuse patterns, to reduce cache misses and thus improve overall performance.

1.3 Guided Region Prefetching

The cache replacement techniques discussed in Section 1.2 help to reduce cache misses.

But they cannot eliminate them all. For example, they help little on compulsory misses,

which are caused by the first run-time accesses in an application. Prefetching is a pop-

ular technique to tolerate memory latencies. Researchers have proposed a large number

of software and hardware prefetching schemes. Each of these two classes of prefetch so-

lutions have distinct advantages and drawbacks. Pure software prefetching is typically

highly accurate, but incurs run-time overhead and cannot issue prefetches sufficiently far in

advance of a load to hide main memory access latencies [69]. Hardware-only schemes can

prefetch spatial regions [23, 24, 54, 84, 92], pointer chains [32, 53, 89], or recurring pat-

terns [66]. While these schemes can hide much of the main memory access time, they can

also consume substantial amounts of memory bandwidth. This additional traffic does not

always degrade uniprocessor performance, but it increases power consumption, and will

likely degrade performance on multiprocessors. Since off-chip bandwidth will be the dom-

inant limiter of scalability for future chip multiprocessors (CMPs) [51], prefetch schemes

that consume bandwidth inefficiently will not be practical. While some schemes throttle
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traffic Performance gap
Speedup increase from perfect L2 (%)

No prefetching 1 1 34
Stride prefetching 1.15 1.09 24

SRP 1.23 2.80 19
GRP 1.21 1.23 20

Table 1.1. Summary of prefetching performance and traffic

prefetching when the accuracy drops below a threshold, they then miss opportunities for

issuing useful prefetches and thus trade performance against accuracy [36].

We propose an approach that builds on the strength of hardware and software prefetch-

ing, called Guided Region Prefetching (GRP). In GRP, sophisticated compiler analysis

produces a rich set of load hints, including the presence or absence of spatial locality,

pointer structures, or indirect array accesses. A run-time hardware engine, triggered by

L2 cache misses, generates prefetches based on the compiler’s hints. GRP thus benefits

from compiler analysis of application reference patterns, but—unlike traditional software

prefetching—the compiler is not required to generate or schedule individual prefetch ad-

dresses. Because the hardware generates the prefetches, it can run far ahead of the missing

references. Because the compiler guides it, the hardware need not struggle to deduce future

references with complex pattern matching on prior accesses stored in large tables.

Table 1.1 shows a summary of GRP results using the geometric mean of the SPEC

CPU2000 benchmarks plus sphinx. Without prefetching, the mean performance across the

benchmark suite is 34% lower than a perfect Level 2 cache. Stride prefetching (using the

Sherwood et al. design [92]) provides a 15% speedup over no prefetching. SRP, which

uses no compiler analysis, outperforms stride prefetching by 7%, but consumes excessive

memory bandwidth, a 180% increase over a system with no prefetching. GRP provides

near-equivalent performance to SRP but with substantially less traffic, an increase of only

23% over no prefetching. This reduction in traffic saves power and is more amenable to

multiprocessor systems, where additional traffic can directly affect performance. To sum-

marize, GRP as a cooperative prefetcher is able to make SRP, the hardware-only prefetcher,
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practical by using compiler guidance. On the other hand, as is shown in previous work [69],

SRP itself outperforms a state-of-the-art software prefetcher. The cooperative prefetcher

thus provides a cost-effective solution for high performance.

1.4 Combining Cache Replacement and Region Prefetching

GRP is targeted to the Level 2 cache. Due to the complexity of the prefetching engine,

it is impractical to implement a similar prefetching engine for the Level 1 cache. As shown

in Figure 1.3, there is still a significant performance loss due to L1 stalls. Guided cache

replacements alleviate this problem. However, even an optimal cache replacement policy

usually cannot eliminate all misses. Given the high prefetching accuracy of GRP, most

data prefetched to L2 will be used at L1. Accesses to these data at the Level 1 cache are L1

misses and thus suffer the L2 latencies. To tolerate these latencies, we design a prefetching

engine between the Level 2 and Level 1 cache, which pushes the prefetched data into the

Level 1 cache. Our results show that pushing prefetched data into the L1 cache can further

improve memory system performance.

Typically, the Level 1 cache size is much smaller than the Level 2 cache. Pushing

data into L1 introduces cache replacements and can pollute the cache. In Chapter 5, we

examine the impact of the LRU and MRU placement policies. Furthermore, we combine

guided cache replacement with L2 region prefetching and L1 data pushing. By marking a

cache line as evict-me, the compiler optimistically predicts that the cache line will not be

reused in the near future. The side effects of an unused prefetch or pushed line are reduced

if it replaces an evict-me line. We find that compiler-guided replacement helps reduce the

cache pollution of the push scheme by roughly half.

1.5 Dissertation Organization

We organize this dissertation as follows. In Chapter 2, we briefly cover some back-

ground material and discuss related work. We introduce basic notations for the memory
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hierarchy and survey related techniques for tolerating cache latencies. We focus on the

literature targeting cache replacement policies and data prefetching that are directly related

to this dissertation. Finally, we introduce the Scale compiler infrastructure in which we

implemented all our compiler algorithms.

In Chapter 3, we describe our cooperative cache replacement algorithms. We present a

theoretical model in which we formulate our algorithms. We prove that the algorithms will

generate hit rates at least matching LRU. We then present two implementation techniques.

In one implementation, we use an impractical 16-bit hint to determine an upper bound

of our approach. We then focus on a one-bit (evict-me) implementation and present the

compiler analysis to generate this bit.

In Chapter 4, we introduce guided region prefetching and compare it with hardware-

only region prefetching and stride prefetching. We present a series of compiler algorithms

generating various compiler hints. We use these hints to enhance region prefetching and

pointer prefetching. We show that our locality analysis is sufficient to catch most spatial

reuses, so GRP is able to match the performance of SRP but reduce SRP’s bus utilization

to a practical level.

In Chapter 5, we first design a new prefetching engine, which pushes to the Level 1

cache the data prefetched into the Level 2 cache . We then put this push scheme, guided re-

gion prefetching, and guided cache replacement together. We show that the three methods

interact well to improve performance further. We also observe that guided cache replace-

ment can alleviate the pressure on cache replacement introduced by pushed data.

We conclude this dissertation in Chapter 6 by discussing the remaining problems and

possible future work, and listing other applications of our cooperative approach.

1.6 Summary of Contributions

We make the following contributions in this dissertation:
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1. Emphasizing the importance of hardware/software cooperation: There is only a lim-

ited amount of work that uses software/hardware collaboration to attack the memory

wall problem. Within the research area, we emphasize the importance of the flexibil-

ity of using ISA extension to enrich the interface between software and hardware and

propose practical applications of the extension. We develop and implement a series

of compiler algorithms to manipulate the new ISA. We use simulators to explore the

effectiveness of the compiler hints on performance and traffic.

2. A new cache replacement policy: We are the first to use those specific static compiler

hints to direct run-time cache replacements. We describe a volume-based compile-

time analysis to generate compiler hints and propose a practical cache architecture

implementation based on a one-bit extension to the ISA and caches. We find that this

new replacement policy is able to cut misses and often achieves miss rates close to

optimal. Its performance depends on cache parameters and input data set sizes.

3. A new region prefetching technique: Our work distinguishes itself from previous re-

gion prefetching work in its compiler control. We use compiler hints to help hardware

decide when to exercise prefetching and what is the appropriate prefetching region

size. We find that compiler-guided region prefetching matches the performance of

hardware-only region prefetching while reducing bus traffic to a practical level.

4. A thorough study of region prefetching and pointer prefetching: Our work thor-

oughly studies the interaction between region prefetching and pointer prefetching.

We find region prefetching outperforms pointer prefetching in most cases, and their

combination does not lead to a performance improvement.

5. A study of the interaction between cache replacement and prefetching: We study how

a cache replacement policy can affect prefetching efficiency. Our results show that a

well-tuned cache replacement policy can reduce the side effects of prefetching, such

as cache pollution.
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We show that our cooperative approach is an effective direction for addressing the mem-

ory wall problem. Through its applications for cache replacement and data prefetching, we

demonstrate that compile-time analysis is able to supply copious information that the hard-

ware can exploit to improve memory system performance. On the other hand, the run-time

status tracked by hardware is critical for fully exploiting compiler hints. The limitation

of this approach lies in its dependence on the ISA extension since the budget on ISA bits

usage is very tight, particularly for RISC architectures. However, our work suggests it is a

cost-effective way to improve memory system performance.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides background material and discusses related work. It first describes

the most pertinent knowledge on how modern memory systems work and how our tech-

niques benefit from state-of-the-art technologies. It then concentrates on related work in

cache replacement, cache miss characteristics, and various prefetching techniques. We em-

phasize our contribution in both its underlying methodology and its breakthroughs in solv-

ing existing problems in memory systems. We also include a brief introduction to Scale,

the compiler infrastructure we use to implement all of the compiler analyses described in

this dissertation.

2.1 Memory System

In this section, we first address the role of the memory hierarchy in modern systems. We

then focus on those recent advances in cache, DRAM, and processor core architectures that

are most related to memory system performance and the hardware or software techniques

discussed in this dissertation.

2.1.1 Cache Architecture and Cache Miss Classification

As latencies for accessing main memory keep growing, numerous techniques have been

proposed and implemented to bridge the gap. Most of these techniques concentrate on the

memory hierarchy. A typical memory hierarchy consists of register files, several levels of

caches, the main memory, and the disk. The levels of a memory hierarchy usually follow

an inclusion paradigm: all data in one level can be found in the level below. A higher level
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(closer to the CPU) is faster but smaller than lower levels. Generally, the literature refers

to all the levels between the CPU and the main memory as caches. We refer the reader to

an early survey by Smith [98] for a comprehensive introduction to cache design and some

techniques used to improve cache performance.

A block or a line is the minimum unit of information that can be present in the cache

(hit in the cache) or not (miss in the cache). The restrictions on where a block can be placed

in a cache create three categories of cache organizations. If each block has only one place

it can appear in the cache, the cache is direct mapped. If it can be placed anywhere in the

cache, the cache is fully associative. If it can be placed in a restricted set of places, the

cache is set associative. In a set-associative cache, a set refers to a group of places each of

which a block can be mapped to. A fully-associative cache can be considered as a special

set-associative cache where the whole cache is a single set.

The memory hierarchy will speed up execution if accesses can be served at the upper

levels (hits). Otherwise, it will suffer the longer latency due in misses to the higher lev-

els. Hill and Smith classify cache misses into three categories: compulsory, conflict, or

capacity [48]. A compulsory miss is the first access to a cache line. A capacity miss occurs

when the cache size is too small to hold all the cache lines referenced by a program. With

sufficient capacity, a conflict miss occurs when multiple cache lines are mapped to the same

set in the cache, and the program subsequently references an evicted line. One can use the

least recently used (LRU) replacement policy and a fully associative cache to define the

three types of misses [46, 48, 67]. A capacity miss happens when a data item that is reused

cannot be kept even in a fully associative cache. A conflict miss occurs when a reused data

item can be kept in a fully associative cache, but is evicted due to limited cache associa-

tivity or a poor cache replacement decision in a given cache configuration. Using the LRU

replacement policy makes statistics on different categories of cache misses simpler. Stricter

statistics following the original definition require optimal cache replacement. Sugumar and
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Figure 2.1. Conventional DRAM block diagram

Abraham suggest a measurement using optimal cache replacement [102] as we discuss in

Section 2.2.2.

2.1.2 DRAM Architecture

Main memory is typically organized as DRAM (Dynamic Random Access Memory).

Figure 2.1 illustrates a conventional DRAM. The term DRAM implies that an access to

any randomly chosen location requires about the same amount of time. However, this is

not the case since DRAM manufacturers have created several new DRAM architectures

to respond to the memory wall problem. DRAM is conventionally arranged as a matrix of

“cells”. The memory accessing address is divided into a row address and a column address,

which are then decoded to access the memory array. A data access sequence consists of

a row address strobe (RAS) signal followed by one or more column address strobe (CAS)

signals. The data in the storage cells of the decoded row address is moved into a bank of

sense amplifiers during RAS. In the following CAS, the decoded column address selects

data from the amplifiers.

In a conventional DRAM, there is only one CAS following each RAS. In fast page mode

DRAM, multiple CAS signals are allowed, and the amplifier set is called a page or a hot

row. This DRAM is thus designed to exploit more spatial locality. We refer the reader to
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Cuppu et al. [34] for characteristics of a list of representative DRAM techniques such as

Synchronous DRAM (SDRAM) and Rambus DRAM (RDRAM).

Cuppu et al. [33] experiment with the performance effect of the system-level parame-

ters of a DRAM system, such as the number of memory channels, burst sizes, queue sizes

and organizations, turnaround overhead, memory controller page protocol, and algorithms

for assigning request priorities and scheduling requests dynamically. They find that concur-

rency in the primary memory system is very important, even for a uniprocessor, and support

for concurrent transactions improves performance by roughly a factor of two. They sug-

gest that improving concurrency by subdividing the memory bus into multiple channels is

risky, as it relies on the ability of the application to sustain the level of concurrency equal to

the number of channels, otherwise the extra channels lie unused. From this point of view,

the intra-channel concurrency is safer to exploit than inter-channel concurrency. Taking

advantage of the Rambus design, Region Prefetching, as proposed by Lin et al. [69], is-

sues prefetches only when a free channel is available and thus avoids channel contention

with regular memory accesses. Our prefetching technique is an extension of this work and

includes this optimization.

McKee et al. [76] find DRAM performance is largely dependent on the the order of

accesses for streaming type workloads. They propose a stream buffer and a memory sched-

uling unit between the CPU/Cache and main memory. The compiler detects streams and

generates stream access instructions. The memory scheduling unit is able to reorder the

streaming accesses and the regular requests from caches and issue the accesses to main

memory in an optimal order. The “optimality” comes from better hit rates to hot pages

in modern DRAM systems. Generally, the access time of a page hit is a factor of two

to three faster than a page miss. Modern DRAM designs, such as SDRAM and Rambus

DRAM, make the access pattern and scheduling of main memory accesses more critical

to the overall performance of the hierarchy. Varying cache replacements and prefetching

policies change the data stream into and out of main memory. It is not the focus of this
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dissertation to discuss the effect on main memory; however, both of our techniques aim

to reduce the number of main memory accesses. Region prefetching takes direct advan-

tage of the Rambus DRAM design. The prefetching requests are prioritized based on the

availability of free channels.

2.2 Improving Cache Performance

In this section, we first introduce concepts of program locality, to which almost all

cache improving approaches can be related. We list several theoretical studies of cache

replacement policies. Then we discuss research on cache miss characteristics. We focus on

hardware and software enhancements for improving cache performance and cache replace-

ment algorithms. We single out related work in data prefetching and discuss it separately

in Section 2.3. We conclude with some recent work on data remapping and cache coloring,

and their impact on our work.

2.2.1 Program Locality

The performance benefits of a memory hierarchy stem from program locality. The clas-

sical notions of locality found in programs are: temporal locality—if an item is referenced,

it will be referenced again soon; and spatial locality—if an item is referenced, an adjacent

item will tend to be referenced soon [45]. When a program exhibits good locality, we ex-

pect most data will be available in the higher levels of the memory hierarchy; and thus we

will avoid the longer latencies of the lower levels.

To improve cache performance, we can either improve program locality, exploit pro-

gram locality better, or hide latencies of accessing data with poor locality. Examples of

improving program locality are loop transformations, such as loop tiling and loop permuta-

tion. Our work on cache replacement policies is an example of exploiting program locality.

Region prefetching exploits spatial locality and hides latencies.
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2.2.2 Trace-based Cache Studies

A lot of theoretical cache work depends on having a complete program trace. Although

our work does not depend on traces, some theoretical research motivates it. The notion of

a program trace also facilitates our introduction to notations of data reuse.

Belady [10] pioneered research on replacement policies by comparing random cache re-

placement, LRU, and an optimal algorithm. His research originally targeted virtual memory

page replacement, but the overall logic applies well to cache replacement. Given the trace

of page accesses, the optimal algorithm should always replace the page with the largest

reuse distance. A reuse of an access is the next access to the same address. Reuse distance

is the number of distinct accesses between an access and its reuse. Belady proposed an

optimal page replacement algorithm, called the MIN algorithm, given the entire program

access sequence. Our cache replacement policy is inspired by the optimal cache replace-

ment policy. Rather than relying on the whole program trace, we instead use static compiler

analysis to predict the reuse distance.

Sugumar and Abraham [102] use Belady’s algorithm to characterize capacity and con-

flict misses. They present three techniques for fast simulation of optimal cache replace-

ment. Using a limited lookahead strategy, they are able to simulate multiple optimal caches

with a one-pass scan. They also propose a tree-based fully-associative cache simulation

and a partial inclusion scheme for simulating multiple set associativities. They find that

the optimal miss rate is up to 70% lower than those under an LRU policy for 9 selected

benchmarks. A simulator, sim-cheetah, implemented all these techniques. Sim-cheetah is

the version adapted for SimpleScalar, a simulation tool set we use in this dissertation [15].

Temam [103] extends Belady’s optimality result by simultaneously exploiting spatial

and temporal locality. By considering both types of localities, the study evaluates the po-

tential benefits of future memory optimizations and provides a performance upper bound

for higher memory levels. Burger [13] uses the MIN algorithm to obtain a formal lower

bound of the amount of bus traffic that a cache may produce.
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All the studies discussed above seek to understand cache characteristics rather than to

implement a real cache and related algorithms. Although our theoretical model in Sec-

tion 3.2.1 is also based on static traces, we apply it to a real cache using compiler analysis.

In Chapter 3, we also compare our algorithms to the optimal cache policy using Sugumar

and Arbraham’s simulation techniques [102].

2.2.3 Cache Miss Analysis

Ghosh et al. [39] suggest a set of miss equations for precisely analyzing cache misses

for individual loop nests. Their framework enables compiler algorithms to find optimal

solution for transformations like blocking, loop fusion, and padding. It also helps when

reasoning about how different transformations work together.

Chatterjee et al. [22] set up a set of Presburger formulas to characterize and count cache

misses. Chatterjee’s model is powerful enough to handle imperfectly nested loops and

various non-linear array layouts.

Both models could probably be extended to suggest evictions by calculating cache

misses when applying different eviction schemes. They currently drive optimizations by

comparing the number of misses between runs of the program compiled with different op-

tions. Our work uses heuristics and is less precise for an individual nest, but computes or

estimates the data volume between nests and between reuses. A better cache miss analysis

could improve our results.

2.2.4 Hardware Enhancement of Cache Replacement

Direct-mapped first level caches have been popular because of their low hit cycle time.

They can yield good system performance, even though set-associative caches have lower

miss rates [45, 47]. Due to rapid increases in miss cycle penalties, many recent architec-

tures use at least 2-way set-associative L1 caches, e.g., the Compaq Alpha 21364 and Sun

SPARC 2. To attain fast access time to L1 caches in future technologies, processors will

probably have small L1 caches with a low degree of associativity [3]. We observe that the
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industry is starting to deliver 3-cycle L1 caches. Some architectures trade higher associa-

tivity with a simpler cache replacement policy. For example, the IBM RS/6000 7043 has a

64K 128-way Level 1 cache that uses random replacement.

In Chapter 3, we propose an evict-me cache to enhance cache replacement. Each line

is tagged with a bit called the evict-me bit. A line with the evict-me bit set is preferred for

eviction on a cache miss. The hardware mechanisms of an evict-me cache do not increase

cycle time and are effective only on set-associative caches; i.e., the hit time is unchanged.

The replacement logic on a miss considers one more bit. Our work tries to achieve both

fast hit cycle time and low miss rates.

The evict-me bit is similar to, but not the same as, the Alpha’s evict instruction, which

evicts a cache line immediately and thus cannot tolerate imprecision [58]. The evict in-

struction is designed to help maintain cache coherence, rather than to enhance locality. Our

approach works for variable cache and data sizes because only when the data do not all fit

in the cache will the replacement algorithm use our information. The Alpha’s prefetch and

evict-next instruction loads the line to the Level 1 cache and evicts it on the next miss to the

cache set [58], but we instead tag actual loads, not speculative prefetches.

Numerous dynamic or hardware techniques have been proposed to reduce cache misses

or alleviate cache pollution to improve hit rates, e.g., [2, 52, 54]. The victim cache was

originally designed to enhance direct-mapped caches [54]. It is a small fully-associative

buffer between the Level 1 and 2 cache, which stores replaced data to reduce conflict misses

that occur close together in time. The evicted L1 cache line exchanges with the hit line in

the victim buffer. The victim cache is probabilistic, rather than predictive.

Wong and Baer [112] enhance LRU with a temporal bit for each cache line. Temporal

bits act oppositely to our evict-me bits: they specify lines to retain rather than lines to

evict. Wong and Baer determine temporal bit settings using profiling or an online hardware

history table. The temporal bit of a cache line is reset when the line is hit. To avoid a

marked dead line polluting the cache, the temporal bit of the LRU line is reset when a non-
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LRU line is evicted. Rivers et al. [87] use a (hardware) detection unit, similar to a history

table, to track reuses at run time and to categorize access as temporal/non-temporal and

cacheable/non-cacheable. A non-cacheable access bypasses the cache to avoid pollution.

Lai et al. [66] use a hardware history table to predict when a cache block is dead and which

block to prefetch to replace the dead one. Our technique is based on static compiler analysis

and does not require substantially additional hardware.

Hannnor and Reinhardt [43] present a practical, fully associative, software-managed

secondary cache. Their system consists of an indirect index cache (IIC) and a replacement

algorithm, generational replacement. The IIC’s tag array is organized as a hash table and

each tag entry contains a pointer to the data block, which makes the cache fully associative

because the pointer can legally point to any block in the cache. Hannor and Reinhardt group

cache blocks into a small number of prioritized pools. The software-managed generational

replacement promotes and demotes cache blocks on a miss depending on their recent ref-

erence history. The software replacement algorithm achieves miss rate reductions from 8

to 85% compared to a 4-way LRU. Hannor and Reinhardt use software management to

reduce the complexity of the hardware implementation of their design. Their replacement

algorithm totally relies on run-time history and does not use any compiler-time analysis.

McKee et al. [77] use a stream buffer for stream-like data to bypass the cache. They

rely on the compiler to detect stream array accesses and generate a special instruction to

start a stream at run time. We mark stream data as evict-me, but our technique works on

cache replacement directly and does not require an extra buffer.

The Intel IA-64 provides instructions to control caching [38]. Non-temporal loads/stores

bypass the cache to avoid cache pollution due to streaming data. The IA-64 supports lo-

cality hints used by prefetch, load, and store instructions to control placements of cache

lines in either a temporal structure or a non-temporal structure. The hints do not direct

cache replacement, but our compiler analysis could specify the non-temporal instructions

and locality hints. We do not explore that application in this dissertation.
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2.2.5 Page/Cache Coloring and Data Remapping

Coloring is an approach to classify pages and cache lines used to assist varies run-

time decisions. On-line page coloring and other mechanisms decrease paging, but are too

expensive for higher levels of the memory hierarchy. For example, Early Eviction LRU

(EELRU) [96] dynamically chooses to evict the LRU page or the eth most recently used

page. The reference history determines e, the early eviction point, but is too expensive

to store and use for caches. This approach eliminates capacity page misses in a fully as-

sociative memory, whereas our technique removes conflict misses for caches, using static

compiler control.

Some work uses cache coloring or data remapping to improve cache effectiveness and

reduce conflict misses due to poor mapping [12, 18, 29, 91]. Calder et al. [18] use profiling

to build a Temporal Relationship Graph (TRG), which shows a metric of cache interference

among stack (local variables), global variables, heap objects, and constants. Using TRG,

they propose an algorithm to decide the placement of each object in order to reduce cache

interferences.

Sherwood et al. propose a hardware and a software approach to reduce cache misses

by reordering pages in cache [91]. The software approach provides a color mapping at

compile time for code and data pages, which can then be used by the operating system

to guide its allocation of physical pages. The hardware approach works by adding a page

remap field to the TLB, which is used to allow a page to be remapped to a different color in

the physically indexed cache while keeping the same physical page in memory. Bugnion et

al. implement a similar software page coloring approach for multi-processor systems [12].

They use compiler analysis of access patterns to direct the operating system to allocate

physical pages.

Chilimbi and Larus [29] use generational garbage collection to implement cache-conscious

data placement. They reorganize objects at garbage collection time to improve data local-
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ity and thus cache performance. Chillimbi et al. [27, 28] later on provide a more detailed

analysis and an implementation using an extension of memory allocation functions.

Compared to cache coloring, our cache replacement algorithms try to reduce cache

misses at a finer level, i.e., cache sets. Even in colored caches, our algorithms can most

likely still help reduce cache misses. A program with improved locality will leave a smaller

space for our cache replacement to improve. However, the static compiler analysis will still

help as long as the data movements for locality improvements do not destroy those static

properties.

2.2.6 Improving Cache Locality—Program Transformations

Researchers have also proposed loop and data transformations to improve data local-

ity by moving temporal reuses closer together in time and by introducing spatial local-

ity [1, 55, 78, 111]. These algorithms do not directly improve replacement decisions and

thus are complementary to our work. Region prefetching, which we describe in Chapter

4, sometimes benefits from improved spatial locality introduced by loop transformations.

Region prefetching itself exploits spatial locality. It will show better prefetching accuracy

and improved performance when combined with loop transformations. We leave this com-

bination as future work.

2.2.7 Out-of-order Execution and Lock-up Free Caches

An out-of-order execution processor core is able to hide some cache latencies through

a combination of dynamic scheduling and a lock-up free cache [63, 14]. The processor

executes instructions when the operands become available rather than in the order that the

program specifies. Out-of-order processors exploit instruction level parallelism by allow-

ing other instructions to execute when an instruction stalls in the processor waiting for a

resource. Out-of-order processors use a fixed-size instruction window from which instruc-

tions may be executed. In order to preserve program semantics, the processor typically

retires or commits the instructions in order. The amount of latency that an out-of-order
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processor is able to tolerate depends upon the amount of instruction level parallelism (ILP)

and the size of the instruction window. Most high performance commercial processors

support out-of-order execution, including the Alpha 21264 [58, 59], MIPS R10000 [115],

PowerPC, and Intel Pentium [49].

2.3 Prefetching Techniques

In this section, we focus on the most pertinent aspects of the large body of literature

on software and hardware data prefetching, along with the small number of previously

proposed hybrid schemes. Typically we refer to prefetching techniques using compiler-

generated explicit prefetching instructions as software prefetching. Certainly the prefetch-

ing instructions need to be implemented in hardware. Hardware prefetching, on the other

hand, does not require special compiler support. In contrast, it generates prefetching re-

quests at run time based on run-time state. Hardware/software cooperative prefetching

uses both run-time state and static compile-time knowledge to direct prefetching.

2.3.1 Software Prefetching

In this section we first address some general issues associated with software prefetch-

ing, its strengths and weaknesses. Then we survey the major work in this area.

Software prefetching relies on non-blocking prefetch instructions that bring the indi-

cated block of memory into the cache, much like a load instruction. Conceptually, the

latency of a given load instruction is hidden by inserting a prefetch with the same effec-

tive address into the instruction stream sufficiently far in advance of the load. Because the

compiler inserts prefetches only for loads guaranteed to occur (or very likely), software

prefetch accuracy is typically high. In practice, the compiler faces two key challenges in

data prefetching: selection and scheduling.

Because prefetch instructions occupy instruction cache space, pipeline slots, and data

cache ports, the compiler must select a subset of the loads for which to generate prefetches.
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Accurate compile-time identification of the loads that will cause cache misses at run time

is complex, requiring both knowledge of hardware parameters (cache block size, capacity,

and associativity) and sophisticated code analysis (e.g., to determine the volume of other

data accessed between references to a particular block) [19, 39, 82, 113].

The compiler also faces the difficult challenge of scheduling the prefetches sufficiently

early to hide the memory latency, but not so early that useful data are needlessly evicted.

To find that point, the compiler must estimate cache miss latencies and run-time instruc-

tion execution rates [62]. The compiler is further constrained in that it cannot schedule

a prefetch until it can compute the effective address. While this constraint is not signifi-

cant for arrays [16, 82], it limits compiler-based greedy pointer prefetching [17, 72, 88].

Jump pointers bypass this limitation by identifying records several links ahead in the struc-

ture, but require much more sophisticated analysis, dynamic updates, and the addition of

a jump pointer to each object [17, 72, 88]. Other approaches prefetch pointer arguments

at call sites [71], and decouple prefetches from the main program using a separate thread

context [31, 61, 74].

Despite these challenges to software prefetching, the compiler analyses themselves are

usually sufficient to detect where prefetching opportunities exist. The difficulty largely

arises from the lack of run-time information so that prefetching can be issued on time. Our

guided region prefetching technique also depends on compiler analysis and most of our

algorithms are similar to or derive from past work in software prefetching. However, our

technique distinguishes itself by exploiting run-time information as well.

2.3.1.1 Software Array Prefetching

Software array prefetching typically focuses on array references in loops of scientific

applications. It generates software prefetching instructions for likely future array refer-

ences.
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Callahan, Kennedy, and Porterfield [19] present a simple array prefetching algorithm

that first detects loop induction variables. The algorithm inserts a nonblocking prefetching

instruction for an array reference by incrementing the induction variable in the array in-

dices by s. It denotes a reference s iterations away if the coefficient of the loop induction

variable is 1. Based on the observation that one loop iteration usually consumes sufficient

computing time, they then just prefetch one iteration ahead (s � 1), which significantly im-

proves hit rates. This strategy has been revisited as memory latency continues to increase:

prefetching one iteration ahead is often too late.

Klaiber and Levy suggest prefetching data into a separate buffer, called a fetchbuffer, to

avoid polluting the cache [62]. They analyze the impact of prefetching distance and manu-

ally insert prefetching instructions into selected Livermore loops using their analysis. They

use the average memory access time per access as a performance measurement and show

a significant speedup for numeric applications. Two non-numeric applications, quicksort

and binary search, present performance improvements not as dramatic and are dependent

on relatively larger data set sizes.

Mowry, Lam, and Gupta [82] present a thorough evaluation and implementation of

software prefetching. They also show simulated execution time. Their algorithm inserts a

prolog loop to prefetch for the first several iterations. It also generates an epilog loop to

avoid prefetching non-existing array references. They propose the simple formula � l � s � to

calculate prefetching distance, where l is the prefetching latency and s is the shortest path

through the loop body. Their results show a speedup of up to a factor of two. They conclude

that prefetching into cache directly performs impressively well, without the disadvantage

of sacrificing cache size to the fetch buffer that Klaiber and Levy propose [62].

In his dissertation [75], McIntosh introduces cross-loop reuse analysis to reduce useless

prefetches. Given two adjacent loop nests, some data sections accessed in the second nest

are probably accessed by the first nest and stay in the cache. McIntosh implements compiler

analysis to detect these reuses and disable useless prefetches in the second nest.
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Cahoon and McKinley [16] present a unified compile-time analysis for software pre-

fetching both arrays and linked structures. Their data flow analysis detects loop induction

variables in array accesses and schedule prefetches for them. Across a series of array-based

Java benchmarks, their technique reduces execution time by 23% on average.

Two reports evaluate software prefetching on commercial processors using the HP PA-

8000 and the PowerPC. We also notice that the Alpha compiler has software prefetching

implemented. Santhanam, Gornish, and Hsu [90] evaluate software data prefetching on

the HP PA-8000, a 4-way superscalar processor. They report the interaction of data pre-

fetching with loop unrolling and array padding. They also provide a detailed analysis of

prefetching distance with consideration of memory latency and the number of outstanding

misses the processor allows. Santhanam et al. present results showing a 26% speedup on

the SPECfp95 benchmark suite. Bernstein et al. [11] describe a compiler implementation

for data prefetching on the PowerPC architecture. They follow Mowry’s approach but the

only transformation they apply is loop unrolling [82]. They provide actual execution times

for the SPECfp92 benchmarks and Nasa7 kernels. Improvements occur on only three of

the fourteen SPECfp92 programs and six of the seven Nasa7 kernels.

2.3.1.2 Other Software Prefetching Techniques

In this section, we survey related prefetching techniques for linked data structures and

those suitable for general data correlations rather than only regular array accesses.

Early pointer prefetching work proposed by Lipasti et al. [71] uses a compile-time

heuristic, called SPAID (speculatively prefetching anticipated inter-procedural dereferences),

for prefetching pointer arguments at call sites. Their experiments use a trace-driven statis-

tical model. They report the best performance when prefetching one argument at a call.

Since the work is restricted to prefetching arguments, the overall performance effect is

limited.
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To address latencies in general pointer-based applications, Luk and Mowry [72, 73] de-

sign three prefetching schemes, greedy prefetching, history pointer prefetching, and data-

linearization prefetching. They use type declarations and control flow analysis to detect

recursive traversal. In particular they check pointer updates in loops and recursive calls.

We use the same technique to mark recursive pointer references in our guided pointer pre-

fetching. The greedy prefetching scheme prefetches all remaining pointed-to nodes except

the immediately following one. History-based prefetching tries to build jump pointers on-

the-fly during the first traversal. Data-linearization prefetching maps linked structures into

sequential memory locations so the prefetcher can enjoy an array-like prefetching context.

Experimenting on the Olden benchmarks, they show up to 45% speedup with greedy pre-

fetching, which outperforms SPAID in all but one case.

Cahoon and McKinley [17] describe a data flow analysis to generate prefetches for Java

code. They investigate greedy prefetching and jump pointer prefetching and find inter-

procedural analysis is critical for detecting recursive structures in Java.

Luk [74] uses a pre-executing thread to prefetch data for the main thread for simulta-

neous multi-threading (SMT) processors. He presents a compiler analysis, though it is not

implemented, to generate pre-execution code and add instructions in the main code to ini-

tiate and stop the pre-execution. His technique shows a 24% speedup over non-prefetching

and a 19% improvement over state-of-the-art software prefetching.

Another approach uses profiling to detect which data to prefetch. The profiling-based

technique has the advantage of detecting those irregular data access patterns that are hard

for the compiler to find. However, like all profiling-based schemes, it suffers from training

cost and generality.

Chilimbi and Hirzel [30] present a dynamic prefetching technique relying on run-time

sampling. Their technique is divided into three phases: profiling, analysis and prefetch-

ing, and hibernation. The profiling phase gathers a temporal reference profile. The second

phase analyzes the profile and dynamically injects prefetching code. The program en-
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ters the hibernation phase when there is no profiling or analysis in action. Since all the

processes depend on software instrumentation and the prefetching requires no more than

regular prefetching instructions, we still classify this technique as software prefetching.

Wu [113] uses profiling to detect stride patterns in irregular code. His analysis is effi-

cient at collecting both frequency and stride in the same profiling pass. The compiler uses

the stride profiling to generate prefetching instructions. Wu observes up to 59% speedup

for SPEC CPU2000 benchmarks.

2.3.2 Hardware Prefetching

The converse approach to software prefetching is hardware-only prefetching, in which

the hardware predicts prefetch addresses by observing a program’s run-time behavior.

Since prefetches do not incur overhead in the processor itself, the hardware need not be

as selective about issuing prefetch operations. Recent work shows that simple dynamic pri-

oritization techniques eliminate most memory bandwidth contention and cache pollution

problems [69]. However, unlike the compiler, the hardware has no direct knowledge of fu-

ture memory references; the key challenge in hardware-based prefetching is determining a

reasonable set of predicted addresses to use as prefetch targets. Hardware prefetching thus

suffers relative to software prefetching in both accuracy (because the predictions may be

wrong) and coverage (because some addresses may require the compiler’s scope to predict).

Many hardware prefetchers exploit only spatial locality, prefetching one or more sub-

sequent blocks on a cache miss [35, 54, 98]. More sophisticated schemes detect non-

unit stride access patterns, such as Chen and Baer’s reference prediction table (RPT) [23]

and Palacharla and Kessler’s stride stream buffers [84]. Other approaches exploit pointer-

based access sequences, as with correlation-based and Markov prefetching [4, 21, 53], or a

broader class of patterns, using dead block information [66]. Another approach involves de-

coupling data structure traversal from the computation, using specialized pointer-traversal
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hardware [89] or dedicated pre-execution hardware [5]. Researchers have also proposed

memory-side prefetching to reduce latencies between prefetches [50, 99, 114].

Most pertinent to this work are two previous papers. First, predictor-directed stream

buffering, proposed by Sherwood et al. [92], unifies stride stream buffers and Markov pre-

fetching into a single, consistent hardware prefetching framework. In Section 4.5, we com-

pare the GRP scheme to the stride stream buffers scheme only, since the Markov predictor

consumes too much state to be practical. Second, Cooksey et al. [32] propose a stateless ap-

proach to pointer prefetching, foregoing explicit identification of pointer traversal patterns

and simply prefetching any referenced memory value that could be reasonably interpreted

as a memory address. Our hardware schemes are also stateless. We find that for our bench-

marks, GRP with spatial hints usually performs better or the same as pointer prediction

with or without pointer hints.

In the end, all hardware schemes are forced to trade coverage for accuracy (or vice

versa), and focus either only on structured access patterns, which can be predicted with

high accuracy (forgoing coverage of less structured access patterns), or consume significant

bandwidth with incorrect prefetches in an attempt to cover less-structured references.

The relative strengths and weaknesses of hardware and software prefetching are com-

plementary and thus suggest a combined hardware/software approach. An ideal scheme

would exploit the compiler’s knowledge of future reference patterns, and use a low-overhead

channel to convey this information to a hardware prefetching engine, which could then gen-

erate and schedule appropriate prefetches based on dynamic information regarding cache

miss events and resource availability.

2.3.2.1 Scheduled Region Prefetching

GRP, discussed in Chapter 4, uses and compares with Lin et al.’s hardware-only region

prefetching technique [69]. We discuss in this section the major contributions of their work

and leave the experimental comparison to Chapter 4.
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Scheduled Region Prefetching exploits spatial locality of a program by prefetching a

region on an L2 demand miss. Lin et al. find that a 4K byte region size delivers good per-

formance. Prefetching such a big region exerts pressure on memory buses. This work uses

several sophisticated scheduling and prioritization approaches to counteract this pressure.

A prefetched cache line is put into the LRU slot to reduce cache pollution. A prefetching

request is dequeued from the prefetching queue following the last-in-first-out (LIFO) pol-

icy. This prioritization guarantees that the most recent prefetch request is served first and

also maximizes DRAM page locality. A prefetching request yields to a regular L2 miss

and is issued only when a memory channel is free. This ensures that the regular memory

request is served first. These scheduling techniques reduce the negative effects of poor ac-

curacy but do not entirely eliminate prefetches that fetch useless data. GRP significantly

improves the accuracy using compiler hints.

2.3.2.2 Predictor-directed Stream Buffer

Sherwood, Sair, and Calder [92] combine a stride and a Markov predictor to prefetch for

Predictor-Directed Stream Buffers (PDSB). The stride predictor is able to exploit spatial lo-

cality in stride-intensive code, whereas the Markov predictor is targeted to pointer-intensive

code. The basic architecture is as shown in Figure 2.2.

We choose this prefetcher to compare with region prefetching in Chapter 4 because

it accommodates a set of hardware enhancements to improve prefetching accuracy and

avoid stream buffer thrashing. Following Jouppi’s original design [54], each stream buffer

contains a FIFO buffer queue. A hit to a stream buffer will free the head entry of the queue

of the buffer and the buffer will then allow a new prefetch. To control accuracy, Sherwoord

et al. further add a priority counter to each stream buffer. Their prefetcher increments the

counter when there is a hit and decrements it when there is a miss. The prefetcher uses

the counter to decide which stream buffer performs the next prediction or prefetch. The

prefetcher relies on a PC-based history table to generate a stride for each stream buffer. It
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Figure 2.2. Predictor-directed stream buffer architecture

generates a new stride when there are two misses in a row exhibiting the same stride. Each

table entry stores an accuracy counter, which is incremented every time the load’s update

address matches the prediction. In confidence allocation mode, the prefetcher allocates a

new stream buffer only when the value of an accuracy counter is greater than that of it

corresponding priority counter. Then the stream buffer with the lowest priority yields to

the new stream built upon the stride table entry.

Compared to PDSB, GRP prefetches data into the Level 2 cache directly. It avoids the

hardware cost of accuracy control by using compiler hints. Both the stride prefetcher in

PDSB and GRP exploit spatial locality. It would be interesting to see if the compiler hints

in GRP can drive PDSB and eliminate part of PDSB’s hardware accuracy control.

2.3.2.3 Hardware Array and Spatial Prefetching

Hardware prefetching schemes add extra hardware in order to prefetch and do not re-

quire additional software support. This section discusses related work exploiting spatial lo-

cally, particularly in arrays. Hardware prefetching helps to boost application performance

without re-compiling. Most hardware prefetching targets array-based scientific code to ex-

ploit spatial reuses. It could also exploit spatial reuses of other data structures since the
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technique is dynamic and automatic. We discuss hardware pointer prefetching in Section

2.3.2.4.

Gintele [40] suggests a simple one block lookahead prefetching scheme: if line i is ref-

erenced, only line i 	 1 is considered. This scheme successfully reduces misses on main-

frame computers. The simplicity of the scheme helps attain the high hit cycle times of

caches. Smith [97, 98] points out that it is not feasible to apply other choices that re-

quire more complicated hardware implementations. However, as cache latencies increase,

more aggressive hardware prefetchers become practical and necessary. Smith concludes

that treating the prefetched lines differently in the LRU scheme has little effect, although

Lin et al. [69] observe significant performance impact in an aggressive prefetch for modern

architectures.

To control the number of useless prefetches, Gintele [40] proposes a variant of one

block lookahead prefetching, called tagged prefetching. A tag bit associated with each

cache line is set to one whenever the line is accessed. Any line brought to the cache by

a prefetch operation retains its tag as zero. When a tag changes from 0 to 1 (i.e., when

the line is referenced for the first time after prefetching or demand fetched), a prefetch is

initiated for the next sequential line. After initiating prefetching, the tag bit is reset.

To avoid cache pollution by prefetched lines, Jouppi [54] proposes prefetching into a

separate buffer, called the stream buffer. A stream buffer consists of a series of entries, each

consisting of a tag, an available bit, and a data line. A prefetch is initiated by a cache miss.

The lines following the missed line are then fetched into the stream buffer. A cache lookup

will also check the stream buffer and move the hit entry into the cache. In a single-stream

design, a miss to the stream buffer will reset the buffer. In multi-way stream buffers, a

miss to all buffers causes a reset to the least recently hit (LRU) buffer. Multi-way stream

buffers are useful for data references that contain interleaved accesses to several large data

structures, nearly doubling the performance of a single stream buffer and removing 43% of

the overall misses.
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Palacharla and Kessler [84] enhance Jouppi’s stream buffers [54] with two techniques:

a filtering scheme, used to reduce memory bandwidth requirements, and a scheme that

enables non-unit stride prefetching. The filter allocates a new stream buffer only when a

miss to cache block i is followed by a miss to cache block i 	 1. Then the stream buffer

will prefetch cache block i 	 2, i 	 3, and so on. Physical address space is dynamically

partitioned and a stride is detected in each partition if two strides among three consecutive

misses in a partition are the same.

Chen and Baer [9, 23, 26, 24] use a PC-based reference prediction table (RPT) to de-

tect strides. Each entry consists of four fields: a tag, a prev-addr, a stride. and a two-bit

state. The tag field corresponds to the PC value (the address of the load/store instruction).

The prev-addr records the memory address that the load/store instruction previously ac-

cessed. The stride is the difference between the last two generated addresses. Finally, the

state bits control when to initiate a prefetch and when to disable the prediction. Chen and

Baer propose three schemes to generate a prefetching address based on the RPT. The basic

scheme uses the current PC to look up in the RPT and predict an address. The so-called

lookahead reference prediction technique uses a pseudo-PC called a Look-Ahead Program

Counter (LA-PC) that remains δ cycles ahead of the regular PC. It predicts an access sev-

eral iterations away. The correlated reference prediction scheme further helps to handle

stride change across loop levels. They conclude that all three schemes are very effective in

miss reduction but that the lookahead prediction scheme is best in terms of overall cost and

performance.

Sherwood and Calder [92] implement a similar RPT table in combination with a Markov

predictor. They also introduce more hardware control to improve prefetching accuracy. We

discuss Sherwood and Calder’s work separately in Section 2.3.2.2 and we compare it with

region prefetching in Chapter 4.

Johnson et al. [52] propose a run-time spatial locality detection mechanism. They use

a hardware table to keep track of spatial locality dynamically. The fetch size can be varied
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depending on the spatial locality of fetched data. Their work helps reduce cache pollution

caused by fetching large blocks unnecessarily.

Following Johnson et al, Kumar and Wilkerson [65] use a Spatial Footprint Predictor

(SFP) to predict which portions of a cache block will get reused before getting evicted.

SFP predicts the neighboring words that should be prefetched on a cache miss. Their eval-

uations show an average 18% miss reduction and a significant reduction in the bandwidth

requirement.

2.3.2.4 Hardware Pointer and Correlation Prefetching

Array prefetching takes advantage of spatial co-location of array elements. The pre-

fetching address can be determined from the previous address using a constant increment.

For applications with linked structures, and irregular access patterns such as indirect ar-

ray references, this simple prediction does not work. In this section, we first describe

correlation-based prefetching where the prediction is based on general reference correla-

tions. We then discuss the hardware-only techniques that focus on linked structures.

Charney and Reeves [21] were the first to publish the results of correlation prefetching.

They use a pair cache to store ancestor-descendant reference pairs instead of parent-child

pairs. They study different combinations of bits from the instruction and the data addresses

of L1 miss references, which serve as a lookup index. They also find that the combination

of a stride prefetcher and a correlation-based prefetcher provides a significant improvement

in prefetch coverage over using either approach alone.

Alexander and Kedem [4] use a distributed prediction table to predict the next prefetch

address. The table is indexed by the current miss address, and each entry consists of multi-

ple predicting addresses. It predicts bit-line accesses in an Enhanced DRAM and prefetches

individual bit lines from the DRAM to the SRAM array. This mechanism should work for

irregular data accesses such as linked structures although the authors run experiments only
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on a set of scientific applications. Their results show a more than 40% performance im-

provement on 2 of 8 benchmarks while the effect on the others is modest.

Joseph and Grunwald [53] use a Markov prefetching table to prefetch data into on-chip

prefetch buffers in parallel with the Level 1 caches. The Markov table records the transition

probabilities for one miss address to a set of possible subsequent missing addresses. The

follow-up entries are organized using an LRU policy to avoid storing the real probabilities.

To predict the next Level 1 miss, the size of the Markov table is of the same magnitude

as the Level 2 cache, which makes the scheme impractical for Level 2 prefetching. Joseph

and Grunwald evaluate the effectiveness of their Markov predictor using commercial work-

loads that contain mostly unstructured references. Compared to stream buffers and stride

prefetchers, the Markov prefetcher shows better coverage but using more bandwidth and

sacrificing accuracy.

Roth and Sohi [88] combine jump-pointer prefetching and chained prefetching, which

use the pointers in the original unmodified program. They propose four schemes: queue

jumping, full jumping, chain jumping, and root jumping. They describe three implemen-

tations for each scheme: software, hardware, and software/hardware cooperation. Queue

jumping is jump-pointer prefetching applied only to the “backbone” structures that con-

tain nodes of just one type. Full jumping prefetches both the “backbones”, and the “ribs”,

which are the nodes pointed to from the backbone nodes. Full jumping relies on having

jump pointers to both the “backbone” and the “rib” nodes. Chain jumping eliminates the

jump pointer to “ribs” by applying jump-pointer prefetching to “backbones” and chained

prefetching to “ribs”. Root jumping starts with chained prefetching from a root without re-

quiring any jump pointers. It particularly targets small, highly dynamic pointer structures.

On a suite of pointer intensive programs, Roth and Sohi’s jump pointer prefetching reduces

memory stall time by 72% for a software implementation, 83% for cooperative, and 55%

for hardware, producing speedups of 15%, 20%, and 22% respectively. Our pointer pre-

fetching scheme, discussed in Chapter 4, does not generate and use jump pointers. The
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performance improvement of our scheme is thus less significant than that of Roth and

Sohi’s.

Cooksey et al. [32] present a content-aware pointer prefetching scheme, which is es-

sentially the same as the one we designed and implemented concurrently as described in

Chapter 4. A fetched cache line is scanned word by word to detect if the value falls into the

heap range and thus looks like a pointer. The prefetching engine then uses this value as an

address to prefetch. The pointer chasing scheme continues prefetching by chasing pointers

in prefetched cache lines. Cooksey et al. show a speedup of 10% on a subset of real-world

applications, while we find that this technique is mostly subsumed by region prefetching

on selected SPEC2000 benchmarks.

2.3.3 Hardware/Software Cooperative Prefetching

The limited previous work in this area has either exploited prefetching for restricted

classes of access patterns, or provided an interface that is overly general and complex. Gor-

nish and Veidenbaum [42] let software select the number of contiguous blocks to prefetch

upon a miss, whereas Chen and Baer [24, 25] use the compiler to supply address and stride

information to augment a reference prediction table. Skeppstedt and Dubois use a trap han-

dler to trigger prefetching using similar information [95]. Karlsson et al. [56] use prefetch

arrays to enable a hardware engine to perform a generalized variant of greedy and jump-

pointer prefetching. Zhang and Torrellas [117] use the compiler to mark blocks in memory

as belonging to contiguous spatially local regions or containing indirection pointers. Their

scheme requires additional bits in main memory and significant support in the memory

controller. Roth and Sohi’s [88] cooperative jump pointer prefetching uses the hardware

to build data dependences among linked data structure loads and relies on the software to

trigger chained prefetching. Finally, fully programmable prefetch engines provide flexibil-

ity but require significant memory system support and have not yet demonstrated that the

required compiler support is realistic [99, 109, 114].
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Extending Smith’s one block look-ahead (OBL) technique [98], Gornish and Veiden-

baum [42] use compiler support to select a prefetching degree (PD), i.e., how many lines

ahead to prefetch. A software prefetch instruction is extended to specify its prefetching de-

gree and an additional field in each cache line is reserved to store the degree. When cache

line l is accessed, line l 	 degree 
 l � is prefetched. Gornish and Veidenbaum’s original

work aims to shared-memory multiprocessors, although their techniques can be applied to

uniprocessor systems as well. They show performance improvement over OBL with their

technique on three kernels. It will be interesting to see if the technique applies to more

general applications.

Zhang and Torrellas [117] rely on compiler support, programmer feedback, or program

directives to direct a prefetching scheme, called memory binding and group prefetching. A

system call is inserted in the source code to specify a group. At run time, the system call

marks the group in memory using two additional bits per memory line, an N bit and a B bit.

The next memory line is in the same group when the N bit is set. The B bit is set on group

boundary lines. When a line is accessed in the main memory, the remaining lines in the

same group will be prefetched. Zhang and Torrellas also propose an additional bit, called

the P bit, to support pointer prefetching. A PrefetchLink system call is used to set the P

bit and build a link in a group translation table. An entry of the group translation table

consists of the virtual address of the link and its physical address. An L2 miss in a group

will trigger group prefetching. If the P bit of a line in the group is set, a prefetch on the

linked group is started using the physical address retrieved from the group translation table.

Using their prefetching, some of the irregular Splash-class applications [94] run 25-40%

faster.

As an extension to the reference prediction table (RPT) [23], Chen later on [25] pro-

poses a programmable prefetching engine. Chen’s prefetching engine differs from the RPT

in that the tag (PC), address, and stride information are supplied by the compiler rather than

being dynamically detected. Before entering into a loop, entries are filled into the prefetch-
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ing engine using a run-ahead instruction. The prefetching engine functions are much like

the RPT once programmed.

Skeppstedt and Dubois [95] use the compiler to generate a trap handler to start the pre-

fetch engine. The trap is triggered by an L2 miss and starts prefetching using the compiler-

supplied information such as stride and count. This technique takes advantage of compiler

support with less instruction overhead than software prefetching.

VanderWiel and Lilja [109] add a Data Prefetch Controller (DPC), an external general

processor, to prefetch data from the Level 2 cache. DPC executes its own program, which

is generated by the compiler through extracting reference streams from the original pro-

gram. A producer-consumer relation is built between DPC and the main processor: DPC

prefetches a new block into the Level 1 cache only after a previously prefetched block has

been accessed by the processor. VanderWiel and Lilja show that this software/hardware co-

operative technique outperforms pure software prefetching and pure hardware prefetching

using a reference prediction table.

Karlson, Dahlgren, and Stenstrom [56] use a prefetching array to tolerate latencies in

short linked data structures. They insert a number of jump pointers in each node to enable

prefetching all possible nodes at the number of iterations ahead equal to the prefetch dis-

tance. The jump pointers are stored together as an array. The software approach, which

needs one instruction for each array element, yields high instruction overhead. The hard-

ware approach requires a new instruction specifying the base address and the length of the

prefetching array. The instruction, when executed, will trigger the prefetching engine to

prefetch on each address in the array.

Solihin, Lee, and Torrellas [99] use a User-Level Memory Thread (ULMT) running on a

general processor in main memory, either in the memory controller chip or a DRAM chip.

The thread performs correlation prefetching in a style similar to the Markov prefetcher

proposed by Joseph and Grunwald [53]. The correlation table is just a simple memory

structure. UMLT can be customized by the programmer or system on a per-application ba-
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sis. Their approach achieves an average speedup of 1.32 for nine selected applications and

a speedup of 1.46 when combined with a conventional processor-side sequential prefetcher.

Yang and Lebeck [114] add a programmable processor, a prefetching engine (PFE),

at each level of the memory hierarchy. They use software to detect linked structures and

generate code to feed the prefetch engines. The prefetch engines dereference the pointers

and push the data to the upper level of the memory hierarchy.

Compared to other cooperative schemes, GRP combines the advantages of both soft-

ware and hardware prefetching in a scheme that is simple yet effective. It conveys so-

phisticated compiler analysis results by associating a range of hints with loads, which an

aggressive, simple, and general hardware prefetcher uses only when necessary. Thus, the

pertinent compiler analysis is communicated to the hardware without requiring extensive

static lookahead, software guarantees, or high instruction overhead.

2.3.4 Cache Replacement and Prefetching

There is limited research on combining cache replacement with prefetching. Lai et

al. [66] propose a hardware-only technique to predict when a cache line is dead so new

data can be prefetched into the line. We rely on software to do the prediction.

Evict-me takes an opposite approach as compared to hardware and software data pre-

fetching, which tolerate latency [9, 54, 69, 82, 84]. Data prefetching tries to fetch data

which will be used in the near future in order to reduce miss penalties. Evict-me tags in-

stead predict which data will and will not be used in the near future, and keep the data in the

cache that will be used. Evict-me tags do not bring new data into the cache and thus do not

have the bandwidth and other overhead of prefetching. Prefetching pollutes caches when

it brings in useless data. Evict-me tags can help alleviate the negative effects of hardware

prefetching. In Chapter 5, we show that the combination of evict-me tags and hardware

prefetching can further improve performance.
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2.4 Other Cooperative Work

As we have discussed in this chapter, many researchers have investigated improving

cache performance. The limited amount of hardware/software cooperative work is typi-

cally restricted by the hardware/software interface. A common method used in previous

research is to add a few special instructions or a small code section to initiate some hard-

ware actions or to pass static compiler knowledge [25, 42, 56, 117]. An extreme in this

direction is software-managed cache as proposed by Moritz et al. [80, 81]. Some oth-

ers use an independent program or thread to control prefetching hardware [99, 109, 114].

These mechanisms do not need hint bits in every memory instruction, but typically do not

have the ability to adapt to the run-time states of memory accesses.

Through ISA extensions, we encode hints in every memory instruction and provide a

method to make hardware/software collaboration systematic and effective. The compiler

hints we use are mostly lazy, i.e., their actions are adaptable and dependent on run-time

hardware states. We emphasize interactions between software and hardware. To achieve

this, the hints need to show both directivity and adaptability. By directivity, we mean that

the hints tell the hardware what to do. For example, a load marked as evict-me denotes

a preferred eviction of the cache line that the load accesses. By adaptability, the hints

sometimes need to be subordinate to other run-time actions. For example, a load marked

as spatial triggers a region prefetching in GRP only when the load causes an L2 miss.

Only a few researchers take approaches very similar to ours. IA-64 uses compiler hints

to direct loads to temporal or spatial cache structures [38]. To our knowledge, we haven’t

seen any effective compiler and hardware to support this design. To save energy, Unsal et

al. [108] mark scalar loads and drive them to a separate small cache. They later on add more

compiler control by encoding a hot line register index into memory instruction [105, 106].

A hit to the hot line registers will enable extraction of a way index to address directly a

cache line in a set-associative cache and thus save energy by avoiding tag array lookup.

This work targets single-level cache in embedded systems. Witchel et al. [110] describe a
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similar technique. Ashok et al. [7] extend Unsal et al.’s technique [105] to support com-

plex program structures, different levels of speculation, and multi-level memory systems.

Unsal et al. [107] rely on the compiler to predict IPC (instructions per cycle) and mark

the instructions at which the IPC estimation is low. They observe energy savings by throt-

tling the issue logic on marked instructions. Similar to our approach, all these work uses

the compiler to generate hints and need a small amount of hint bits in memory instruc-

tions. The results of these work, including ours, show the importance and effectiveness of

software/hardware cooperation.

2.5 Scale Compiler Infrastructure

Now we introduce Scale, the compiler infrastructure in which we implement all our

compiler algorithms. Scale is developed by the Architecture and Language Implementation

Laboratory of the Department of Computer Science of the University of Massachusetts,

Amherst, and the University of Texas at Austin. Figure 2.3 illustrates data flows in Scale,

where the nodes show actions or compilation phases and the edges show inputs and outputs

of the nodes.

A source program in C or Fortran is first transformed to an intermediate language using

the EDG Front End developed by the Edison Design Group. The front end completes

syntax and semantic checking, including complete error checking. Diagnostics always
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display the source line with a caret indicating the exact position of the error. The front

end translates source programs into a high-level, tree-structured, in-memory intermediate

language. The intermediate language preserves a great deal of source information (e.g., line

numbers, column numbers, original types, original names), which is helpful in generating

symbolic debugging information. Implicit operations in the source are made explicit in

the intermediate language, but constructs are not otherwise added, removed, or reordered.

The intermediate language is not machine dependent (e.g., it does not specify registers or

dictate the layout of stack frames).

The in-memory intermediate language is transformed into a Clef (Common Language

Encoding Form) abstract syntax tree (AST). The Clef AST consists of nodes that are types

such as “integer” and “real”, declarations such as variables and procedures, expressions

such as arithmetic operations and allocations, and statements such as if-then-else and loop.

High-level optimizations and annotations, such as loop unrolling and inlining, can be ap-

plied to the Clef AST.

Along with control-flow analysis and lowering, Scale transforms the Clef AST to a

high-level and low-level mixed intermediate representation, called Scribble. This transfor-

mation lowers most arithmetic operations to a set of binary or unary operations. At the

same time, it keeps some high level representation to facilitate further compiler analyses

and optimizations. For instance, an array reference is represented in its high-level form,

where all its shape and subscripts are still maintained, as well as its low-level form, which

consists of a set of statements to calculate the reference address. The high-level form is

critical for dependence analysis, which serves as a basis for many other transformations

and analyses.

Scale performs an alias analysis on Scribble based on Steensgard’s pointer analysis

technique [101]. It then transforms the Scribble form with alias annotations into the Single

Static Assignment (SSA) form, where each use of a variable is reached from only one

definition.
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We apply dependence testing and a set of optimizations on Scribble. Our dependence

testing is based on the Omega library [86, 104]; we use its algorithms and interfaces. Scale

currently supports sparse conditional constant propagation, copy propagation, partial re-

dundancy elimination, global value numbering, scalar replacement, loop permutation, loop

unrolling, and loop inlining.

Scale has a back end that targets the SPARC V8, Alpha, and Trips [6] ISAs. The back

end includes register allocation, code generation, and some assembly level optimizations

such as peep hole optimization.

All of the compiler algorithms discussed in this thesis are implemented in Scale, mainly

in one optimization phase and the back-end code generator. Typically, compiler analysis

on Scribble form generates hints annotated via Scribble nodes. The back end interprets

the annotations and encodes the hints into assembly instructions. We rely on the native

assembler and linker to generate executable binaries. We then use simulators to interpret

the compiler hints.
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CHAPTER 3

COMPILER-GUIDED CACHE REPLACEMENT

This chapter describes how the architecture and the compiler can work together to im-

prove cache replacement decisions. We use compiler hints to direct cache replacements

and follow the hardware-only policy when hints are not available.

Typically, cache replacement policies rely on access history to decide which cache line

to evict on a cache miss. These policies sometimes perform well because programs often

exhibit good locality. However, it is unavoidable for such schemes to make poor choices

frequently. Figure 3.1 gives an example. Notice that array B is accessed in nest 1 but not

in nest 2. Whenever there is a cache miss in the first nest, we prefer to evict an element

of array B because it will not be reused. However, LRU ranks items from least to most

recently used, i.e., A, B, C. Assuming that the cache size is a little bigger than 2*N, LRU

will evict most of A even in a fully associative cache. A better replacement algorithm keeps

both A and C and reuses them in nest 2.

Without additional assistance, it is infeasible for the hardware to foresee future ac-

cesses and make optimal choices [10, 103]. In this chapter, we discuss a compiler-guided

SUBROUTINE TEST(N)
INTEGER A(N), B(N), C(N)

DO 1 I = 1,N
C(I) = A(I) + B(I)

ENDDO

DO 2 I = 1:N
A(I) = C(I) * 5

ENDDO
END

Figure 3.1. A simple example
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cache replacement policy. Our new compiler mechanism guides cache replacements by

selectively predicting when data will or will not be reused. We encode the compile-time

prediction into memory instructions. We develop a comparative model of locality that uses

dependence and array section analysis to determine static locality patterns in a program.

This locality information, which we formulate as reuse levels, is conveyed to the run time

to direct cache replacement. We prove that the cache replacement algorithm using reuse

levels will at least match LRU in hit rate. We then describe a 16-bit encoding of reuse lev-

els, and a practical one-bit encoding called evict-me. We implement our compiler analysis

in Scale and simulate our proposed architecture in URSIM and SimpleScalar. By apply-

ing the evict-me bit to both Level 1 and Level 2 caches, we observe up to 21% simulated

performance improvements for current technology on a selection of scientific benchmarks,

and 34% for a technology prediction for 5 years from now [3]. On average, we reduce

simulated execution time by around 5% to 16% depending on the cache configuration. Our

results show that our technique works together well with a victim cache although neither

technique subsumes the other.

3.1 Problem Formulation

In this section, we briefly review cache replacement policies, cache organizations that

exploit them, and ideal replacement algorithms. We introduce our reuse notation and then

present a new compiler algorithm that predicts locality within a loop nest (intra-nest) and

between loop nests (inter-nest).

3.1.1 Cache Replacement Policies

As we have discussed in Section 2.2.4, it is generally preferred to have a low associa-

tivity cache to attain both high hit rate and low hit cycle latency. For a low associativity

cache, a good cache replacement policy is critical. Modern architectures typically rely on
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one of two replacement policies: random and LRU. The random scheme evicts a random

line from a cache set on a replacement.

LRU and its approximations are the most widely used replacement policy. On a cache

miss, the least recently used line is evicted. LRU tries to keep the recently referenced data

in cache and expects those data will be referenced again soon. In a real cache design,

LRU can be implemented with a set of bits encoding the uses of the cache line in a set.

Abstractly, we can treat a cache set as a stack whose bottom is the candidate for eviction.

On a cache hit, the hit line is moved the top of the stack and the relative position of the rest

lines are unchanged. On a cache miss, the bottom is evicted and a new line is push to the

top of the stack.

3.1.2 Perfect Locality Information: Trace-based Replacement

To use locality to direct cache replacement, we need a quantitative representation. Con-

sider the following quantitative definition of temporal locality [85]. The temporal locality

of a data reference at time T is T L � 1 ��
 Tnext � T � , where Tnext is the time of the next access

to that particular address. We can similarly define spatial locality as follows. The spatial

locality of a data reference at time T is SL � 1 ��
 Tnext � T � , where Tnext is the time of the

next access to the same cache block.

In this work, we assume the minimum unit of communication between main memory

and the cache is a block: whenever any part of a block causes a miss, the architecture loads

the entire block. Thus, in our model, temporal locality is a special case of spatial locality.

If we know the temporal and spatial locality of each data reference in a program trace, then

the optimal replacement algorithm replaces the data that has reuse furthest in the future,

i.e., the data with the smallest value for SL [10]. Of course, computing T L and SL requires

a complete trace, which is not available at run time and is impossible to know exactly via

static program analysis. To control cache replacement explicitly, we need a new method to

describe locality. In the following section, we introduce the notion of reuse level, which is
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a measure that is comparative rather than absolute. We then show how to compute reuse

levels using dependences.

3.1.3 Reuse Levels

Assume that we have a complete trace of a program: the series of memory references

in the program in execution order, i.e., b f 
 1 � , b f 
 2 � ,..., b f 
 n � . The subscripts are the block

addresses which determine the references. The block addresses of the references need not

be distinct, of course. The reuse level is used to approximate the locality of each reference.

Rather than describe a specific distance from the current reference to the next reference to

the same block, reuse levels describe a range of time in which the next reference will occur.

Formally, the locality of reference b f 
 i ��� 1 � i � n, is a set s � Sn, where

Sn ����� n 	 1 � 	 ∞ ��������� j � k ��� 1 � j � k � n � and � j � k ����� j � j 	 1 �! " #� k �  Here n is the total

number of memory references in the trace. Apparently, � n 	 1 � 	 ∞ � is the range out of the

bound so no reference is in this range.

1. If s is � n 	 1 � 	 ∞ � , then block b f 
 i � will not be referenced again after the ith reference;

i.e., f 
 i �%$� f 
 l � for all l, i & l � n.

2. If s is � j � k � for some j � k, i & j � k � n, then ' t, j � t � k, such that the next reference

to block b f 
 i � is the tth reference in the trace, i.e., f 
 i �(� f 
 t � , and f 
 t �)$� f 
 l � for all

l, i & l & t.

Then we call the set s the reuse level of b f 
 i � . Note that a reference can have multiple

valid reuse levels as long as the conditions listed above are satisfied. To compare

reuse levels for references, we define three relations on Sn : * �,+ , and - .

� i � j � * � n 	 1 � 	 ∞ � for all 1 � i � j � n

� i � j � * � k � l � if j & k

� i � j � + � k � l � if � i � j �/.0� k � l �1$� φ

� i � j � - � k � l � if � k � l �2*3� i � j �
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Theorem 1. Only one relation holds for any two elements in Sn.

Proof. By definition. 4
Theorem 1 shows that reuse levels are comparable. Intuitively, if two blocks conflict,

we want to replace the block whose reuse level is - than that of the other block. When two

reuse levels are + to each other, we use access history to break ties (as does LRU).

3.1.4 Using Dependences as Reuse Levels

This section explains how to combine dependences with the loop iteration space to

produce reuse levels. We briefly introduce some basic concepts of data dependences and

dependence testing. We then describe bounded regular sections and the locality graph

construction using dependence testing and regular sections. We finally extract reuse levels

from the locality graph.

Data Dependence and Dependence Testing

The theory of data dependence was originally developed for automatic vectorizers. It is

applicable to a wide range of optimization problems such as parallelization and loop trans-

formations. We say that a data dependence exists between two references, R1 and R2, if

they access the same location in memory. There are four types of data dependences [64]:

1. True dependence (read after write, RAW) occurs when R1 writes a memory location

that R2 later reads.

2. Anti dependence (write after read, WAR) occurs when R1 reads a memory location

that R2 later writes.

3. Output dependence (write after write, WAW) occurs when R1 writes a memory loca-

tion that R2 later writes.

4. Input dependence (read after read, RAR) occurs when R1 reads a memory location

that R2 later reads.
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All the four types of dependences denote that a reuse of R1 occurs at R2. Data depen-

dences thus imply temporal locality where the two references of a dependence access the

same location. It is an obvious extension to detect spatial locality by relaxing the condition

from “same location” to “same cache line” or “adjacent location”.

We are particularly interested in array references in loop nests, which account for

most references in scientific applications. Dependence testing is the method used to de-

tect whether dependences exist between two array references in a loop nest. Typically,

we say that a dependence exists between two array references if they access the same ar-

ray and the same element. The latter condition suggests the indices of the two references

be equal to each other at each dimension. Formally, let α and β be vectors of n integer

indices that correspond to n valid loop index values of an n-level loop nest. There is a de-

pendence between two m-dimension array references A 
 f1 
 i1 �5 # # "� in � �! # " #� fm 
 i1 �! # " #� in �!� and

A 
 g1 
 i1 �! " # "� in � �! # " #� gm 
 f1 �! " # #� in �!� if f j 
 α �6� g j 
 β � for all 1 � j � m and α is lexicographi-

cally less than or equal to β. The goal of dependence testing is to solve those equations to

determine if two references are dependent or independent. A distance or a direction vector

can be used to characterize a dependence. Given a dependence from iteration α to β, the

distance vector is β � α, and the direction vector D �7
 d1 �! # " #� dn � is defined by the following

equation:

d j �
89999: 9999;
& i f α j & β j

� i f α j � β j< i f α j
< β j

Much research has been conducted on solving dependence equations and detecting de-

pendences [41, 86]. In our compiler, we use the Omega test [86]. We use data dependences

to construct the locality graph described later in this section. In the graph, a dependence

vector serves as a reuse vector, which denotes the reuse of a reference. The graph is then

used to generate reuse levels to direct cache replacement.
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Bounded Regular Sections

We use the dependence testing as discussed above to detect reuses within a loop nest. To

detect reuses between distinct loop nests, we use bounded regular sections [44] to describe

the access range of a reference in a loop nest. The descriptors for bounded regular sections

(BRSD) are vectors of elements, each of which is a triplet. A triplet describes an access

range in a dimension, consisting of a lower bound, an upper bound, and a step (stride). The

bounded regular section for A(I,J) in both loop nests in Figure 3.2 is � 2 : M � 1 : 1 � 2 : N � 1 :

1 � . The descriptors support union and intersection operations. There is a reuse between two

references in distinct nests if the intersection set of their BRSDs is not empty.

Locality Graphs

We build a locality graph based on reuse. The graph describes temporal and spatial locality

within each loop nest and across loop nests. An edge connecting two references in the

same loop nest has as its label the reuse vector, which is the dependence vector of the

dependence between the two references. An edge connecting two references in distinct

loops has as its label the intersection of the two BRSDs and the reuse vector. Figure 3.3

shows the locality graph for the sample program in Figure 3.2, where for simplicity we

omit B(I+1,J) and B(I,J+1). In Figure 3.3, the first element of a reuse vector denotes the

inter-nest reuse direction. If it is ‘ � ’, the reuse is in the same nest. If it is ‘ & ’. then the

dependence is inter-nest. Now the vector 
=� � & � < � from B(I-1,J) to B(I,J-1) denotes an

intra-nest input dependence and a temporal reuse across the J loop.

Reuse Levels

We can rely on reuse vectors as predictors of access patterns. We can use those vectors as

reuse levels if we also add information that describes the relative position between inde-

pendent references. We can either track the loop iterations at run time or dynamically keep

the reuse levels up to date as different instances of a reference execute. Now a reuse level is

a set of loop iteration points, which consist of run-time memory references. For example,

we can use the direction vectors shown in Figure 3.3 as reuse levels with the following
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PROGRAM SimplifiedJacobi
PARAMETER (N=1000, M=1000)
REAL A(N, M), B(N, M)

DO J = 2 , N-1
DO I = 2, M-1
A(I, J) = (B(I-1, J)+B(I+1, J)+B(I, J-1)+B(I,J+1))/4

ENDDO
ENDDO

DO J = 2, N-1
DO I = 2, M-1
B(I, J) = A(I, J)

ENDDO
ENDDO
END

Figure 3.2. Another sample program

[2:M-1,2:N-1] [2:M-1,1:M-2]

B(I,J) in N2
[2:M-1,2:N-1][2:M-1,2:N-1]

[1:M-2,2:N-1]

inter-loop [2:M-2,2:N-1]inter-loop [2:M-1,2:N-2]

spatial(=,=,<)spatial(=,=,<)

spatial(=,=,<)spatial(=,=,<)

spatial(=,=,<)

temporal (=,<,>)

temporal (<,=,=) temporal (<,=,>) temporal (<,>,=)inter-loop [2:M-1,2:N-1]

A[I,J] in N1 B(I,J-1) in N1 B(I-1,J) in N1

A[I,J] in N2

Figure 3.3. Locality graph

semantics. The B(I,J-1) has a self spatial reuse with direction vector 
=� � � � &>� . We say a

reference has a self spatial reuse if the same reference accesses the adjacent memory loca-

tion in the future. The direction vector by itself means there is a spatial reuse due to a later

reference to B(I,J-1) itself in the same nest, the same J iteration, but a later I iteration. As a

reuse level, the direction vector means the iteration points from the next I iteration through

I � M-1. Specifically, given the loop iteration at I � 5 and J � 4, the run-time instance of refer-

ence B(I,J-1) is B(5,3), whose reuse level 
?� � � � &>� means it has a reuse between iteration

I � 6 and iteration I � M-1 under J � 4. To illustrate our idea, let’s ignore the spatial reuse
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vector of B(I-1,J). Now reference B(I-1,J) has only a temporal reuse with vector 
=� � & � < �
which means the reuse is in later J iterations. Note that 
=� � � � &>�@*A
=� � & � < � because


=� � � � &B� suggests a reuse in the same J iteration. So when B(5,3) and B(4,4) conflict, our

cache replacement policy will choose the cache line of B(4,4) to evict. We now describe

cache replacement algorithms that use reuse levels.

3.2 Cache Replacement Algorithms

In this section, we show how to improve cache replacement decisions in an ideal case

and then within the context of realistic cache organizations. First, we develop a general

framework that is guaranteed to match or improve hit rates over LRU given sufficient hard-

ware support. We then present a simple but practical one-bit encoding, called the evict-me

bit, that indicates when a cache block is a good choice for replacement.

3.2.1 Improving LRU Cache Replacement

Our first cache replacement algorithm, the Prediction algorithm, uses the access order

of a reference and its reuse level to direct replacement. Consider a program trace b C s1 D 1 E
f 
 1 � ,

b C s2 D 2 E
f 
 2 � ,..., b C sn D n E

f 
 n � , where b f 
 i � is the ith block accessed by address f 
 i � , and & si � i < are its

reuse level and access order respectively. We define a relation F on the set Qn ���G& si � i <
� si � Sn � 1 � i � n � , as follows:

& si � i < FH& s j � j < if 
 si * s j � or 
 si + s j and i < j �  
Each & reuse level, order < pair is an element of Qn. Note that the second condition

of the definition follows the LRU cache replacement policy, which evicts the line the the

smallest access order..

Theorem 2. For each pair of elements in Qn, & si � i < and & s j � j < , i $� j, either

& si � i < FI& s j � j < or & s j � j < FI& si � i < .

Proof. By definition. 4
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Step/order 0 1 2 3
block 1 r1 JLK 3 M 4 N#M 1 O r1 JLK 3 M 4 N"M 1 O r1 JPK 3 M 4 N"M 1 O

PREDICTION block 2 r2 JLK 5 M 6 N"M 2 O r3 JPK 5 M 6 N#M 3 O
miss/hit miss miss miss
block 1 r1 r1 r3

LRU block 2 r2 r2
miss/hit miss miss miss

Step/order 4 5 6
block 1 r1 JLK 21 M 28 N"M 4 O r2 JLK 10 M 12 N"M 5 O r2 JPK 10 M 12 N#M 5 O

PREDICTION block 2 r3 JPK 5 M 6 N"M 3 O r3 JLK 5 M 6 N"M 3 O r3 JPK 10 M 12 N#M 6 O
miss/hit hit miss hit
block 1 r3 r2 r2

LRU block 2 r1 r1 r3
miss/hit miss miss miss

Table 3.1. LRU versus Prediction for a 2-way set-associative cache

The Prediction algorithm updates a reference’s order and its reuse level in the cache

on every access. Think of a cache set as an ordered list from smallest to largest by the

F ordering of the & reuse level, order < pairs. Initially every reuse level is � n 	 1 � ∞ � , and

on a reference, the architecture sets the reuse level if it is specified. Whenever there is a

miss, the Prediction algorithm choose to replace the last line with the largest & reuse level,

order < pair. When a reference changes the cache line’s & reuse level, order < pair, we

change its position in the list. We compare it to the other items in the list from first to last

until the F ordering of the line is smaller than that of the next element, and then insert the

line before this next element. Although the F ordering is not a partial order (because it

is not transitive), the definition of the Prediction algorithm and the list ordering algorithm

guarantees that there is a deterministic ordering of the list after each cache access; i.e.,

Theorem 1 and 2 are sufficient to ensure that the Prediction algorithm is totally specified.

The following example illustrates the algorithm. Assume a two-way set associative

cache and a simple program trace a C1Q 3 D 4 R D 1 Er1 , a C1Q 5 D 6 R D 2 Er2 , a C(Q 5 D 6 R D 3 Er3 , a C(Q 21 D 28 R D 4 E
r1 , a C(Q 10 D 12 R D 5 E

r2 ,

a C(Q 10 D 12 R D 6 E
r3 , ..., all of whose elements are mapped into a single cache set. Here r1, r2, and

r3 are references to distinct blocks in main memory. The content of the cache is shown

in Table 3.1. In step 3, LRU replaces r1, which leads to a miss in step 4. However, since
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&7� 3 � 4 � � 1 < FS&7� 5 � 6 � � 2 < , the Prediction algorithm replaces r2 instead. In this example, it

performs better than LRU.

Theorem 3. For the same cache configuration (same cache size, same degree of asso-

ciativity, and same block size), at each reference point, if there is an LRU hit, there is also

a Prediction hit.

Proof of Theorem 3. The proof is based on the trace we defined at the beginning of

Section 3.2.1.

Say that we are working on a w-way set associative cache. Assume, for contradiction,

that at reference b C si D i E
f 
 i � there is a miss for the Prediction algorithm and a hit for LRU.

Let b C s j D j E
f 
 j � be the nearest reference to the same block address where j & i. We know that

f 
 i �T� f 
 j � . In the following proof we let ti denote the time when the ith reference is

accessed and assume that after time ∆t, the access completes. We have ti 	 ∆t & ti U 1 for

all i. We first show that there are no more than w distinct references between time t j and

time ti. We then show that if reference f 
 i � is not a Prediction hit at time ti, all references

in the set when f 
 j � is evicted are accessed between time t j and time ti. This introduces

contradiction since now there are at least w 	 1 distinct references between time t j and time

ti considering the reference causing the eviction of reference f 
 j � .
Claim 1: There are no more than w distinct references mapped into the same set between

b C s j D j E
f 
 j � and b C si D i E

f 
 i � inclusive.

To simplify the discussion, assume that each block in a set is aged from 1 to w by the

access order. The block with the smallest order value has age w, the one with the largest

order value has age 1. With the LRU algorithm, the block with age w is evicted when there

is a miss. At the time when b C s j D j E
f 
 j � is brought into the cache, its age is 1. Assume for

contradiction that at least w distinct references different from b f 
 j � between b C s j D j E
f 
 j � and

b C si D i E
f 
 i � are mapped into the same set. All those w references are older than b f 
 j � , so each

reference will increase the age of b f 
 j � by 1. Thus, when we access the w � 1th reference,

b f 
 j � has age w. The access to the wth reference will evict b f 
 j � , and no reference will bring
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Figure 3.4. Proof of claim 2 (1. Claim 1 shows that there are no more than w distinct references
between time t j and time ti. 2. Claim 2 shows that if reference f � i � at time ti is not a hit for the
Prediction algorithm, then at time tk when f � j �1� f � i � is evicted, all references in the cache set
should be accessed at least once between time t j and ti. (a) If a reference in the cache set at time tk
was in set X, it must be accessed again before time ti because it has a reuse level less than that of
f � j � . (b) if a reference in the cache set at time tk was not in X, then it must be recently accessed
after time t j. Otherwise, it must be in set Y and should be evicted before the eviction of f � j � at time
tk. It will then not appear in the cache set at time tk.)

b f 
 j � back because b C si D i E
f 
 i � is the most recent reference to block b f 
 j � . This contradicts the

LRU hit at b C si D i E
f 
 i � .

Next assume that there is an age between 1 and w associated with each block in the list

defined for the Prediction cache in Section 3.2.1. The ages of the blocks are consistent with

the ordering of the list. The & reuse level � order < pair of the block at age 1 is smaller in F
ordering than the pair of the next block in the list, and so on.

Say now that b f 
 j � has age m at time t j 	 ∆t. Because we have a miss of b C si D i E
f 
 i � at time

ti, there exists a reference b C sk D k E
f 
 k � at time tk, for some j & k & i , which is also a miss and

b f 
 j � has age w when the reference b C sk V 1 D k W 1 E
f 
 k W 1 � completes.

Claim 2: All addresses in the cache set at time tk W 1 	 ∆t are referenced at least once

between time t j and ti.
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We sketch the following proof in Figure 3.4 where the two boxes show the cache set

content and the cache lines are ranked by their ages with the oldest as the candidate for the

next eviction.

Let r j D 1 � r j D 2 �! " # #� r j Dm W 1 � r j Dm �! # "� r j Dw be the block addresses in the cache set at time t j 	 ∆t

and rk D 1 � rk D 2 �! " # "� rk Dw be those at time tk W 1 	 ∆t, where the second subscript denotes the age

of the corresponding address. We know that r j Dm � rk Dw � f 
 j � . Let U �X� r j D 1 � r j D 2 �! " # #� r j Dm W 1 �Y.
� rk D 1 � rk D 2 �! " # "�! #� rk D w � .

First, all addresses in S �Z� rk D 1 � rk D 2 �! " # #�5 #� rk D w � � U must be accessed between time t j

and tk W 1 	 ∆t. Assume, for contradiction, that rl � S is not accessed during this period.

Then rl � S must be accessed before time t j, and must be in the cache set at time t j since

it is in the cache set at time tk W 1 	 ∆t. Then since rl is not in set X �[� r j D 1 � r j D 2 �5 # # "� r j Dm W 1 �
because it is in S, it has an older age than that of b f 
 j � at time t j 	 ∆t. No reference can

change this relationship unless the two references themselves are accessed again between

time t j 	 ∆t and tk W 1. Note that b f 
 j � has age w at time tk W 1 	 ∆t. rl must be evicted before

time tk W 1 since it is older. Then it cannot be in the set at time tk W 1 	 ∆t, contrary to the

assumption.

Second, all references in U must be accessed between time t j and ti. Notice that all

references in U have & reuse level � order < pairs F than that of b f 
 j � at time t j 	 ∆t just

after b f 
 j � is brought into cache. Since the orders of these references are less than j, by

the definition of relation F , they must have smaller reuse levels which means they will be

accessed before the next reference to b f 
 j � , which occurs at time ti.

The references in the w-block set at time tk W 1 	 ∆t are distinct. Furthermore, the refer-

ence b f 
 k � is distinct from the blocks in the set since it is a miss. The total number of distinct

references mapped into the set between time t j and ti are at least w 	 1. Contradiction. 4
Theorem 3 tells us that the Prediction algorithm is at least as good as the LRU algorithm

at any reference point. So if we can find a reuse level for each reference point, we expect to
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improve upon the LRU algorithm. In Section 3.1.4 we have shown that dependence vectors

combined with loop iterations can predict reuse distances.

3.2.2 16-Bit Encoding

The Prediction algorithm makes replacement decisions based on reuse levels. In Sec-

tion 3.1.4 we discussed how to obtain reuse levels for each array reference. To use reuse

levels at run time, we assume an extended ISA that has extra bits for setting the reuse levels

in each cache line on loads and stores, and a cache that supports these bits (we discuss other

implementation options in Section 3.3). The Prediction algorithm sets corresponding cache

tag bits when a memory instruction with tag bits is executed. The algorithm then chooses

a line for eviction based on the value of the cache tag bits and LRU history bits. The 16-bit

method we describe here is not practical for an implementation but lets us explore more

fully the accuracy of our reuse information and encoding. We encode here the reuses in

each loop nest and the reuses between two adjacent nests. For inter-nest reuse, we con-

sider only adjacent loops, because most inter-nest misses occur between two adjacent nests

[79]. We use a 16-bit annotation because the simulator we use supports at most a 16-bit

annotation. This encoding gives us a loose upper bound on our technique. Looking for a

better encoding is left to future work. Figure 3.6 shows our algorithm for computing these

bits. Table 3.2 lists the function of each bit, where bit 15 is the most significant bit. The

encoding assumes that the deepest level of a loop nest is 4, which is appropriate for most

applications. We assume that for each routine there is a virtual loop enclosing the whole

routine. The virtual loop is at level 0. For each level, we have a spatial bit and a temporal

bit. The bit for a reference at loop L is set if the reference has reuse across iterations or

reuse in the current iteration. Bit 0 is set when the compiler can determine the reuse levels

of a reference. Bits 5 through 1 are reserved for reference step, which we will define later.

The temporal bit of loop level i also functions as an inter-nest temporal reuse bit for

a nest whose outermost loop is at level i 	 1. Consider loop L at level l whose loop body
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Bit Function
15 temporal bit for level 4
14 spatial bit for level 4
13 temporal bit for level 3 (inter-nest bit for level 4)
12 spatial bit for level 3
11 temporal bit for level 2 (inter-nest bit for level 3)
10 spatial bit for level 2
9 temporal bit for level 1 (inter-nest bit for level 2)
8 spatial bit for level 1
7 temporal bit for level 0 (inter-nest bit for level 1)
6 spatial bit for loop level 0
5 sign of reference step (1:negative, 0: positive)
4-1 reference step
0 reuse level tag

Table 3.2. Encoding for 16-bit reuse level

L: DO i = l:u:s
N1: DO i1 = l1:u1:s1

... R ...
ENDDO

N2: DO i2 = l2:u2:s2
... R ...

ENDDO
ENDDO

Figure 3.5. A sample loop nest

consists of two nests, N1 and N2, as shown in Figure 3.5. Reference R in N1 has an inter-

nest reuse in N2. Its inter-nest bit for level l 	 1 is set because the outermost loop of nest

N1 is at level l 	 1. The same bit also serves as the temporal bit for level l, which means a

reference has reuse in the the current or future L iterations. These semantics are the same

as the semantics of the inter-nest bit, which means the reuse is in the current iteration.

Figure 3.7 shows the program in Figure 3.2 with 16-bit reuse levels, which are listed

in hexadecimal form. We use reference B(I+1, J) C 0X0e83 E as an example to explain our

algorithm. B(I+1,J) has both spatial and temporal reuse at loop level 2 (the I loop), so the

10th and 11th bits of its reuse level are set to 1. B(I+1,J) has temporal reuse at loop level 1

(the J loop), so the 9th bit is set to 1. It also has inter-nest reuse and the outermost loop of
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reuseLevelGeneration()
{

for each perfect nest whose outermost loop is at level j {
for each array reference r in the nest {

if (r is not in the locality graph)
continue;

reuseLevel = 0;
for each loop at level i enclosing the reference r {

if r has temporal reuse across the loop iterations
/* including the current iteration */
bit (6+2*i) of reuseLevel = 1;

if r has spatial reuse across the loop iterations
/* including the current iteration */
bit (5+2*i) of reuseLevel = 1;

if r has inter-nest reuse then
bit (4+2*i) of reuseLevel = 1;

}
bits 5-1 of reuseLevel = referenceStep(r);
bit 0 of reuseLevel = 1;
reuse level of r = reuseLevel;

}
}

}
Figure 3.6. 16-bit reuse-level generation

the nest is at level 1, so the 7th bit is set to 1. Bit 0 is set because compiler knows all reuses

of the reference.

Note that in our encoding, we try to put all reuse levels of a reference together. A

static reference usually has different reuse levels for different loops or nests. For instance,

in Figure 3.2, A(I,J) in nest 1 has spatial reuse across the I loop. It also has inter-nest

temporal reuse. We need two reuse levels for the reference. At run time, we should always

first use the smallest reuse level in the * ordering. In fact, this mechanism is implicitly

shown in our encoding where we assign more significant bits to deeper loops.

Now the Prediction algorithm can make cache replacement decisions based simply on

the values of reuse levels associated with each cache line: it always evicts the cache line

with the smallest reuse level. A special case is that when the reuse level of a cache line

is 0, the eviction is based on its access order as in LRU. Here our implementation is more
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PROGRAM SimplifiedJacobi
PARAMETER (N=1000, M=1000)
REAL A(M, N), B(M, N)

DO J = 2 , N-1
DO I = 2, M-1

A(I, J)<0X0483> = (B(I-1, J)<0X0683>+B(I+1, J)<0X0e83>+
B(I, J-1)<0X0483>+B(I,J+1)<0X0683>)/4

ENDDO
call update(2)

ENDDO
call update(1)
DO J = 2, N-1
DO I = 2, M-1

B(I, J)<0X0403> = A(I, J)<0X0403>
ENDDO
call update(2)

ENDDO
call update(1)
END

Figure 3.7. Reuse levels for the sample program

aggressive than the formal definition of the Prediction algorithm in Section 3.1. In the

implementation, we keep each cache set in its LRU ordering. When there is a miss in a

set, the last line of the set is replaced if its reuse level is 0, which means that compiler does

not know its reuse level. Otherwise, the algorithm chooses the line with the smallest reuse

level.

The reuse level of a reference usually does not span the whole sub-space of the refer-

ence, particularly for spatial reuses. In the locality graph shown in Figure 3.3, given, for

example, a cache line size of two words and A(1,J) is aligned on the cache line for all J, we

notice that spatial reuse of A(I,J) occurs only when I is odd. If we know the starting address

of each array reference, loop unrolling can produce array references with and without spa-

tial locality. Our implementation uses another method to resolve this problem. At run time,

we know the cache block size and exactly where a memory block will be mapped into a

cache line. This information and the access pattern of an array reference are usually enough

to decide if there is spatial reuse. For example, for A(I,J) we just mentioned, we know the

next access to array A is A(I+1,J). Hence we can be sure that in the reference A(I,J) will
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update(int l)
{

for all reuse levels associated with each cache block {
remove those predicting reuses for level l;

}
} /* end update */

Figure 3.8. Update function

have no spatial reuse across the I loop if it is mapped into the last word of a cache line.

For a given array reference whose indices are all affine expressions, the compiler discovers

the pattern of spatial reuse and encodes it into the corresponding instruction. Formally, we

consider only arrays with the least significant index in the form of a \ I 	 b, where I is the

loop induction variable, and a and b are constants. We also assume that the loop step of the

induction variable I is a constant s. Let p be the word position of the reference in the cache

line, l be the cache line size, e be the element size in number of words, and a \ s be the

reference step. If a \ s is positive, the reference has self-spatial reuse when p & l � a \ s \ e.

If p < � a \ s \ e and a \ s is negative, the reference also has self-spatial reuse. Similar

techniques resolve group-spatial reuse. A reference has group-spatial reuse if there exists

another reference that accesses an adjacent location later. The reference step is encoded

into reuse levels using bits 5 through 1. Obviously, in Figure 3.7, B(I+1,J)’s reference step

is positive and its value is 1, so bits 5 to 1 are set to value 1. In other words, bits 5 to 2 are

set to zeros and bit 1 is set to 1.

In our implementation, we insert an update() function as shown in Figure 3.8 at the

exit of each loop. The function expires those reuse levels that are no longer valid. The

update() function in Figure 3.8 can help to reduce the side effects of misprediction for both

spatial and temporal reuse, because it expires the prediction of reuse in a loop after the

execution of the loop. If only a small percentage of predictions are not correct, they will

expire sooner or later, and will not affect the miss rate too much. In the example code, we

notice that temporal reuse of B(I-1,J) exists for all J except J=N-1. The mispredictions at

J=N-1 are insignificant and the update() function between the two nests will expire them.
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For our encoding, the implementation of update(l) needs to set the temporal and spatial bit

at level l to 0. In Figure 3.7, note that after the I loop finishes its execution, update(2) is

executed, which sets bit 10 and bit 11 of all reuse levels to 0. It expires the prediction of

reuses across the iterations of loop I. Similarly, update(1) expires the prediction of reuses

across the iterations of loop J in the first nest, but the prediction of inter-nest reuses is kept

alive.

3.2.3 Evict-me: 1-Bit Encoding

The Prediction algorithm can be implemented by encoding reuse levels into memory

instructions. In Section 3.2.2, we discussed a 16-bit encoding, which serves as a useful

upper bound on compiler accuracy. However, using 16 auxiliary bits for each cache line

will increase the time to determine which line to replace and may consume too much area.

For an 8K Level 1 cache with 32-byte cache lines, 16 extra bits would contribute about 5%

to the cache area.

There are two ways to address these problems. One is to implement the policy in

lower-level caches, where the cost of extra reuse level bits and the comparison latency are

relatively low. For example, a 256K Level 2 cache with 128-byte cache lines only needs

to devote 1.5% additional area to annotations. The other way is to simplify the model. A

16-bit encoding implies up to 216 reuse levels. The evict-me tag denotes two reuse levels,

s1 (no reuse) and s0 (reuse). We combine it with LRU bits as we discussed in Section 3.2.1.

The one-bit Prediction algorithm acts as follows. If the evict-me bit of a block is set, the

replacement algorithm will choose that block to replace on a miss. Otherwise, it follows

the LRU policy. The compiler generates special-purpose instructions to set evict-me bits

and thus explicitly to control cache replacement.

This one-bit encoding suggests that we classify reuse distances into two levels, such that

a distance vector in one level is always less than one in the other level. A simple and very

conservative algorithm tags these array references that have no locality in a loop nest and
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are not reused in any following nest. Assume the total number of run-time memory accesses

in a routine of a nest is n. In the nest, the algorithm uses two reuse levels, s0 �]� 1 � n � for

references with reuses in this nest or subsequent nests, and s1 �^� n 	 1 � 	 ∞ � for references

with no reuses in the same subroutine. Following the definition in Section 3.1, we have

� 1 � n ��*7� n 	 1 � 	 ∞ � . A more aggressive algorithm follows Theorem 4.

Theorem 4. In a w-way set-associative cache, if the number of distinct references

mapped into the same set between a reference and its reuse is greater than w, then evicting

the first reference in the next replacement will not degrade the overall LRU hit rate.

Proof of Theorem 4. Let’s say we are working on a w-way set associative cache

and a program trace P . We focus on a specific cache set C . Assume that sub-trace

bs1
f 
 1 � � bs2

f 
 2 � �5 # # "� bsn
f 
 n � is the largest subset of P mapped into set C in its original order. b f 
 i �

is the ith block mapped into C , and its block address is f 
 i � . si is the evict-me tag going

with the access. In particular, si � 0 means it is a regular access; si � 1 means the block’s

evict-me tag gets set after this access. The evict-me tag of a block is set only when its next

reuse is more than w distinct references away, inclusive.

Now we prove that for any access bs j
f 
 j � in the sub-trace, if LRU results in a hit, then

there is a hit for evict-me at this access. Assume that we get an LRU hit at bs j
f 
 j � . Let

access bsi
f 
 i � be the closest reference to block b f 
 j � where i & j. Since it is an LRU hit, we

know there are no more than w distinct references in the sub-trace between bsi
f 
 i � and bs j

f 
 j �
(we showed this in the proof of Theorem 3). Now si � 0 follows from the evict-me tag

assignment condition. Since si � 0, the evict-me algorithm can at most increase the age of

b f 
 i � by 1 at each following reference. So at access b
s j V 1
f 
 j W 1 � , the age of b f 
 i � should be less

than w. The evict-me algorithm thus leads to a hit at bs j
f 
 j � . 4

We can design an algorithm which sets the evict-me tag when accessing a reference

without reuse, or with reuse if it is sufficiently far away. Accurately counting the number

of distinct references mapped to a specific cache set is impossible at compile time when

the iteration counts and sizes of arrays are unknown. Now, if we can determine the total
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data volume between a reference and its reuse across loop nests, and it is greater than

twice the cache size, then we predict it will not be reused; i.e., that the number of distinct

references mapped into a set between the two references will be greater than the degree of

associativity. This intuition implies that Theorem 4 holds.

We estimate these sizes at compile time. If the loop bounds of the nest are all constants

and available at compile time, we combine them with the BRSDs to compute the exact data

volume. Figure 3.9 shows our algorithm. The pseudo-code computes data volume in a loop

nest. The data volume of a nest is the total size of the distinct array elements in the nest.

The algorithm first unions all regular sections of each array and then sums the volume of

the union.

When the loop bounds of a nest are unknown, we use a simple heuristic that assumes

that the data volume of a nest is greater than two times the Level 1 cache size if it contains

more than one level of loop nesting.

Following Theorem 4, we can use the cache size as a bound for reuse levels. With the

single evict-me bit, we have two reuse levels, [1, cache size] and [cache size + 1, ∞]. We’d

like to evict the line whose reuse distance is greater than the cache size because even a fully

associative cache cannot exploit the reuse. Our heuristic of using data volume of twice the

cache size is derived from this intuition. We use twice the cache size with consideration

that the volume of the evict-me lines is also included. A better algorithm would calculate

only the total volume of non-evict-me references.

Figure 3.10 presents a more aggressive algorithm for singling out references without

temporal or spatial reuse in a nest. It never marks references with temporal intra-nest

reuse. It sets the evict-me bit for those references whose reuse spans more than two times

the cache size, or when the data volume is unknown, whose nesting depth is 2 or more, or

if the reference has no temporal reuse with the adjacent nest. If the reference has spatial

locality at any loop level, the compiler still marks it as evict-me, such that the architecture

will exploit it before marking it for eviction. In the program in Figure 3.2, we set the
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int computeVolume(Loop l)
{
int volume = 0;
/* first compute regular sections for each reference */
for (each array reference A in the loop) {

compute A’s bounded regular section;
}

/* estimate total volume */
for (each array A accessed in the loop) {

U = union of all regular sections of the references to the array;
volume += volumeOfRegularSection(A, U) * elementSize(A);

}

return volume;
}

int volumeOfRegularSection(Array A, RegularSection r)
{
/* let r = (l[1]:u[1]:s[1], ..., l[n]:u[n]:s[n]) */
/* dimensions of array A are (d[1], d[2], .., d[n])

and array A is in row-major order */

int volume = 1;
for (i=1; i<=n; i++) {

volume *= (u[i]-l[i]+1)/s[i];
}

return volume;
}

RegularSection Union(RegularSection r1, RegularSection r2)
{
/* let r1 = (l1[1]:u1[1]:s1[1], ..., l1[n]:u1[n]:s1[n]) */
/* let r2 = (l2[1]:u2[1]:s2[1], ..., l2[n]:u2[n]:s2[n]) */
RegularSection r = (l[1]:u[1]:s[1], ..., l[n]:u[n]:s[n]);

for (i=1; i<=n; i++) {
l[i] = min(l1[i], l2[i]);
u[i] = max(l1[i], l2[i]);
s[i] = gcd(s1[i], s2[i]); /* gcd is the greatest common divisor */

}

return r;
}

Figure 3.9. Algorithms for computing data volume in a nest

evict-me tags of A(I,J) in both nests, the tag of B(I,J-1) in nest 1, and that of B(I,J) in

nest 2, because these four references have no temporal reuses and the total data volume
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setEvictMeTag()
{

for each loop nest {
compute nest volume;
for each array reference r in the nest {

if (r has no temporal reuse in this nest) {
if (nest volume > 2 * cache size)
mark r evict-me;

else if (volume unknown && nest level >= 2)
mark r evict-me;

else if (r has no temporal reuse with the next nest)
mark r evict-me;

if (r has spatial reuse)
set reference step;

}
}

}
}

Figure 3.10. Algorithm for setting evict-me tag

of each nest (near 8 \ 106) is greater than twice the cache size. We are able to mark very

aggressively because the evict-me bit is only examined on a miss, when the architecture

needs to replace something.

In our implementation, we encode the spatial locality information of a reference into

the memory instruction and let the hardware detect it at run time. The encoding method

is described in Section 3.2.2. We use five bits to encode the reference step. For a refer-

ence with evict-me tag marked by the compiler, if it also has spatial locality, the run-time

environment waits to set the bit until after the spatial reuse is complete.

3.2.4 Effectiveness of the Evict-me Algorithm

The evict-me algorithm is sensitive to both program access patterns and cache configu-

rations. For a specific program with a specific input, evict-me bits can be very effective in

one cache configuration but help little in another. Take the simple program in Figure 3.1 as

an example. Assume that N is 4K, the word size is 4 bytes, and the starting address of array

A is aligned to a 16K boundary. In a 32K 2-way Level 1 cache, A(I), B(I), and C(I) will all

map to the same set for each I. In this case, annotating B(I) with the evict-me bit will help

reduce inter-nest misses. However, in a 64K 2-way Level 1 cache, array A and B will map
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to different cache areas and thus evict-me will perform exactly the same as LRU. Given a

complicated application that contains many loops and different access patterns, evict-me

will yield better cache replacement for some and not other inputs and cache configurations.

3.3 Hardware Implementation

A simple implementation of evict-me in the ISA is to provide a duplicate set of memory

instructions that set the evict-me tags and are otherwise the same as the original set. We

believe that the widening performance gap between memory and processor speeds must

eventually be reflected by additional instructions in the ISA that help compensate for this

gap. Hence, adding a new set of load and store instructions to the ISA is one step in this

direction, and a simple step. However, our 1-bit evict-me replacement functionality can

also be implemented without changes to the ISA in some architectures. For instance, on

the Alpha 21264, we can first use the “prefetch and evict-next” instruction to set the evict-

me bit and then perform a register load or store [58]. This implementation needs two loads

or stores to set an evict-me bit and thus suffers relative inefficiency.

We use five extra bits in each memory instruction that the compiler sets to resolve

run-time spatial locality (see Section 3.2.3). An alternative hardware implementation is to

use a new instruction to store the 5-bit constant into a special register. The next memory

operation will access the special register to detect spatial reuse. The compiler can use loop

unrolling to avoid any extra instructions.

3.4 Compiler Implementation

We implemented our compiler analyses in Scale, a compiler infrastructure developed

by our research group. We gave a brief description of Scale in Section 2.5. Our analyses

described in Section 3.1 and Section 3.2 are performed on Scribble, the intermediate rep-

resentation in Scale. For our experiments, we apply all available scalar optimizations in
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Scale. We do not apply loop transformations because the cost model in Scale to determine

when to apply them is still immature.

We write Scale in Java and implement each optimization as a subclass of an abstract

class, Optimization. We treat our cache replacement analyses as a special optimization and

implement them in two classes. One is used to generate evict-me annotations and the other

is for the 16-bit encoding. We put them in the last phase of high-level optimizations and

transmit the annotations directly to the back-end. The critical steps before cache replace-

ment analyses involve building a loop structure for each routine, detecting loop invariants

and loop induction variables for each loop, applying dependence testing on loop structures,

and constructing regular sections for each loop. Loop structures are built during control

flow analysis in the early stage of Scribble construction. The remaining steps are applied

immediately before we conduct cache replacement analyses. Loop invariant and loop in-

duction variable detection are two prerequisite steps for dependence testing. Although

some other optimizations, such as scalar replacement, also call dependence testing, Scale

has to do the testing again because the optimizations preceding the replacement analyses do

not incrementally maintain the dependence graph. The structure of the dependence graph

follows the design proposed by Kennedy et al. [57].

Our cache replacement analyses traverse the loop structures of each routine, check lo-

cality using the locality graph generated by the dependence testing, and estimate data vol-

ume based on regular sections. We annotate each load expression corresponding to an array

reference in a loop with a 1-bit or 16-bit reuse level, depending on the encodings. When

the back-end generates C code or assembly instructions for the annotated load expression,

it will output the annotations as well. For C code, we output the annotations using inline

assembly. For assembly code, we use unimplemented instructions to convey the hints.
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3.5 Experimental Results

We use nine benchmarks. Liv18, Vpenta, Erlebacher, and Jacobi are loop kernels.

Swim, Tomcatv, and Applu are from SPEC95. Arc2d is a Perfect benchmark and Appsp is

from the NAS Benchmarks. We selected benchmarks that had high miss rates or loop nest

structures with inter-nest misses, and that run through our compiler.

To study our cache replacement algorithms and their interactions with other miss re-

duction techniques comprehensively, we use two simulators: SimpleScalar 2.0 [15] and

URSIM [116]. Scale outputs annotated SPARC assembly for URSIM and C code for Sim-

pleScalar. Although a later version of sim-outorder (a simulator in SimpleScalar tool set)

is able to simulate the performance impact of caches, we do not show cycles because the

cycle count in SimpleScalar 2.0 is accurate only when the memory system is lightly uti-

lized [8]. Early on, when we implemented our replacement algorithms, our collaborators at

the University of Utah extended RSIM by adding a more detailed memory systems. Since

memory system performance is our major interest, we instead use URSIM to simulate the

performance effect of our algorithms. Below we first introduce the two simulators and

parameters we use. We then present simulation results.

3.5.1 Simple Scalar 2.0 and Experiments Setting

The SimpleScalar tool set is a suite of computer simulation tools that provide both

detailed and high-performance simulation of modern microprocessors [15]. The suite con-

sists of a set of simulators: sim-fast, sim-safe, sim-cache, sim-cheetah, sim-profile, and

sim-outorder. Sim-fast is only a functional simulator without time accounting. It assumes

no cache and executes each instruction serially. Sim-safe adds checks for memory align-

ment and memory access permissions. These two simulators are much faster than the others

in the tool set due to their simplicity. They are particularly useful for generating traces and

simulating basic functions.
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Sim-cache and sim-cheetah are cache simulators that do not consider the effect of cache

performance on execution time. However, both simulators report accurate miss counts of a

single-level cache, ignoring the interactions in the memory hierarchy. Sim-cache simulates

three replacement policies: LRU, Random, and FIFO. Sim-cheetah implements LRU and

MIN, the optimal cache replacement algorithm originally proposed by Belady [10]. In our

experiments, we use both simulators to report miss rates. We also implement an 8-entry

fully associative victim cache [54]. The victim cache is positioned between the first and

second-level cache. On a Level 1 cache miss, the architecture checks the victim cache.

When there is a hit to the victim cache, the hit entry is exchanged with the replaced victim

in the Level 1 cache, otherwise the replaced victim is put into the victim cache. The victim

cache is implemented in sim-cache, but we use the optimal miss rate from sim-cheetah.

Sim-profile is a functional simulator that can generate detailed profiles of instruction

classes and addresses, text symbols, memory accesses, branches, and data segment sym-

bols.

Sim-outorder is the most complicated and detailed simulator. It supports out-of-order

issue and execution. The register update unit (RUU) scheme uses a reorder buffer to rename

registers automatically and hold the results of pending instructions. The reorder buffer

retires completed instructions in program order. The processor also contains a load/store

queue to support speculative execution. Store values are placed in the queue if the store is

speculative.

PISA (portable instruction set architecture), the instruction set architecture in the Sim-

pleScalar Toolset 2.0, is derived from the MIPS IV ISA. Later versions of SimpleScalar

support other ISAs, for example, the Alpha ISA as we use in Chapter 4. PISA provides

a 16-bit annote field in memory instructions. We use the field to encode reuse levels or

evict-me tags. Typically, a field annotation is in the form of lw/6:4(7) $r6, 4($r7), which

sets bit 4 to bit 6 in the annotation field to 7.
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The reuse levels or evict-me tags are annotated in Scribble through the annotation tool.

The back-end translates Scribble to C with annotations of reuse levels or evict-me tags.

The annotations are implemented as special inline assembly instructions. The C code with

assembly inline is then compiled using the modified version of gcc in the tool set. Gcc in

the tool set generates PISA binaries. We updated sim-cache and sim-cheetah to interpret

the annotations.

3.5.2 URSIM and Experiments Setting

We use URSIM developed at the University of Utah to simulate the performance im-

pact of the evict-me cache [116]. URSIM is an extension to RSIM, an execution-driven

simulator for instruction level parallelism (ILP) based shared-memory multiprocessors

and uniprocessors [83]. It simulates a state-of-the-art out-of-order processor, lock-up free

cache, and multi-bank memory. Although URSIM models a uniprocessor or shared-memory

multiprocessor, we use the uniprocessor configurations only. The key features of the pro-

cessor model include superscalar execution, out-of-order scheduling, register renaming,

dynamic branch prediction, non-blocking loads and stores, speculative load execution,

superpage-supporting TLB, precise exceptions, and register windows. The key memory hi-

erarchy features include two levels of cache, multiported and pipelined L1 cache, pipelined

L2 cache, multiple outstanding cache requests, and memory interleaving. URSIM extends

RSIM by adding a more complicated memory system. URSIM supports Synchronous

DRAM (SDRAM) and Rambus DRAM where hot pages and channel contention are mod-

eled.

The URSIM processor model is close to the MIPS R10000 CPU implementation [115].

A major difference between URSIM and the R10000 is that URSIM executes the SPARC

instruction set, which uses a register window mechanism that the R10000 does not imple-

ment. URSIM models the R10000 active list, register map table, and shadow mappers.

The active list holds the currently active instructions, corresponding to the reorder buffer
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or instruction window of other processors. The register map table maps logical registers

to physical registers. Shadow mappers store the register map table information to allow

single-cycle state recovery on branch misprediction. The URSIM instruction pipeline con-

tains five stages: fetch, decode, issue, execute, and complete. The fetch and decode stages

process instructions in program order, but the issue, execute, and complete stages may pro-

cess the instructions out-of-order. Instructions graduate in-order after passing through all

five stages, which enables URSIM to implement precise exceptions.

URSIM allows many of the processor and memory features to be configurable at sim-

ulation time. We configure URSIM to fetch and graduate a maximum of four instructions

per cycle. Our processor configuration contains two ALUs, two FPUs, and two address

generation functional units. URSIM uses a two-bit history branch predictor that contains

up to 512 counters. URSIM uses eight shadow mappers, which restricts the number of

outstanding branches to eight. The L1 cache is write-through with a non-allocate policy.

The L1 cache has two ports, which means that two accesses can occur concurrently. The

L2 cache is write-back with a write-allocate policy. The L2 cache maintains inclusion of

the L1 cache.

Scale generates SPARC assembly code with annotated load/store instructions for UR-

SIM. The evict-me tag and reference step of a memory instruction are encoded into an

unimplemented SPARC instruction. We put the marking instruction before the memory

instruction. We updated the URSIM preprocessor to merge the unimplemented instruction

into the memory instruction following it. We thus avoid additional instruction overhead at

run time. We updated URSIM to accept the special load/store instructions and perform the

corresponding replacements.

3.5.3 Experimental Results Using SimpleScalar 2.0

In Figures 3.11 through 3.18, we show the miss rates of LRU, LRU with victim cache,

evict-me, evict-me with victim cache, and the 16-bit Prediction algorithm, on 2-way and
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Figure 3.11. Vpenta
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Figure 3.12. Liv18

4-way set associative caches. We also give the miss rate of the MIN algorithm, which is

the optimal miss rate without considering write-backs [10]. The cache sizes range from

8K to 64K by powers of two and the cache line size is 32 bytes. We observe that evict-me

caching provides up to 45% improvement in the number of misses in Vpenta for a 4-way

64K cache. This result is significant considering the minor architectural support we need.

We improve the miss rates of Swim, Tomcatv, Liv18, and Jacobi by 10-20% in the best

cases. Appsp, Arc2d, and Erlebacher improve by 5-6% in the best cases. Evict-me caching

never degrades the miss rate, although the mispredictions we mentioned in Section 3.2

might cause a degradation.

We note that the 16-bit Prediction algorithm can further improve miss rate in some

cases. For example, for Vpenta at 64K and Tomcatv at 16K, it achieves more than a 20%

improvement even when compared to a 4-way evict-me cache. This result means that there
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Figure 3.13. Appsp
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Figure 3.14. Tomcatv

is still some room for the compiler to improve, although we observe that the one evict-me

bit is sufficient in most cases. In some cases, such as in Jacobi and some configurations for

Vpenta, the miss rates of evict-me and Prediction are pretty close to optimal (MIN). There

is still a large gap in the other cases. We think a better encoding for the 16-bit algorithm

can come very close to optimal.

Both the evict-me and the 16-bit Prediction algorithm present significant improvements

in certain cache configurations but very minor ones in others. Generally, The evict-me and

the Prediction algorithm reduce conflict misses. When the cache size is very big, there

are few conflicts available for them to resolve. When the cache size is very small, the

conflicts become so intense that no replacement algorithm can do well. The improvement

is sensitive to the degree of associativity and cache line size, because those factors affect

the distribution of conflict misses. Increasing the degree of associativity can reduce conflict
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Figure 3.15. Swim
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Figure 3.16. Jacobi

misses and also give the evict-me algorithm and the Prediction algorithm more flexibility.

We expect the evict-me and Prediction algorithms to increase their relative performance,

as compared to LRU, in proportion to the increase in the degree of associativity when

associativity is small.

Victim caches eliminate many misses in Tomcatv and Swim when the cache size is

small. However, in Jacobi, the victim cache has no effect at all, but evict-me caching

shows a 16% improvement at 8K. A further observation is that the two strategies can work

together. For example, in Vpenta, the miss rate is reduced from 8.9%, when applying victim

cache only, to 6.4%, when applying both. The victim cache by itself outperforms evict-me

on some programs but putting the two strategies together always dominates using only one

of them.
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Figure 3.17. Erlebacher
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Figure 3.18. Arc2d

We further investigate the performance of the victim cache by observing the status of

the victim cache when there is a hit to it. We keep track the number of lines in the victim

cache that are from the same cache set in the Level 1 cache as the hit line. In particular, we

are interested in those lines that are older than the hit line (evicted from the Level 1 cache

earlier than the hit line). Let the associativity extension be the total number of such cache

lines divided by the total number of accesses to the victim cache. Table 3.3 lists the statistics

for Tomcatv and Swim, where the victim cache performs extremely well at 8K and 16K.

Usually a larger associativity extension means a lower miss rate. In a coarse estimation,

2-way 4-way
Program 8K 16K 32K 64K 8K 16K 32K 64K
TOMCATV 1.98 1.30 0.22 0.05 2.14 2.18 0.24 0.00
SWIM 1.81 1.66 0.04 0.05 2.81 2.65 0.14 0.00

Table 3.3. Associativity extension by victim cache
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Conf. 1 Conf. 2 Conf. 3
Level 1 8K, 2-way 32K, 2-way 64K, 4-way

32 byte cache line
Level 2 128K, 2-way 256K, 4-way 512K, 2-way

128 byte cache line

Table 3.4. Three cache configurations

assuming the associativity extension is e, the miss rate of a Level 1 cache of size s with

associativity a plus a victim cache is similar to that of a Level 1 cache whose associativity

is a 	 e and size is 
 a 	 e �5� a \ s. For Tomcatv and Swim, the associativity extension is much

bigger at cache sizes of 8K and 16K than at 32K and 64K. This difference reflects the huge

improvement in miss rate at 8K and 16K for the two benchmarks.

3.5.4 Experimental Results Using URSIM

In practice, evict-me can be turned on/off in both levels of the cache. We apply three

Level 1 and Level 2 cache combinations of sizes and associativities, as shown in Table 3.4.

The three configurations share the same cache line size and latencies. The Level 1 cache

line size is 32 bytes and the latency 2 cycles. The Level 2 cache line size is 128 bytes and

latency 8 cycles. The latency for memory access is between 48 and 200 cycles, depending

on the state of the machine; this range reflects the sophistication of the accurate memory

model. We also examine all of our benchmarks using a 5 year hardware projection where

the Level 2 latency is increased to 20 cycles and the memory access latency is 200-500

cycles. These projections come from Agarwal et al. [3].

3.5.4.1 Miss Rates Results

Figures 3.19 through Figure 3.21 show the normalized miss rates of the three cache

configurations when evict-me replacement is turned on for both Level 1 and Level 2 caches.

We list the LRU miss rate at the top of each bar. For example, in Configuration 1, the miss

rate of Applu for LRU at Level 1 is 9.43%. Evict-me reduces the miss rate by 21%. We

state the miss rate of the Level 2 cache as the Level 2 misses divided by total accesses rather
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Figure 3.19. Miss reduction by evict-me (Conf. 1)

that by the misses of the Level 1 cache. We use this representation to show the combined

effects of evict-me on the two levels of cache. The miss reduction in the Level 2 cache

comes not only from better replacements in the Level 2 cache itself, but also from better

Level 1 replacements, which reduce the traffic between the two caches.

We observe a significant miss reduction for both levels of cache. As we discussed

in Section 3.2.4, evict-me can be very effective in one cache configuration but less so in

others. For Applu, the miss rate at Level 1 is reduced by 21.13% in Configuration 1 but

only 1.37% in Configuration 2. For certain cache configurations, we reduce the miss rate

of Applu, Swim, and Tomcatv by about 50%. Overall, the miss reduction ranges on average

from 10% to 20%.

3.5.4.2 Static and Dynamic Replacement Counts

Table 3.5 shows static and dynamic statistics on evict-me tags and their effect on re-

placements for our programs. The second column is the percent of annotated instructions

among all static load and store instructions. We mark 25% of the memory instructions on

average at compile time. The numbers in the remaining columns are collected under the

cache configurations of a 64K L1 4-way cache and a 512K L2 2-way cache (Conf. 3),

with evict-me caching on in both caches. The third and the fifth columns are the percent of
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Figure 3.20. Miss reduction by evict-me (Conf. 2)

Applu
Appsp

Arc2d
Erlebacher

Jacobi

Liv18
Swim

Tomcatv

Vpenta

Average

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

N
or

m
al

iz
ed

 M
is

s R
at

e

L1
L2

4.92
1.14

1.73
0.16

7.24
1.32

2.27
0.51

7.63
1.55

7.03
1.06

7.43
1.17

7.76
0.72

28.22
19.15

8.25
2.98

Figure 3.21. Miss reduction by evict-me (Conf. 3)

cache accesses in which we set the evict-me bit in the Level 1 and 2 caches respectively.

The fourth and the sixth columns show the percent of replacements where the evict-me bit

changes the replacement decision as compared to LRU’s decision. It changes 4% to 24%

of the decisions in the L1, and 0 to 15% in the L2. These changes do not correspond well to

changes in miss rates because one change can result in several more hits, or no additional

hits. For example, evict-me removes many misses for Tomcatv and Swim but alters 13% or

fewer L1 replacement decisions. The changes to Level 2 replacements are on average very

low which means that the L2 miss reductions also come from better L1 replacements and

more L1 hits that yield less traffic between the caches.
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Static Dynamic (Conf. 3)
evict-me L1 evict-me L1 Repl. L2 evict-me L2 Repl.

Applu 12.05 13.81 6.66 30.41 3.44
Appsp 8.93 9.06 15.04 24.46 9.61
Arc2d 25.96 20.61 4.29 36.30 14.86
Erlebacher 25.36 12.64 12.62 15.68 13.16
Jacobi 50.00 33.95 24.10 56.36 2.35
Liv18 43.82 30.01 21.61 53.31 1.42
Swim 20.95 21.51 8.30 53.35 0.21
Tomcatv 9.52 4.89 13.03 4.98 0.57
Vpenta 35.05 15.69 11.71 25.57 3.51
Average 25.74 18.02 13.04 33.38 5.46

Table 3.5. Static and dynamic statistics on evict-me

8K L1, 128K L2 (Conf. 1) 32K L1, 128K L2 (Conf. 2) 64K L1, 512K L2 (Conf. 3)
Current Pred. Current Pred. Current Pred.

Program L1 L2 L1+L2 L1+L2 L1 L2 L1+L2 L1+L2 L1 L2 L1+L2 L1+L2
Applu 10.58 0.37 11.30 31.91 0.24 3.92 4.17 34.21 10.08 10.04 11.74 25.86
Appsp 0.32 2.57 2.60 8.50 0.27 5.22 4.93 16.65 0.19 0.55 0.49 2.53
Arc2d 0.00 4.89 4.81 7.93 0.00 21.97 21.59 30.22 0.00 9.87 9.48 26.03
Erle. 0.48 1.10 1.20 3.27 0.66 1.10 1.46 4.67 0.37 1.37 1.48 5.92
Jacobi 2.05 4.85 5.17 11.88 0.00 5.19 0.79 1.89 1.57 0.00 1.40 2.18
Liv18 0.32 1.17 1.50 2.26 1.35 0.64 2.17 2.67 2.12 0.48 2.54 2.78
Swim 10.57 1.48 9.48 11.30 11.46 1.72 11.23 11.68 6.59 0.00 6.53 6.38
Tomcatv 0.66 1.98 2.45 7.01 5.72 3.23 7.30 13.60 7.66 0.00 7.62 16.05
Vpenta 0.00 11.03 5.51 5.83 0.31 32.00 21.91 24.98 0.21 20.03 21.21 23.07
Average 2.78 3.27 4.89 9.99 2.22 8.33 8.39 15.62 3.20 4.70 6.94 12.31

Table 3.6. Percent performance improvement by evict-me

3.5.4.3 Simulated Performance Results

Table 3.6 shows the performance impact of evict-me. The columns titled “L1” and “L2”

show performance improvements when the evict-me caching is turned on for the Level 1

cache only and for the Level 2 cache only, respectively. The columns titled “L1+L2” are

the improvements when the evict-me caching is turned on for both caches. For current

technology, we see reductions in execution time of 4.89%, 8.39%, and 6.94% on average

for the three configurations. We see larger improvements in simulated cycle time, 9.99%,

15.62%, and 12.31%, for technology predicted for 5 years from now, when the gap between

processor speed and memory speed will be larger. Usually and on average, the performance

improves most when evict-me caching is turned on in both caches. We see more contribu-

tion from the Level 2 cache in most cases, because the gap between the access time of the
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Level 2 cache and memory is relatively larger than the gap between the two caches. In our

experience, out-of-order execution often hides L1 cache latencies, but not L2 [70].

An interesting case is Vpenta, which improves the most with evict-me turned on only in

the Level 2 cache for configurations 1 and 2. When evict-me is on in both caches, the Level

1 evict-me cache replacements change the access pattern of the Level 2 cache, and in this

case, reduce its effectiveness. In Swim, the opposite is true; the Level 1 cache dominates

the evict-me performance improvements because the Level 1 miss rate is very high and

evict-me reduces it by 19%-56%.

3.5.4.4 A Less Aggressive Compiler Marking Algorithm

We also investigate a slightly more conservative compiler algorithm for setting the

evict-me bit. We use the same algorithm as in Figure 3.10, except we change the test

for the nest level _ 2 to be _ 3, and thus mark fewer references as evict-me. With this

algorithm, our results are unchanged for Jacobi, Liv18, and Vpenta because the compiler

computes the data volume precisely. For Applu, Appsp, and Arc2d, this more conservative

algorithm is slightly better, but for Tomcatv and Swim, it does not set enough bits, and the

original is much better.

3.6 Chapter Summary

This chapter develops a theoretical model for static compile-time analysis to direct

cache replacement algorithms and prove that it is at least as good as LRU. This work opens

a new path for reducing cache misses by using compiler hints to improve replacement de-

cisions. We present and implement a 16-bit and a 1-bit (evict-me) version of our algorithm.

We demonstrate that the 1-bit evict-me algorithm is practical enough to implement in cur-

rent set-associative caches, and in multiple levels of the cache hierarchy. Furthermore,

our simulation results show that the evict-me algorithm consistently improves performance
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through reduced miss rates when compared with LRU and is effective on multiple levels of

the cache.

We conclude that both the compiler hints and the run-time history used by the LRU

policy play critical parts in our unique evict-me cache replacement algorithm. We have

shown that our compiler hints are predictive and therefore can help the hardware to make

better run-time decisions. However, the compiler hints use heuristics and thus are neither

complete nor perfect. It is not guaranteed that each cache set always contains an evict-me

line when a conflict occurs. In this case, the LRU policy will take over.

A better cache replacement policy can help reduce unnecessary conflict misses. The

remaining misses still hurt cache performance. The next chapter will describe a cooperative

prefetching technique that effectively hides much of the memory latency of misses that

cannot be avoided.
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CHAPTER 4

COMPILER-GUIDED REGION PREFETCHING

This chapter introduces a new prefetching technique. This hardware/software coopera-

tive technique uses compiler hints to enhance an aggressive hardware prefetching engine.

The prefetching requests are initiated by the demand misses as well as the compiler hints.

Cooperative cache replacement reduces cache misses but does not eliminate them. To

improve cache performance further, we can rely on latency tolerance techniques such as

data prefetching that hides latency by prefetching data that will be used in the near future

so the future access can be a hit. However, the prefetch itself still suffers miss latencies. A

large number of software and hardware prefetching schemes have been investigated. Most

of them rely on either pure software direction or pure hardware mechanisms but rarely on

both. In this chapter we describe a new cooperative prefetching technique: guided region

prefetching (GRP). GRP builds on the strengths of both hardware and software prefetch-

ing. In GRP, a sophisticated compiler analysis produces a rich set of load hints, including

the presence or absence of spatial locality, pointer structures, or indirect array accesses.

A run-time hardware engine, triggered by L2 cache misses, generates prefetches based

on the compiler’s hints. GRP thus benefits from compiler analysis of application refer-

ence patterns, but—unlike traditional software prefetching—the compiler is not required

to generate or schedule individual prefetch addresses. Because the hardware generates the

prefetches, it can run far ahead of the missing references. Because the compiler guides it,

the hardware need not struggle to deduce future references with complex pattern matching

on prior accesses stored in large tables.
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Using previously proposed techniques [69], the GRP hardware prefetching engine keeps

uniprocessor bus contention low by prefetching only when the memory bus is otherwise

idle, and keeps cache pollution low by loading prefetches into the LRU set of the L2 cache.

Without compiler support, this prefetching hardware is effective at improving performance,

but consumes copious bandwidth. Through GRP, the compiler informs the hardware of ap-

plication reference patterns, enabling the hardware to prefetch only when it is likely to be

effective. We evaluate compiler hints that mark loads with the following hints: spatial–

prefetch the spatial region around a load; size–how many lines to fetch on a spatial refer-

ence; pointer–prefetch by following the pointers in the load’s cache line; recursive–prefetch

this pointer data structure recursively. For size hints, the compiler can encode a variable-

size region that specifies how much to prefetch based on enclosing loop bounds, instead

of using a fixed value. The compiler also generates indirect prefetching instructions which

trigger prefetching a set of references using an indirection array.

We also propose a pointer prefetching technique that aggressively prefetches blocks

pointed to by a pointer-like word in a fetched cache line. This work was also implemented

concurrently by Cooksey et al. [32] who refer to this scheme as content-aware prefetching.

We use this notion for our further discussion. We find region prefetching generally per-

forms better than pointer prefetching and putting them together degrades performance due

to excessive memory traffic.

This cooperative GRP hardware/software interface improves the high performance of

the previously proposed scheduled region prefetching (SRP) [69] by over 10% on two of

the SPEC2000 benchmarks, and matches the performance of SRP on the rest. Table 4.1

shows a summary of the GRP results using the geometric mean. We show GRP both with

(GRP/Var) and without (GRP/Fix) variable-size region prefetching. Without prefetching,

the mean performance across the benchmark suite is 33.7% lower than a perfect Level 2

cache. Stride prefetching (using the Sherwood et al. design [92]) provides a 15% speedup

over a system with no prefetching. SRP, which uses no compiler analysis, outperforms
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traffic Performance gap
Speedup increase from perfect L2

No prefetching 1 1 33.72
Stride prefetching 1.147 1.09 23.99

SRP 1.226 2.80 18.75
GRP/Fix 1.216 1.62 19.42
GRP/Var 1.212 1.23 19.69

Table 4.1. Summary of prefetching performance and traffic

stride prefetching by 7%, but consumes excessive memory bandwidth, a 180% increase

over a system with no prefetching. GRP provides near-equivalent performance to SRP but

with substantially less traffic, an increase of only 23% over not prefetching. This reduction

in traffic saves power and is more amenable to multiprocessor systems, where additional

traffic more often directly affects performance. Both SRP and GRP still incur a 19% gap

versus a perfect L2.

In Section 4.1, we describe the hardware implementation of the region prefetcher and

content-aware pointer prefetcher. In Section 4.2, we discuss our hint encoding methodol-

ogy. In Section 4.3, we present a set of compiler analyses that generate hints to direct the

two prefetchers. We then discuss our compiler implementation in Section 4.4 and experi-

mental results in Section 4.5

4.1 Hardware Prefetching Engine

The GRP hardware prefetching engine builds on the scheduled region prefetching de-

signed by Lin et al. [69]. We extend the original design with two capabilities. First, we

add support for aggressive prefetching of pointer-based data structures. Second, we add the

ability to prefetch indirect array references under software control.

4.1.1 Scheduled Region Prefetching

Scheduled region prefetching (SRP) aggressively exploits spatial locality by attempting

to prefetch large (4 KB) memory regions on each L2 cache miss [69]. The two negative

effects of aggressive prefetching—memory bus contention and cache pollution—are ad-
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Figure 4.1. Prefetch engine organization

dressed directly by reducing the priority of prefetches in memory bus request scheduling

and in replacement decisions, respectively. Unlike most prefetching schemes, which must

maintain high prefetch accuracy to avoid degrading performance, SRP can identify and

access prefetch candidates liberally without degrading uniprocessor performance.

Figure 4.1 shows the memory system with the SRP engine that forms our experimental

baseline. The access prioritizer is the central component of the SRP prefetching engine. It

forwards requests to the memory controller whenever the controller indicates that a mem-

ory channel is idle. The prioritizer forwards prefetch requests only when there are no

outstanding demand misses from the L2 cache. Demand misses thus encounter contention

only from prefetches that the memory controller has already issued, and not from prefetch

candidates buffered in the prefetch queue. The miss status handling registers (MSHRs)

track all outstanding accesses, regardless of type.

On an L2 cache miss, the prefetching engine allocates a new entry in the prefetch queue

representing the aligned memory region containing the accessed block. Each prefetch

queue entry contains the base address of the region, a bit vector indicating the prefetch

candidate blocks in the region, and an index field, which identifies the next block within
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the region to prefetch. On the first miss to a region, the engine initializes the bit vector to

identify the blocks not already present in the L2 cache, and sets the index field to indicate

the next prefetch candidate block after the miss block. It adds these new entries to the head

of the queue, giving them priority over older, and thus typically less relevant, entries. The

queue is a fixed size (32 in these experiments), and old entries fall off the bottom. On a

miss to a region already in the queue, it clears the bit corresponding to the miss block, sets

the index field to the next prefetch candidate block after the new miss block, and moves the

prefetch bit vector entry to the head of the queue. In this work, we use a base region size of

4 KB and a cache block size of 64 bytes, resulting in a 64-bit vector and a 6-bit index field.

Once the controller prefetches all the candidates, it deallocates the entry.

Although the access prioritizer practically eliminates performance loss from useless

prefetches due to bandwidth contention, prefetching can still pollute the cache by over-

prefetching. We address this issue by placing prefetched data in the lowest priority position

of the replacement scheme. The controller puts prefetched data in the LRU position of the

pertinent cache set, and moves a block to the MRU position only if it is referenced explicitly

by the CPU. As a result, useless prefetches in an n-way associative cache can displace at

most one nth of the useful data in the cache. (We use a 4-way set associative cache in our

experiments.) The drawback is that the controller occasionally replaces potentially useful

prefetched data before they are referenced; however, previous work [69] shows this effect

to be insignificant. As a final optimization, the queue issues prefetches first to those DRAM

banks that already have the needed page open.

Scheduled region prefetching is highly effective at exploiting spatial locality to improve

performance [69]. However, it has two shortcomings addressed by GRP. First, SRP does

not provide any direct support for non-spatial reference patterns. We add a pure hardware

pointer prefetching mechanism to address this issue (see Section 4.1.2). We also add an

indirect array scheme that requires compiler support (see Section 4.1.3). However, for the

SPEC benchmarks, we find that spatial prefetching works as well as pointer schemes—
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even for pointer-intensive benchmarks—because of the regular layout programmers use

and memory allocation patterns for pointer data structures. Second, SRP can produce co-

pious amounts of excess memory traffic. Although this useless traffic does not reduce

uniprocessor performance due to SRP’s prioritization techniques, it consumes energy, can

cause contention with useful prefetches, and may reduce performance in a multiproces-

sor environment. We thus use compiler hints for spatial and pointer accesses to gain both

lower bandwidth and higher accuracy. We describe the GRP hardware modifications and

hints below in Section 4.1.3, and the compiler analysis itself in Section 4.3.

4.1.2 Hardware Prefetching of Pointer-Based Structures

As discussed in Section 2.3, hardware prefetching for pointer-based structures is chal-

lenging. Instead of using complex hardware to recognize pointer traversal patterns or store

pointer correlations, the base pointer prefetching scheme greedily generates a prefetch for

any fetched value that falls within the ranges of legitimate heap memory addresses. The

implementation performs a simple base-and-bounds check using the start and end addresses

of the heap. In the Alpha ISA, pointers are aligned 8-byte entities; thus the engine must

check only eight values out of each 64-byte cache block.1

Once the controller identifies a datum as a possible pointer value, it translates the virtual

address to a physical address and forwards the address to the SRP prefetch queue, which

allocates a region-style entry for the prefetch. We generalize this mechanism to chase

recursive pointers by scanning prefetched lines for addresses and generating additional

prefetches.

Because these pointer dereferences frequently do not exhibit spatial locality, the pre-

fetching engine sets only two bits in the entry’s prefetch bit vector, indicating the block

containing the prefetch address and its immediate successor (which prefetches data struc-

1Cooksey et al. [32] describe a similar but more efficient pointer test using bit masks, and apply it to
prefetching in the more challenging IA32 environment.
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Benchmark # of Cache Blocks
1 2 O 2

164.gzip 100.0%
175.vpr 99.8% 0.2%
177.mesa 80.1% 9.7% 10.2%
179.art 100.0%
181.mcf 25.3% 74.7%
183.equake 100.0%
186.crafty 100.0%
188.ammp 41.4% 58.6%
197.parser 98.9% 1.1%
254.gap 100.0%
256.bzip2 100.0%
300.twolf 100.0%
sphinx 94.0% 5.6% 0.4%

Table 4.2. Size distribution of pointed-to structures

tures that span two cache blocks). The statistics shown in Table 4.2 list the static size

distribution of pointed-to structures in 13 C benchmarks we are using. The numbers are

collected for the compiler marked pointer/recursive loads as we will discuss in Section

4.1.3. The sizes are measured by the number of cache blocks of size 64. Except ammp,

the pointed-to structures in all other benchmarks are dominantly one or two blocks in size.

This suggests that it is sufficient to prefetch only two blocks for pointer prefetching if we

do not consider implicit spatial locality.

4.1.3 GRP: Incorporating Compiler Prefetch Hints

This section describes the compiler hints used by GRP to improve the precision of L2

spatial and pointer prefetching. The GRP compiler annotates load instructions with hints

predicting whether spatial or pointer-based prefetches will be useful. In this study, the

compiler conveys the hints with a duplicate set of memory instructions from unused Alpha

opcodes as discusses in Section 4.2. The memory system propagates the load’s hint bits

through the memory hierarchy with any resulting request. Table 4.3 presents the five hints

and shows typical representative code snippets for each. We summarize the changes to the

hardware for each hint below, and then describe the pointers, recursive pointers, and the

indirection hardware in more detail.
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recursive
code in loop spatial indirect pointer pointer size
a[i] ` `
a[b[i]] ` `a p; p+=c `
p b f `
p = p b next `

Table 4.3. Compiler hints for representative references in loops

c A spatial hint indicates that a reference is likely to exhibit spatial locality. GRP

initiates a spatial prefetch only when the L2 miss is marked spatial.

c A size hint combined with a loop upper bound indicates how many cache lines to

prefetch.

c An indirect hint indicates that the program is using an array to index a second array.

On an indirect L2 miss, GRP generates sets of prefetches based on the base address

and the index values.

c A pointer hint indicates that the reference is to a structure that contains one or more

other pointers that the program is likely to follow. If the reference is an L2 miss,

GRP scans the returned block for pointer values and generates prefetches only for

those values.

c A recursive pointer hint indicates not only that the reference is to a structure that

contains other pointers, but that the program recursively follows these pointers. On a

recursive pointer L2 miss, GRP scans the returned data for pointer values, generates

prefetches for these addresses, and continues generating prefetches on the subsequent

n levels into the recursive data structure. (We use n � 6 in our experiments.)

4.1.3.1 GRP for Spatial Region Prefetching

SRP prefetches a region on any demand L2 miss. GRP filters useless prefetches by

indicating which load/store is a candidate for region prefetching. It initiates a region pre-
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fetching request only when the L2 miss is marked spatial. Contrary to a spatial hint is a

non-spatial hint, which causes the prefetching engine not to prefetch on a miss. The neg-

ative non-spatial hint is helpful in places that the compiler analysis cannot reach, such as

library calls. We find that using a positive spatial hint is sufficient for the selected SPEC

benchmarks.

4.1.3.2 GRP for Variable-Size Region Prefetching

GRP by default prefetches the same fixed region size as SRP. If the spatial reuse of

a reference does not span the default region size, prefetching wastes bandwidth. We en-

hanced GRP to allow the compiler to control region sizes for references in singly nested

loops. The compiler computes the loop upper bound for the primary induction variable

and conveys the bound to the hardware using a special instruction. The compiler encodes

a coefficient for each spatial reference in the loop. On a miss, the prefetch engine uses this

bound and the coefficient to calculate the region size as loop bound d coefficient value.

The region size is rounded up to the nearest power of 2 and used to set the bit vector of the

prefetching request.

4.1.3.3 GRP for Indirect Array References

Two of the benchmarks from the SPEC2000 suite (vpr and bzip2) incur a significant

number of misses due to indirect array references of the form a[b[i]]. References to a are

not amenable to spatial prefetching unless the b[i] values are clustered, which cannot be de-

termined statically. Pointer prefetching for these references is ineffective since the desired

addresses are computed, not contained in memory as pointers. A specialized extension

to GRP targets these patterns. A single indirect prefetch instruction conveys both a base

address (&a[0]), an element size (sizeof(a[0])), and an index array address (&b[i]) to the

prefetching engine. The prefetch engine reads the cache block containing b[i] and, for each

word in the block, generates a prefetch address by adding the scaled value to &a[0]. GRP

then forwards these addresses to the prefetch queue, as in the pointer prefetching scheme.
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Currently, we assume the index array element size (sizeof(b[0])) is 4, which is typical on

most systems, although the element size could be included in the instruction if necessary.

The indirect prefetching instruction can take the general form of a memory instruction

as indirectpref $a, d($b). We implement it with the store instruction, stl c, which is used

only in parallel applications. Note that our compiler generates assembly code. We rely on

the native compiler and linker to generate the executable. It is necessary to treat an indirect

instruction as a store, since otherwise the peephole optimization in the native assembler

may remove a useful memory instruction because the indirect instruction could introduce

false redundancy.

The compiler can process a more general form of indirect reference such as a[c*b[i]+f]

where c and f are constants known at compile time. We discuss our compiler algorithm in

Section 4.3.3. The only extra work is computing the displacement in the indirect prefetch-

ing instruction, which will be c*sizeof(a[0]). We can ignore the impact of f if it is small,

i.e., a[c*b[i]] will most likely sit in the same cache block as a[c*b[i]+f]. When f is large,

the compiler can compute the base address as &a[0] + f * sizeof(a[0]). This calculation is

loop invariant and thus can be moved out of loop. We do not implement this option in our

compiler.

The indirect prefetching scheme is distinct from the other mechanisms proposed in this

chapter because the information is encoded as a separate instruction, not as a hint on an

existing load. Although the introduction of an explicit prefetch instruction adds overhead,

the number of such instructions is small, and each one generates up to 16 prefetches (one

for each index within a cache block of the indirection array). An alternate implementation

could use a single instruction prior to a loop nest to set the base address, and an additional

hint bit on the b[i] loads to trigger the indirect prefetches. This approach would reduce ex-

ecution overhead at the cost of limiting an application to prefetching one single indirection

array concurrently per base address/indirect hint pair.
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4.1.3.4 GRP for Pointer and Recursive Pointer References

GRP uses the same mechanism as SRP for pointer and recursive pointer hints. However,

GRP applies the mechanism only to a pointer hint miss, and GRP applies it repeatedly to

the resulting prefetched lines for recursive pointer hints.

We implement GRP for pointer and recursive pointer hints by adding a three-bit depth

counter both to the L2 MSHRs and to the prefetch queue entries to control pointer and

recursive pointer prefetching uniformly. GRP initializes the counter on an L2 miss: for

pointers, it sets the value to one, and for recursive pointers, it sets the value to six. Thus

the only difference between pointer prefetching and recursive pointer prefetching is their

initial counter value.

When GRP fetches a pointer-hinted missing line, it starts the pointer prefetching engine

on the returned line. The engine checks the counter. If it is zero, it stops queuing prefetches.

Otherwise, it decrements the counter, and queues prefetches for pointers in the returned

line. The engine thus terminates after one level for pointers and six levels for recursive

prefetching. We prefetch two cache blocks for each pointer based on our statistics that the

typical structure size in the SPEC benchmarks is less than 64 bytes (one L2 cache block in

our configuration) as we have discussed in Section 4.1.2. Two blocks are sufficient to cover

structure alignment.

4.2 Encoding Compiler Hints

This section describes encoding of our compiler hints and its performance impact. We

duplicate a whole set of Alpha memory instructions using unused opcodes. This simulates

one additional bit in the opcode of each memory instruction which denotes if this instruc-

tion is a regular memory instruction or a compiler-marked one. To encode compiler hints,

we use the four most significant bits from the 16-bit displacement field. We use three bits

to denote if a load is marked as spatial, pointer, or recursive, one bit each. We use this en-

coding to compare pointer prefetching, SRP, and GRP. For variable-size region prefetching
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Benchmark All Insts Marked Insts
low up low up

164.gzip 0 111 0 111
168.wupwise 0 8 0 8
171.swim 0 112 0 0
172.mgrid 0 144 0 0
173.applu 0 144 0 8
175.vpr 0 232 0 76
177.mesa 0 10148 0 10145
179.art 0 56 0 56
181.mcf 0 600 0 576
183.equake 0 84 0 0
186.crafty 0 262 0 262
188.ammp 0 2200 0 2200
197.parser 0 104 0 104
254.gap 0 336 0 336
256.bzip2 0 16 0 16
300.twolf 0 88 0 88
301.apsi 0 120 0 8
sphinx -8 548 0 548

Table 4.4. Bounds of memory instruction displacement fields

Benchmark #mem #out-of-range #marked out-of-range code size performance
insts insts insts increase (%) impact (%)

177.mesa 26777 1181 202 0.7 0 23%
sphinx 6335 21 0 0 -0.03%

Table 4.5. Performance impact of using 12-bit displacement field

(GRP/Var), we use three bits to encode region size and reserve one bit for evict-me, which

makes a total of 4 hint bits.

Taking 4 bits away from the displacement field reduces the effective range of the dis-

placement field. Table 4.4 lists the upper and lower bounds of the displacement fields for

all memory instructions and for compiler-marked instructions only. We observe that a 12-

bit displacement field is sufficient for all but 2 benchmarks, sphinx and mesa, if we use the

12 bits to represent an unsigned displacement, which gives us a range from 0 to 4095. As

shown in Table 4.5, less than one half percent of total memory instructions use displace-

ments out of this range. For sphinx, none of them are marked and only a very small number

are marked in mesa.
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We measure the worst case performance impact of using 12-bit displacement field by

eliminating the displacement fields from all out-of-range memory instructions in sphinx

and mcf. Given a memory instruction, ld $r1, d($r2), where d is greater than 4095 or less

than 0, we insert lda $r2, d($r2) in front and lda $r2, � d($r2) behind, and remove d from

the memory instruction. Note that lda $r2, d($r2) is an arithmetic operation that allows a

16-bit immediate field and changes the value of r2 to r2+d. The new set of instructions is

semantically equivalent to the original memory instruction. The 12-bit version bloats the

code size slightly for mesa by 0.7% and shows no change for sphinx. We run the original

executable and the new executable using 12-bit displacement fields five times each on an

Alpha 21264 machine and choose the fastest execution time from the five runs. The new

code is negligibly slower for sphinx and slightly faster for mcf. The variation is within the

measurement noise level. We conclude that using 12-bit displacements has little impact for

the 18 benchmarks.

4.3 Compiler Analysis Framework

This section describes the analyses for the five classes of hints (spatial, size, indirect,

pointer, recursive pointer) that guide the L2 prefetching engine. We implement these anal-

yses in the Scale compiler and use them to generate these hints automatically for both C

and Fortran programs.

4.3.1 Spatial Locality Analysis for Arrays

In GRP, the compiler predicts which misses truly have spatial locality, examining arrays

in Fortran and C, and spatial pointer accesses to structures in C. The compiler uses locality

analysis to mark references with the spatial hint annotation, and the compiler back-end aug-

ments the special load instruction with a spatial hint. The prefetch engine then prefetches

only misses with marked spatial references and does not prefetch misses without spatial

marks. We describe our array analysis and then our spatial pointer analysis.
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integer a[N][M], B[N]
do j=1, m
do i=1, n

...a(i,j)...

...c(b(i),j))...

Figure 4.2. Fortran array

T ** buf;
...
buf = malloc(...);
...
buf[i] = malloc(...);
...
for (i=0; i<m; i++)
for (j=0; j<n; j++)

... buf[i][j] ...

Figure 4.3. C heap array

T *p, *s;
...
for (; p < s; p += c) {
/* if T is a primitive type */
...*p...;
/* if T is a structure */
...p->f...;

}

Figure 4.4. C induction pointer

struct t {
T f;
struct t * next;

}
struct t *a;

while(...) {
...a ->f...;
a = a->next;
...

}

Figure 4.5. C recursive pointer

We augment prior work that statically detects spatial locality by extending dependence

testing [78, 111]. Dependence testing first finds induction variables and then detects when

the spatial dimension (the row in C, the column in Fortran) is accessed as a function of

the index variable, and whether it is the inner or outer nesting level. The dependence

testing detects locality only for affine subscription expressions, i.e., linear functions of

loop induction variables. Our approach marks references with either inner or outer loop

spatial locality. The typical array reference with spatial locality is accessed in its spatial

dimension in an innermost loop. For example, we mark a(i,j) in Figure 4.2, assuming

column-major Fortran storage. The compiler also marks arrays with spatial locality that

cross larger distances within a deep nest or between two nests (inter-nest reuse). We use

the Level 2 cache size as our upper bound on the distance of the spatial reuse we mark,

assuming that the Level 2 cache has sufficient set associativity to avoid conflict misses and

exploit the reuse.
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generate_spatial_hints()
{

/* recognize induction variables including pointers*/
induction_variable_recognition();
/* perform dependence testing */
dependence_testing();

for (each loop) {
/* generate basic spatial hints */
for (each memory reference r in the loop) {

if (r is an array reference) {
if (r has spatial reuse in the enclosing innermost loop)
mark r spatial;

else {
compute r’s reuse distance when applicable;
if (reuse distance < the Level 2 cache size)

mark r spatial;
}

}
if (r is a loop induction pointer)

mark r spatial;
}

/* propagate spatial hints for loop induction pointers */
do {

for (each memory reference r) {
if (r is a loop induction pointer)
mark *r as spatial;

else if (r is a->f && a is marked as spatial) {
mark a->f as spatial;

}
} while (no new hints generated);

}
}

Figure 4.6. Algorithm for generating spatial hints

If the compiler determines the loop bounds and step sizes, it can compute the reuse

distances accurately at compile time. For arrays with spatial intra- and inter-nest locality,

it computes the reuse distances. It marks as spatial all array references with spatial locality

with a known distance less than the Level 2 cache size. When the compiler does not know

the reuse distances statically due to symbolic loop bounds and uncertain executions paths,

it estimates the reuse distance based on the nesting level of the loop. The compiler is

conservative when reuse distance is unknown: we mark a reference as spatial only if its

spatial reuse is in the innermost enclosing loop.
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The above analysis works well for Fortran arrays and heap arrays in C if the array

elements are referenced as subscript expressions. We handle heap arrays in C using the

same analysis. In Figure 4.3, buf is a heap array with type T**. In addition to detecting the

obvious spatial reuse of buf � i �e� j � when j is an loop induction variable, the compiler is able

to find the spatial reuse of buf � i �,� a \ j 	 b � when a and b are constants.

4.3.2 Spatial Locality Analysis for Pointer Dereferences

To prefetch pointer references that show spatial locality, as illustrated in Figure 4.4,

the compiler performs loop induction variable recognition on pointers that are repeatedly

incremented by a constant. The type T in Figure 4.3 and Figure 4.4 does not have to be

a primitive type. We treat pointer p as a special integer, and insert spatial hints for \ p or

p f f , if constant c is small. Our analysis of L2 cache misses shows that almost all spatial

reuses in C code are covered by regular spatially local array references along with the cases

in Figure 4.3 and Figure 4.4.

Figure 4.6 summarizes the algorithm used for generating spatial hints for both arrays

and spatial pointer accesses. The first part of the algorithm inserts the spatial hints for

arrays and loop induction pointers, and the second part propagates spatial hints to the uses

of loop induction pointers. This algorithm is intra-procedural and flow insensitive, and it

marks only references enclosed in loops.

4.3.3 Indirect Array Access Analysis

The compiler also detects and marks indirect array accesses, such as c 
 b 
 i � � j � in Figure

4.2. In particular, it looks for access patterns in the form of a 
 s \ b 
 i ��	 e � where s and e

are constants, and i is a loop induction variable. Dependence testing detects the spatial

reuse of b 
 i � in the standard way. We add a simple analysis that detects when a sequentially

accessed array is used as an index into another array (a in this example), and generates an

indirect prefetch instruction using the address of b 
 i � and the base address of array a, as

described in Section 4.1.3.3.
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4.3.4 Variable-Size Region Analysis

The compiler detects and marks array references within singly nested loops for variable-

size region prefetching. For an array access with a pattern of a 
 b \ i 	 c � and an array

element size of e, the compiler encodes b \ e into a three-bit value x such that x & 7 and 2x

is closest to b \ e. We reserve the encoding value 7 for fixed-size region prefetching. The

compiler marks the upper bound of the loop induction variable i. The two hints are used to

control the region size as described in Section 4.1.3.2.

4.3.5 Pointer and Recursive Pointer Analysis

As with spatial locality, the compiler can improve the accuracy of hardware-based

pointer prefetching by restricting it to misses on a load to a field from a structure that

contains a pointer or recursive field. We mark a field reference as pointer if a pointer field

from the same structure is accessed in the same loop. We mark a pointer update to be re-

cursive if it updates itself in a loop with an object of the same data type. For example, in

Figure 4.5, a is updated with its next field, which points to a structure of the same type,

struct t. This idiom analysis simply identifies pointer updates in a loop that use a field with

the same type and marks them as recursive pointer updates.

We mark pointer accesses with the spatial hint for references to arrays of pointers.

For example, Figure 4.3 shows an array reference buf � i � , whose access pattern results in

a spatial hint from the compiler. Furthermore, each buf � i � points to a heap array, so the

compiler marks it with the pointer hint as well. GRP will then use the address to prefetch

the pointed-to array.

The algorithm to generate pointer and recursive pointer reference hints is shown in

Figure 4.7. It is complementary to the spatial marking algorithm for pointers shown in

Figure 4.6.
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generate_pointer_hints()
{

for (each field access) {
if (a pointer field from the same structure

is accessed in the same loop)
mark the field access as pointer;

if (the field access updates a recurrent pointer)
mark the field access as recursive pointer;

}

for (each array reference marked as spatial} {
if (the reference points to a heap array)

mark the reference as pointer;
}

}

Figure 4.7. Algorithm generating pointer and recursive pointer hints

4.4 Compiler Implementation

The Scale compiler infrastructure inserts the prefetch hints [6]. In the previous chapter,

we discussed compiler implementation of our cache replacement algorithms in Scale. The

implementation strategy for compiler hints for prefetching is similar. By default, we turn

on all scalar optimizations available in Scale. After these conventional optimizations, we

apply our prefetching hint analysis and cache replacement analysis just before the back-end

code generation phases. The hints are attached to the memory instructions as comments.

We post-process the annotated assembly code to generate assembly files containing

compiler-hinted instructions. We then use the native compiler and linker to generate the

executable.

4.5 Experimental Evaluation

In this section, we compare the performance benefits of SRP, GRP, and unified stride

prefetching for the SPEC CPU2000 benchmarks, and one additional benchmark, sphinx.

We demonstrate that GRP provides a compelling balance between higher performance and

increased memory traffic among the three prefetching techniques. We demonstrate the ef-

fectiveness of the compiler generated size information, and the sensitivity of our results to

the compiler’s heuristic for computing the useful distance of spatial locality. We conclude
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Processor Core 1.6 GHZ, 4-way, 64-entry RUU
L1 cache split 64K, 64-byte block, 2-way, 8 MSHRs, 3 cycles
L2 cache 1M, 64-byte block, 4-way,

8 MSHRs and 8 prefetching MSHRs, 12 cycles
Memory Rambus DRAM, 4 channels, 800M HZ

Table 4.6. System parameters

with case studies and a discussion of the characteristics of the remaining benchmarks for

which GRP does not eliminate main memory accesses as a significant source of perfor-

mance loss.

4.5.1 Experimental Methodology

We simulate program binaries on a version of sim-outorder [15] with scheduled region

prefetching (SRP) [69] added to the simulator. We added the hardware pointer prefetching

mechanisms, and modified the simulator to accept compiler hints and schedule prefetches

accordingly if the binaries contain the hints. The system configuration is shown in Table

4.6. We use the Alpha-ISA and configure the simulator as a 1.6 GHz, 4-way issue, 64-

entry RUU (reorder buffer), out-of-order core with 64K 2-way split Level 1 caches and a

unified 4-way 1MB Level 2 cache. This cache hierarchy is combined with an effective 800-

MHz, 4-channel Rambus memory system. The L1 and L2 latencies are 3 and 12 cycles,

respectively. Each cache contains 8 MSHRs. For SRP, the prefetching queue size is 32 and

uses LIFO scheduling. The stride predictor [92] uses a 4-way history table with 1K entries.

There are 8 entries in each of 8 streaming buffers sharing the history table. Finally, we

use the SimPoint [93] tool set to select a representative starting point beyond the program’s

initialization phase. We simulate for 200M instructions from that point. Previous work

shows this simulation method catches statistical significance of program execution [69, 93].

We use the 17 SPEC CPU2000 C and Fortran benchmarks that the Scale infrastruc-

ture is able to compile correctly, plus sphinx, a speech recognition application [68]. Table

4.7 lists these benchmarks, along with statistics on memory instructions and the number

and type of compiler hints generated. The second column contains the total number of
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Benchmark mem insts spatial pointer recursive ratio(%) indirect
164.gzip 1873 433 268 0 37.1 9
168.wupwise 507 152 0 0 30.0 0
171.swim 250 115 0 0 46.0 0
172.mgrid 314 232 0 0 73.9 3
173.applu 1491 858 0 0 57.5 0
175.vpr 4230 1001 682 74 33.8 84
177.mesa 26777 4532 4419 76 32.8 9
179.art 1016 732 278 0 77.6 0
181.mcf 845 168 287 201 60.8 0
183.equake 1679 597 473 0 51.3 7
186.crafty 11702 1994 736 0 21.6 5
188.ammp 6271 1043 1158 0 33.2 5
197.parser 4090 915 932 1263 70.2 2
254.gap 29781 5102 11243 0 52.6 36
256.bzip2 698 279 59 0 48.3 14
300.twolf 12397 2080 2577 1398 45.1 38
301.apsi 3225 1001 0 0 31.0 0
sphinx 6335 2211 1129 364 46.8 106

Table 4.7. Number of compiler hints for each benchmark

static memory reference instructions. Columns 3 to 5 show the number of instructions the

compiler marks as spatial, pointer, and recursive. Note that the compiler can mark an in-

struction both spatial and pointer. Column 6 lists the percent of static memory operations

with hints, and Column 7 shows the static number of indirect prefetch instructions. We

do not present further results for crafty in subsequent results because its L2 miss rate is

negligible (0.4%).

4.5.2 Comparison of Region Prefetch and Pointer prefetching

In this section, we present the effects of both hardware pointer and recursive pointer

prefetching. We show that explicit pointer prefetching is generally subsumed by aggressive

spatial prefetching (SRP or GRP). We then discuss the effect of compiler pointer hints.

We apply pointer prefetching alone to all benchmarks, which unsurprisingly has little

effect on the Fortran benchmarks. Eight C benchmarks show a significant performance

improvement, notably a 47.8% boost for equake, a 15.2% increase for mcf, and an 16.8%

improvement for sphinx, as shown in Figure 4.8. Pointer prefetching outperforms SRP only

for twolf and sphinx, by 2%. In all other cases, SRP performs much better than pointer or
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Figure 4.8. Performance gains from pointer prefetching

for (i = 0; i < ARCHnodes; i++)
for (j = 0; j < 3; j++)

disp[disptplus][i][j] = disp[disptplus][i][j] /
(M[i][j] + Exc.dt / 2.0 * C[i][j]);

Figure 4.9. Code segment in 183.equake (quake.c)

recursive prefetching. Applying SRP and pointer prefetching together gives little benefit

and sometimes degrades performance due to much higher bandwidth consumption, which

can result in fewer successful prefetches.

For equake, the performance gain is not from pointer structure traversal as expected.

It stems instead from prefetching arrays of pointers from the heap arrays. Figure 4.9 is

a typical loop in equake. The heap array, disp, is declared as double ***disp. A miss

to disp[disttplus][i] will trigger pointer prefetching from the surrounding elements in the

same cache line, which point to heap arrays such as disp[disttplus][i+1][]. Region pre-

fetching hides the latency of this kind of access very well and subsumes pointer prefetching

in this case.

In mcf, the performance gain comes from a loop that sequentially resets a field in each

object in a heap array as shown in Figure 4.10. Pointer prefetching happens to prefetch

the objects accessed later. Region prefetching also hides the latency of this kind of access

which is essentially sequential.
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for( node = root, stop = net->stop_nodes;
node < (node_t*)stop;
node++ )

node->mark = 0;

Figure 4.10. Code segment in 181.mcf (mcfutil.c)

GRP with pointer and recursive hints shows performance gains similar to SRP for seven

of the eight benchmarks, but with lower average memory traffic as shown in Figure 4.11.

We show the IPC in each set of bars for each benchmark and list the traffic normalized to

the base above each set. On average, the marked pointer scheme performs 2% worse than

the hardware-only pointer scheme. The gap between them mostly comes from mcf, where

SRP/Pointer gains 15% over the base while GRP/Pointer shows little improvement. Note

that SRP/Pointer gains in the loop as shown in 4.10. Our compiler pointer analysis does not

mark node f mark as pointer since the loop does not contain any pointer field references.

For equake, GRP/Pointer performs as well as SRP/Pointer. Our compiler algorithm marks

disp[disptplus][i] as pointer.

GRP/Pointer causes less traffic increase, 20% compared to 35% for SRP/Pointer on

average. The traffic increase caused by pointer prefetching in SRP is not as dramatic as

that caused by region prefetching, as we shall discuss in Section 4.5.4. This is because

pointer prefetching prefetches only two cache blocks for each potential pointer. Thus, a

false pointer in this pointer prefetching scheme does not have much penalty.

4.5.3 Comparison of Stride Prefetching, SRP, and GRP

In this section, we compare stride prefetching with SRP and GRP. GRP uses all the com-

piler analyses, including variable region sizes. The end of this section compares variable

and fixed region sizes, and finds that variable size region pefetching decreases bandwidth

requirements for 3 programs.

Figures 4.12 and 4.13 show the performance of SRP, GRP, and stride prefetching for

integer and floating point benchmarks, respectively. In most cases and on average, SRP
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Figure 4.11. Pointer vs. marked pointer prefetching

and GRP both perform better than stride prefetching. For 10 benchmarks, SRP improves

performance to within 10% of a perfect L2 cache. For swim, GRP performs over 10%

better than SRP due to its lower traffic. It also outperforms SRP for art and ammp. Due to

indirect prefetching, GRP is 4% faster than SRP for bzip2. For gzip, mcf, parser, and gap,

the IPC of GRP is at least 2% less than that of SRP. A typical reason is that the compiler

misses opportunities to exploit locality outside of loops.

Although we detect indirect references in 11 benchmarks, indirect prefetching shows

significant speedups for only vpr and bzip2. For vpr, the indirect references show high

spatial locality. SRP thus performs as well as GRP, but with 50% additional traffic. Bzip2

is one of the benchmarks where SRP does not perform well. With indirect prefetching,

the gap from a perfect L2 cache is reduced to 12.5% from 15.9%, with only 15% of the

memory traffic of SRP.

In terms of both performance and memory traffic, GRP using a variable region size

(GRP/Var) and a fixed region size (GRP/Fix) differ in only three benchmarks, mesa, bzip2,

and sphinx. Table 4.8 shows that for mesa and bzip2, both strategies deliver roughly the

same performance while GRP/Var results in much less traffic than GRP/Fix, as we discuss

in Section 4.5.4. For sphinx, GRP/Var has 5.8% lower performance than GRP/Fix, but
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Figure 4.12. Performance gains from region prefetching and stride prefetching for integer
benchmarks

GRP Traffic Region Size Distribution (%)
Var Fix 2 4 8 64

mesa 1.11 6.55 90.3 9.5 0.1 0.1
bzip2 1.47 4.97 76.8 22.4 0.0 0.8
sphinx 2.09 11.66 82.9 1.0 16.1 0.0

Table 4.8. GRP/Var versus GRP/Fix

benefits from an 82% traffic reduction. The compiler cannot guarantee that there is spatial

locality, so it chooses small prefetch regions, and misses some opportunities.

4.5.4 Prefetching Accuracy, Coverage, and Memory Traffic

Although SRP and GRP provide comparable performance, SRP consumes much more

bandwidth than does GRP. Figure 4.14 shows the normalized memory traffic for the three

prefetch schemes. SRP increases memory traffic from 2% to a factor of 25.5 times over

no prefetching. GRP generates a mean of only 23.0% additional traffic compared to no

prefetching, versus a SRP’s mean increase of 180%. GRP eliminates over 20% of the total

memory traffic for ten of the seventeen benchmarks as compared to SRP, and over 50%

for six benchmarks. The traffic for stride prefetching is 11% less than GRP, but stride

prefetching achieves only 69% of the performance improvement that GRP does.
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Figure 4.13. Performance gains from region prefetching and stride prefetching for floating-
point benchmarks

Compared to GRP/Fix, GRP (GRP/Var) cuts memory traffic significantly for three

benchmarks while showing the same traffic for the others. Table 4.8 lists the three bench-

marks and their traffic increase compared to no prefetching in columns 1 through 3. The

subsequent four columns show the distribution of prefetching requests by region size (no

requests with regions of 16 or 32 blocks). We observe that GRP/Var prefetches only one

additional block (region size = 2) in most cases, due to the poor spatial locality of these

references.

Table 4.9 shows both prefetching accuracies and coverage for the three prefetching

techniques that we implemented. We use the percentage reduction in L2 misses as a metric

for coverage. On average, SRP provides the best coverage and the worst accuracy. Stride

prefetching trades the lowest coverage with the highest accuracy. GRP obtains the best of

both worlds: an accuracy that is closer to stride prefetching, but coverage closer to that of

SRP.

Since the normalized traffic in Figure 4.14 does not reflect the absolute bandwidth con-

sumption of each benchmark, we also list the actual memory traffic, in bytes, of each

benchmark in Table 4.9. On average, SRP consumes 99.8% more memory bandwidth over
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Figure 4.14. Normalized traffic

the no-prefetching system. GRP and stride prefetching produce an 18.3% and a 10.1%

increase in memory requests, respectively.

4.5.5 Compiler Sensitivity

We explored the sensitivity of our results to the compiler policy by implementing both

more and less aggressive variants of the scheme described in Section 4.3. The more ag-

gressive policy marks a reference as spatial even if its reuse distance is greater than the

L2 cache size. The more conservative scheme marks a reference as spatial only when its

reuse sits in the innermost loop. Compared to our default GRP policy, the aggressive policy

degrades performance by 2% overall and increases traffic by an additional 5%. It degrades

swim and art by 8% and 4.4% each compared to the default. The conservative scheme

shows little effect on memory traffic compared with GRP, but causes performance losses of

an average of 5% across the benchmark suite. Compared to the default scheme, it degrades

applu and equake by 14% and 34%, respectively.
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Benchmark Base Stride SRP GRP
Miss Rate Traffic Cov. Accu. Traffic Cov. Accu. Traffic Cov. Accu. Traffic

mesa 9.3 51k 60.9 93.2 53K 29.3 0.8 1305K 43.5 70.1 56K
apsi 25.0 85K 79.2 99.8 85K 96.4 95.8 86K 88.8 97.6 84K
gzip 25.3 182K 65.2 99.8 183K 76.3 94.4 192K 0.0 91.2 182K
gap 46.8 179K 66.7 99.6 179K 97.6 86.3 202K 52.8 99.3 179K
ammp 15.3 594K -7.8 23.1 982K -7.8 0.9 8340K 0.7 27.5 665K
wupwise 73.1 486K 42.5 75.4 553K 96.3 60.2 788K 96.2 61.6 772K
mgrid 43.9 504K 77.9 89.9 544K 87.5 80.7 597K 85.6 81.7 589K
vpr 40.2 730K 15.9 85.5 749K 86.3 27.6 2820K 76.4 49.4 1399K
twolf 12.6 1125K 0.0 27.3 1167K 15.9 4.2 17878K 3.2 28.7 1575K
bzip2 22.4 1163K 8.4 85.7 1186K 27.2 5.3 11255K 37.1 51.6 1713K
parser 33.4 1450K 67.4 75.0 1756K 77.5 44.7 2804K 56.0 82.5 1625K
mcf 61.6 43901K 51.0 80.5 49284K 24.7 53.9 65263K 5.4 51.1 52656K
sphinx 65.9 1208K 12.6 27.3 1449K 42.8 4.7 14429K 21.7 20 2521K
applu 58.0 2578K 62.6 95.7 2631K 96.9 89.0 2810K 96.9 89.2 2806K
equake 59.8 3628K 75.6 99.2 3649K 96.3 86.9 4127K 95.2 95.3 3790K
art 44.4 20229K 17.3 99.7 21189K 8.6 40.6 28632K 20.9 78.0 23031K
swim 57.8 7861K 34.6 70.8 8966K 67.3 65.2 10249K 68.2 96.5 8021K
average 40.9 5057K 42.9 78.1 5565K 59.9 49.5 10105K 49.9 68.9 5981K

Table 4.9. Prefetching accuracy, coverage, and memory traffic

4.5.6 Performance Improvement and Miss Reduction

An X percent total miss reduction does not necessarily result in the same performance

improvement in modern architectures. However, we observe that performance improve-

ment is still a function of miss reduction by adding two variables: the base performance

and the improvement space. Using guided region prefetching as an example, we can pre-

dict the IPC of GRP given the base IPC without prefetching and the IPC under a perfect L2

cache. Given an application, let its base IPC be B and the IPC with a perfect L2 cache be

L. Assume that GRP causes an X percent miss reduction. Then we predict the IPC of GRP,

P, to be B 	g
 L � B ��\ X � 100, i.e., the IPC increment is proportional to the miss reduction.

Figure 4.15 verifies our model. Let the model error be �h
 P � G �!� G � where G is the IPC of

GRP. Two bars for each benchmark show the IPC with GRP and the predicted IPC using

our model. We list the error, as a percentage, on the top of each set. On average, this model

yields only 1% error. For only three benchmarks, mcf, sphinx, and swim, is the model error

greater than 5%. This result suggests that we can predict performance gain by using just

miss reduction if we know first how much performance loss is due to these misses.
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Figure 4.15. Miss reduction versus performance improvement

4.5.7 Case Studies

In this section, we discuss the remaining benchmarks where there is still a significant

L2 gap after region prefetching. We study each specific benchmark on where region pre-

fetching gains or loses performance and where it delivers high or low prefetching accuracy.

4.5.7.1 Remaining L2 Cache Misses

Seven of the benchmarks show a gap of greater than 15% between SRP and a perfect

L2 cache. We list them in Table 4.10, with a description of the key causes of the misses,

obtained by analyzing the source.

With its more accurate prefetching, coupled with indirect accesses and pointer prefetch-

ing, GRP is able to bring bzip2 and ammp under 15% but the gap remains large. Swim has

a low IPC due to pathological array conflicts. We can prevent that benchmark from being

memory-bound by manually applying loop distribution and loop permutation [20]. We ob-

serve that art is bandwidth bound. While GRP reduces traffic and increases performance

over SRP by 10.7%, the performance gap is still large. Larger caches and wider channels

improve art appreciably. For sphinx, the hash table lookup usually touches only a small

number of adjacent hash slots in a short loop. Prefetches occur simply too late to tolerate
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Benchmark GRP Performance Gap (%) L2 Miss Causes Ratio (%)
171.swim 38.32 transpose array access 92.08
179.art 56.07 bandwidth 24.26

transpose heap array access 35.92
181.mcf 63.94 tree traversal 60.70
188.ammp 15.18 linked list traversal 88.64
256.bzip2 15.89 indirect array reference 49.68
300.twolf 22.40 linked list and random pointers 35.37
sphinx 31.28 hash table lookup 28.79

Table 4.10. Level 2 miss characteristics

the latencies. Finally, mcf and twolf contain heavy traversals of short linked lists and tree

data structures, making them poor matches for the GRP pointer prefetching or spatially-

based schemes.

4.5.7.2 Discussion of Prefetching Accuracy

Even for GRP, the accuracy is low for several benchmarks. In this section, we discuss

case by case where SRP or GRP gains and loses prefetching accuracy.

In the simulator, we track down the PC values (code locations) where the prefetch

engine issue prefetches. We then categorize the number of issued prefetches and useful

prefetches based on PC values. By mapping those values back to the source code, we are

able to figure out which memory references cause high or low prefetching accuracies.

References in library calls or outside of loops

Our compiler algorithm does not analyze library calls for spatial locality. It also skips

references not enclosed by loops. Two benchmarks, gzip and parser, are affected. SRP

improves the IPC of gzip from 2.01 to 2.09. The prefetches are predominantly from library

calls to memcpy(). Our compiler does not touch the libraries. This is the only benchmark

where prefetching in a library call dominates the IPC gain. A slightly different scenario is

seen in parser. SRP beats GRP by 15.9%. The useful prefetches that GRP misses reside

in one function call, which contains no loops. The compiler thus does not generate any

hints for the references in the function. However, the function is frequently called within
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DO 190, L = 1, K
IF( B( J, L ).NE.ZERO )THEN

TEMP = ALPHA*DCONJG( B( J, L ) )
DO 180, I = 1, M

C( I, J ) = C( I, J ) + TEMP*A( I, L )
180 CONTINU
END IF

190 CONTINUE

Figure 4.16. Code segment in 168.wupwise

loops. Detecting spatial reuse in these functions requires expensive and complicated inter-

procedural analysis.

Arrays with linear indices

For arrays whose indices are linear expressions of loop induction variables, compiler

spatial locality analysis can predict the reuse pattern very well. SRP usually generates

high prefetching accuracy too. For mgrid, applu, and apsi, SRP enjoys more than 89%

prefetching accuracy due to the substantial spatial locality in these benchmarks. The two

prefetching schemes provide almost the same IPCs and memory traffic.

An exception occurs in swim and art. GRP improves the prefetching accuracy from

65% to about 96% for swim and from 40% to 78% for art. The unused prefetches originate

from accesses to transposed two-dimensional arrays. GRP avoids this by predicting that

the reuse distance is too large to be exploited by region prefetching

The 32% of useless prefetches in wupwise come mostly from the array reference A(I,L)

in the code segment shown in Figure 4.16. The compiler marks A(I,L) with a spatial hint.

We suspect the low accuracy is due to self-interference conflict misses among those refer-

ences to A � 1 : M � L � and the prefetches triggered by them.

Linked structures

Figure 4.17 shows a code segment from mcfutil.c in mcf. The references node f basic arc

and node f basic arc f cost exhibit significant spatial locality based on our statistics. SRP

for the two references exhibits more than 50% prefetching accuracy, and the useful pre-

fetches at the two points account for a significant portion of overall useful prefetches. This
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while( node != root )
{

while( node )
{

if( node->orientation == UP )
node->potential = node->basic_arc->cost

+ node->pred->potential;
else /* == DOWN */
....

tmp = node;
node = node->child;

}
...

}

Figure 4.17. Code segment in 181.mcf

for( netptr = dimptr->netptr; netptr; netptr = netptr->nterm) {
oldx = netptr->xpos;
if( netptr->flag == 1 ) {

newx = netptr->newx;
netptr->flag = 0;

} else {
newx = oldx;

}
*costptr += ABS(newx - new_mean) - ABS(oldx - old_mean);

}

Figure 4.18. Code segment in 300.twolf

is because node and node f basic arc both point to sequential heap arrays, and the linked

list structure is built contiguously in memory. Our compiler detects the link structure here

but of course does not mark the references as spatial. An opposite case is in twolf. Figure

4.18 shows a typical code section. The loop traverses a linked list and the loop body is

short. Unlike mcf, the list does not show much locality and SRP suffers low prefetching

accuracy with little performance improvement.

Another interesting linked structure is shown in Figure 4.19. It is a code fragment from

rectmm.c in ammp. The reference (*atomlist)[i].who) f serial accounts for a large portion

of overall misses and the prefetching accuracy of SRP here is under 1%. Due to the list

indirection of i = (*atomlist)[i].next and the pointer reference to serial, the reference has

little spatial locality. The excessive prefetches generated by SRP at this point hurt perfor-
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for( j=1; j< (*nodelist)[inode].innode -1 ; j++)
{
i = (*atomlist)[i].next;
if( ((*atomlist)[i].who)->serial > a1->serial)
{ (*atomall)[imax++] = (*atomlist)[i].who;}

}

Figure 4.19. Code segment in 188.ammp

for (from_edge=0;from_edge<from_num_edges;from_edge++) {
to_node = rr_node[from_node].edges[from_edge];
to_rr_type = rr_node[to_node].type;
....

}

Figure 4.20. Code segment in 175.vpr

mance. GRP does not mark this reference as spatial and gains a little performance over

SRP. The indirection makes it difficult to predict who in future iterations. By instrumenting

the source code, we find the probability of *(atomlist)[i].next = i+1 is 61.4%. It is possible

to fetch just (*atomlist)[i+1].who and prefetch the structure that who points to. However,

this prefetch helps little in the L2 cache because the loop is too short and prefetching one-

iteration ahead is too late. We are interested in checking whether this is more effective in

L1.

Array references through indirect arrays

Indirect array references are a typical reason for low prefetching accuracy in vpr and

bzip2. Figure 4.20 shows a code fragment from check rr graph.c in vpr. The prefetching

accuracy of reference rr node � to node �  type is less than 20%. Our compiler does not mark

it as spatial. However, the absolute number of useful prefetches at this point is also signifi-

cant. SRP shows an 8.8% better IPC compared to GRP without indirect prefetching turned

on.

Figure 4.21 shows a different case: the indirect array reference quadrant[a2update]

does not show much spatial locality. Indirect prefetching reduces the misses at this point by

nearly 60%. Note that the compiler needs to follow use-def links to figure out that a2update

is defined by an array reference zptr[bbStart + j], which is itself marked as spatial.
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for (j = 0; j < bbSize; j++) {
Int32 a2update = zptr[bbStart + j];
UInt16 qVal = (UInt16)(j >> shifts);
quadrant[a2update] = qVal;
if (a2update < NUM_OVERSHOOT_BYTES)
quadrant[a2update + last + 1] = qVal;

}

Figure 4.21. Code segment in 256.bzip2

4.6 Chapter Summary

Purely compiler-based prefetching techniques have difficulty managing the large laten-

cies of modern main memories. Previous work shows that aggressive hardware prefetching

addresses this issue effectively for applications with spatial locality, at the cost of poten-

tially significant increases in memory bandwidth consumed. As the number of processors

per chip increases, this bandwidth will become increasingly precious.

This chapter shows that a cooperative approach between compiler-based analysis and

hardware-based aggressive prefetching provides benefits comparable to aggressive hard-

ware prefetching with much lower traffic. Compiler techniques identify accesses that

clearly possess spatial locality. Rather than use this information to attempt to schedule

software prefetches—with the resulting complications of providing timely prefetches while

minimizing instruction overhead—our system simply passes this access-pattern informa-

tion to a hardware prefetching engine. The engine then generates prefetches for the L2

cache with low overhead. Compared to pure hardware prefetching, the compiler analysis

saves bandwidth by avoiding useless prefetches to addresses with little locality.

We also extend the hardware prefetching engine to address pointer-based applications

by aggressively prefetching any datum that appears to be a pointer. We see significant

traffic benefits from having the compiler indicate pointer and recursive-pointer loads al-

though it is not as dramatic as for region prefetching. For the SPEC2000 benchmarks, the

aggressive spatial locality analysis subsumes pointer prefetches for most benchmarks, due

to spatially local layouts of pointer-connected objects with respect to large regions. Even
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sphinx, which we chose for its sparse irregular pointer behavior, benefits very little from

pointer prefetching. It still remains to be seen whether this phenomenon will dominate

the benchmarks that other researchers have used to show the importance of greedy pointer

hardware prefetching [32].

With solely the spatial and indirect hints, the GRP compiler/hardware prefetch frame-

work eliminates most L2-related stalls across the SPEC2000 suite, with comparatively

modest increases in traffic. The remaining three benchmarks that are limited by L2 memory

system performance are either bandwidth bound (art) or contain many irregular linked-lists

and/or tree traversals (mcf, twolf), where memory-side prefetching may help. For the rest

of the SPEC2000 suite, however, the GRP approach eliminates physical memory accesses

as a performance bottleneck while making significantly more efficient use of the system

bandwidth than similarly aggressive prefetch engines.

Stride prefetching generates less traffic than GRP but with significant performance loss.

It also depends on a set of hardware features to control accuracy and thus introduces more

hardware complexity than SRP or GRP. GRP is thus the most cost-effective design com-

pared to SRP or a stride prefetcher. Using compiler hints, GRP reduces the bus utilization

of SRP to a practical level while retaining its high performance. Since an L1 cache perfor-

mance gap remains, we will discuss a push scheme built on GRP in the next chapter. We

also discuss the combination of evict-me, GRP, and the data push technique.
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CHAPTER 5

COMBINING CACHE REPLACEMENT AND PREFETCHING

Cooperative cache replacement and region prefetching both improve cache performance.

One reduces cache misses and the other tolerates miss latencies. In this chapter, we discuss

how these two techniques can work together. We observe that a better cache replacement

policy can reduce the side effects of useless prefetches. The combination can further im-

prove performance although region prefetching leaves only a very small space for improve-

ment.

Region prefetching targets the L2 cache. Using compiler hints, guided region prefetch-

ing achieves high prefetching accuracy. This accuracy means the data prefetched into the

L2 cache result in hits that serve the L1 misses. It is possible that a prefetched line arrives

in the L2 cache before an L1 miss. In that case, we can hide part of the L1 latency by

pushing the prefetched line into the L1 cache. The pushing scheme brings new pressure on

cache replacement to both levels of cache. The pressure on the L2 cache comes from the

additional write-backs due to the additional L1 replacements caused by the pushes. Differ-

ent cache placement policies and replacement policies can either alleviate or aggravate this

pressure. In Section 5.1, we discuss an implementation of the push scheme and the effects

of different cache placement policies. In particular, we compare pushing data into LRU or

MRU slots, where LRU is the conservative choice and MRU will be effective only when

the line is used quickly.

The compiler-guided evict-me cache can be combined with region prefetching and the

push scheme. The evict-me cache replacement policy can help reduce pollution resulting

from prefetching. It reduces cache misses and is thus orthogonal to region prefetching
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techniques, which tolerate latencies. Since region prefetches are triggered by on-demand

misses, reducing the L2 misses by using evict-me will also reduce total prefetches as well

as total memory traffic. However, the combination does not necessarily bring additional

performance gains if region prefetching has already hidden these same latencies. In Section

5.2, we examine how well the aggressive region prefetching and evict-me work together.

5.1 L1 Push Scheme

In this section, we discuss our data push scheme, which pushes prefetched L2 cache

lines into the L1 cache. We first describe the hardware implementation. We then experi-

ment with various combinations of two different cache placement polices: MRU and LRU.

5.1.1 Hardware Description

We implement the push engine in the L2 cache controller. It is a pure hardware scheme,

but it is implicitly driven by the compiler if the L2 prefetcher is compiler-guided. A pull-

based prefetcher would follow a request-service-response path. First, the prefetches sends

a request to the next lower level of the memory hierarchy. The lower memory will then send

the data back when it is ready. A push-based prefetcher is simpler. It needs only a response

process: when a prefetched block in the lower level is ready, the prefetcher simply pushes

it to the higher level. In our design, the push stream shares a common response queue with

the regular responses. The L2 cache line size is usually no smaller than the L1 cache line

size. When the L2 cache line is bigger, we break an L2 cache line into units of L1 cache

line size and push all the units into the L1 cache.

Following the default LRU cache replacement policy, a pushed or prefetched line will

evict the LRU line in a set and be loaded into the MRU slot. By manipulating the LRU bits,

we can make the new line reside in the LRU slot, the MRU slot, or other positions in the

set. Previous work, which does not use compiler guidance, shows that keeping L2 prefetch

119



lines in the LRU slots yields the best performance [69]. In Section 5.1.2, we examine the

impact of the MRU and LRU placement policies.

One major concern about this push scheme is address translation. In our implementa-

tion, the L2 cache is physically indexed and the L1 cache is virtually indexed. We need to

translate a physical address to a virtual address when pushing a line into the L1 cache. The

translation can be done using an ITLB (inverted translation look aside buffer). In contrast

to a TLB, an ITLB is a small cache indexed by physical page addresses and each entry con-

tains a virtual page address. Since the L2 prefetching region size is aligned and no bigger

than a page size, all requests of a region sit in a single page. This ensures that all pushes of

a region typically yield no more than one ITLB miss.

An alternative technique is to keep track of the virtual addresses of L2 prefetches. We

can extract the virtual page address from an L2 demand miss. A region prefetching request

is enqueued with this address. When a prefetch is issued, the prefetching MSHR for the

prefetch will keep the virtual address and the push engine can use this address when the

data is ready for pushing.

5.1.2 Results of the Push Scheme

For our experiments, we use the same set of benchmarks as in Chapter 4, which involve

16 Spec CPU2000 benchmarks and sphinx. The system configurations, including cache

and memory settings, are also the same.

5.1.2.1 Push Performance

Table 5.1 shows our results with the L1 push scheme. For each benchmark, the left-

most five columns list the benchmark name and the IPC for the base case, perfect L1

cache, perfect L2 cache, and GRP using the default LRU placement policy (GRP/LRU).

The rightmost five columns are percentage performance improvements over GRP/LRU.

On average, the placement policies of the prefetched or pushed lines have a very small im-

pact on performance. The worst case, GRP/LRU plus Push/LRU, is within a half percent
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IPC Improvement over GRP/LRU (%)
Base Perf Perf GRP/LRU GRP/MRU GRP/LRU GRP/MRU GRP/LRU GRP/MRU

L2 L1 Push/LRU Push/LRU Push/MRU Push/MRU
gzip 1.98 2.05 2.09 1.98 0.00 0.00 0.00 0.00 0.00
wupwise 2.29 2.74 2.90 2.71 0.18 3.21 3.17 3.54 3.35
swim 0.70 2.34 3.04 1.51 0.80 -3.64 0.66 -1.92 2.12
mgrid 2.42 2.95 3.08 2.88 0.00 3.19 0.83 3.44 0.90
applu 1.41 2.36 2.67 2.30 0.52 8.34 8.69 11.42 11.82
vpr 1.62 1.97 2.09 1.89 -0.05 2.01 1.37 2.70 1.85
mesa 2.52 2.57 2.61 2.53 0.12 -0.16 0.08 -0.28 0.00
art 0.55 1.44 2.18 0.70 -6.70 5.85 -6.28 6.85 -6.42
mcf 0.15 0.74 2.01 0.22 12.44 0.00 12.90 -0.46 12.90
equake 1.01 1.76 1.96 1.69 0.65 8.24 8.72 9.07 9.43
ammp 1.83 2.11 2.39 1.83 -0.33 0.05 -0.33 0.05 -0.38
parser 1.32 1.80 2.13 1.54 -0.32 3.89 4.15 3.82 4.08
gap 2.78 2.96 2.98 2.87 0.00 0.24 0.24 0.24 0.24
bzip2 1.26 1.59 1.83 1.40 0.07 0.36 0.79 0.57 0.93
twolf 1.23 1.59 2.06 1.23 -0.41 0.08 -0.41 0.00 -0.41
apsi 2.59 2.68 2.70 2.67 0.00 0.23 0.23 0.23 0.23
sphinx 1.36 2.25 2.64 1.45 -1.45 1.66 -0.07 1.72 -0.07
mean 1.33 2.01 2.40 1.62 0.27 1.93 1.95 2.35 2.28

Table 5.1. Performance impact of the L1 push scheme and placement policies

of the best case, GRP/LRU plus Push/MRU. Compared to GRP/LRU, GRP/MRU shows

little improvement or degrades performance for all but mcf, where it improves the perfor-

mance by 12%. GRP/MRU performs 6.7% worse than GRP/LRU for art, although it still

improves over the base by 18%. The gap between GRP/MRU and GRP/LRU for art comes

from a short bandwidth-bounded loop where the prefetches have short reuse distances and

placing them into the LRU slots causes less pressure on the L2 cache when the prefetches

are useless.

The push scheme brings us an additional 2% performance improvement over GRP/LRU.

The best combination, GRP/LRU plus Push/MRU, offers an 11% performance boost for

applu, 9% for equake, and 6% for art. For four benchmarks, wupwise, mgrid, applu, and

equake, the combination of GRP and data pushing is able to beat a perfect L2 cache.

5.1.2.2 Push Accuracy and Coverage

Push accuracy is the number of used pushed lines divided by the total number of

pushes. A pushed line is used if it is hit before its eviction. Since the push scheme is

built upon the region prefetcher, we use the miss reduction over GRP as a measurement

of coverage. Table 5.2 lists the L1 and L2 miss rates of GRP/LRU in the leftmost two
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GRP/LRU GRP/LRU + Push/MRU
Miss Rate Coverage Accuracy
L1 L2 L1 L2

gzip 1.03 0.21 0.00 0.00 71.96
wupwise 1.74 0.02 67.82 16.67 52.17
swim 11.23 2.80 48.17 -43.37 95.71
mgrid 0.91 0.07 82.42 -11.43 86.68
applu 3.58 0.10 87.71 -86.73 88.09
vpr 2.24 0.13 35.27 2.29 36.46
mesa 0.35 0.02 -11.43 -4.76 3.45
art 49.59 17.90 11.72 6.69 59.48
mcf 51.87 22.71 -1.08 -0.04 9.53
equake 8.38 0.11 67.78 -14.02 84.49
ammp 4.54 0.46 -0.44 1.09 13.56
parser 5.09 0.50 25.93 -5.58 78.63
gap 0.29 0.08 48.28 -9.33 98.6
bzip2 5.26 0.48 8.56 -6.95 42
twolf 9.03 0.89 -0.55 0.34 5.89
apsi 0.22 0.01 40.91 0.00 65.23
sphinx 3.64 1.43 15.11 1.82 16.13
average 9.35 2.82 30.95 -9.02 53.42

Table 5.2. Coverage and accuracy of the L1 push scheme, GRP/LRU plus Push/MRU

columns. The miss reduction of GRP/LRU plus Push/MRU is shown in the middle two

columns and the rightmost column lists its push accuracy. Because the L1 miss reduction

affects the raw L2 miss rates, the L2 miss rates shown in this table are L2 misses over all

data accesses. The push scheme is able to reduce L1 misses by at least 40% for 7 bench-

marks over GRP and up to 87% for applu. Although the average miss reduction is 30%, we

only see a 2.3% performance improvement for two reasons. First, the L1 gap is smaller:

miss reduction at L1 yields less performance gain than at L2. Second, the push scheme

causes additional pressure on the L2 cache, in fact increasing the L2 misses by 9% com-

pared to GRP. However, the 9% increase does not cause much performance loss since the

L2 miss rates of GRP are typically very low. Push accuracy is 53% on average, lower than

the 69% accuracy of GRP on L2. This suggests that there is higher replacement pressure

on the smaller L1 cache.

Table 5.3 shows the coverage and accuracy of the other schemes. The push accuracies

are very close across different schemes. The small gap on the average coverage among
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GRP/LRU GRP/MRU GRP/MRU
Push/LRU Push/LRU Push/MRU

L1 L2 Accu L1 L2 Accu L1 L2 Accu
gzip 0.00 0.00 71.43 0.00 0.00 73.79 0.00 0.00 71.15
wupwise 58.62 11.11 44.10 56.90 22.22 44.48 64.37 22.22 51.79
swim 44.61 -42.90 85.68 45.33 -12.30 91.18 48.62 -12.44 97.58
mgrid 78.02 -10.00 82.59 45.05 -1.43 80.09 46.15 0.00 81.76
applu 67.04 -69.39 66.28 66.48 18.37 70.21 87.43 17.35 91.20
vpr 28.57 0.00 28.21 31.25 -19.08 36.65 38.84 -19.85 46.82
mesa -5.71 -4.76 3.34 -2.86 4.76 6.59 -5.71 4.76 6.71
art 10.32 5.46 54.07 10.43 -5.77 55.30 11.53 -6.10 60.25
mcf -0.37 -0.03 9.40 -0.27 0.49 9.77 -0.94 0.51 9.91
equake 63.13 -15.89 74.12 63.37 12.15 76.08 68.74 11.21 86.31
ammp -0.22 1.09 12.71 -0.22 -2.19 12.30 -0.44 -2.19 13.14
parser 25.93 -5.58 78.06 26.33 -1.99 78.92 26.13 -1.79 79.71
gap 48.28 -9.33 96.26 48.28 0.00 96.23 48.28 0.00 98.61
bzip2 7.79 -6.95 36.38 7.41 1.05 34.52 8.17 0.84 40.17
twolf -0.22 0.34 4.73 -0.11 -1.46 5.30 -0.33 -1.34 6.58
apsi 40.91 -14.29 64.45 40.91 0.00 64.50 40.91 0.00 65.28
sphinx 15.66 1.47 14.65 17.31 -3.91 14.99 17.03 -3.84 16.77
average 28.37 -9.39 48.62 26.80 0.64 50.05 29.34 0.55 54.34

Table 5.3. Coverage and accuracy of the other push schemes

the four schemes does not reflect that there is large variance on some benchmarks. For

example, the miss reduction is 82% for mgrid with GRP/LRU plus Push/MRU compared

to only 45% with GRP/MRU plus Push/LRU. In general, varied placement policies have

more impact on performance and coverage for specific benchmarks than for the overall

average.

The push scheme cache does not hide the latencies of those L1 misses that hit the L2

cache. Those misses are mostly L1 capacity misses that are contained by the larger L2

cache. They do not trigger L2 prefetching and thus do not bring in pushed lines, which

could hide their latencies. A prefetching engine that triggers prefetches upon L1 misses

will solve this problem; we leave this option to future work.

5.2 Combination of Evict-me and Hardware Prefetching

Prefetched cache blocks may pollute the cache if the blocks are useless. Several tech-

niques seek to reduce cache pollution. For instance, hardware can detect stride accesses
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and selectively prefetch blocks that are expected to be useful [84]. Compilers can help re-

duce the impact of cache pollution introduced by hardware prefetching in two ways. First,

the cache pollution of a prefetched cache block may be harmless if it evicts a block that is

marked as evict-me. In this situation, the marked line is probably useless anyway. Second,

compilers can use locality analysis to decide when prefetching is necessary. We examined

the second option in Chapter 4, where we generate compiler hints to guide an aggressive

hardware prefetcher. In this section, we explore the first option. GRP enhances an aggres-

sive hardware prefetcher and tolerates L2 miss latencies. In Section 5.1, we described a

push scheme that hides L1 miss latencies. The evict-me cache replacement policy helps

reduce cache misses and can interact with the prefetching and pushing techniques. This

section provides results of combining GRP, evict-me, and data pushing.

5.2.1 Performance

For our experiments, we use the same system configurations as in Chapter 4 except that

we change the L1 cache line size to 32 bytes and make it 4-way set-associative. The Level

1 cache size does not change. We change the L1 cache line size so that we can examine the

performance impact when the cache line sizes of the two levels of caches differ. We merge

the benchmarks used in Chapter 3 with the five Fortran benchmarks we chose in Chapter

4. We do not include C benchmarks from SPEC CPU2000 because our compiler currently

does not support dependence testing in C code very well.

Figure 5.1 compares the performance of GRP, evict-me (EM), and their combination.

Evict-me is turned on for both levels of cache. GRP and Push use LRU and MRU place-

ment policies respectively. Evict-me does not offer much performance improvement over

the base, although there are no degradations. It improves mgrid and arc2d by about 4% and

boosts overall performance by 1.5% on average across all benchmarks. GRP, which tol-

erates most L2 misses for these Fortran benchmarks, improves performance by 30.5% on

average. Combining GRP and Evict-me adds an additional 1.7% and the Push scheme adds
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Figure 5.1. Evict-me and GRP

an extra 2.7%. The combination of GRP, Push, and evict-me boosts the base performance

by 36.5% on average, adding an additional 6% over GRP. The performance gain mostly

arises from swim, jacobi, and vpenta, with improvements over GRP by 13.2%, 14.9%, and

10.2%, respectively. For all but vpenta, combining the three techniques beats any single one

or two combined. For vpenta, GRP/Push/EM is negligibly worse than GRP/EM because of

the slight degradation of GRP/Push.

5.2.2 Cache Pollution

We use a pseudo direct-mapped structure to measure the pollution caused by L1 pushes.

The structure uses the same line size as the L1 cache and its total number of lines equals

the number of sets of the L1 data cache. When a pushed line evicts a cache line, we record

the evicted line’s address in the pseudo structure. On a demand L1 miss, we check if it

hits the structure. If so, we consider the previously pushed line as having polluted the

cache. Figure 5.2 shows the normalized L1 pollution caused by pushed lines of GRP/Push

and GRP/Push/EM. Above each set of bars is the pseudo structure hit rate with GRP/Push,

which we use as a metric of cache pollution. The overall pollution caused by pushed lines
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Figure 5.2. Cache pollution

is small. Evict-me reduces this pollution by over a half. For three benchmarks, apsi, jacobi,

and tomcatv, evict-me eliminates almost all pollution.

5.2.3 Discussion

The evict-me cache shows less performance improvement here than we reported in

Chapter 3. We attribute this to three reasons. First, the ISAs are different. In Chapter

3, we targeted the SPARC V8 ISA, while here we use the Alpha. Different back-end op-

timizations have an impact on data layout and data access patterns, which affect cache

replacement. Second, we use two different simulators, URSIM and SimpleScalar. UR-

SIM is designed to model multi-processor systems. It implements strict cache inclusion

while SimpleScalar does not. This choice has a significant impact on cache replacement

decisions. In an inclusion system, an L2 replacement will invalidate the corresponding L1

cache lines. On an L1 miss, an invalid line, if it exists, will be evicted before an evict-me

line or an LRU line. Third, cache ports are not modeled in SimpleScalar, which makes the

caches in SimpleScarlar very aggressive and assumes infinite parallelism in cache accesses.

It will be interesting to see how evict-me performs in SimpleScalar when we implement a
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stricter cache model. We envision the stricter model will make cache performance more

critical and create more improvement space for GRP and Evict-me.

5.3 Chapter Summary

In this chapter, we evaluate the synergy among GRP, data pushing, and evict-me. We

show that both the push scheme and evict-me bring an additional performance improvement

over GRP. The three techniques together add an additional 6% over GRP. The evict-me

cache does not perform as well in SimpleScalar as in URSIM. We attribute this to differ-

ences in the compiler, in the accuracy of the L1 cache models, and that cache inclusion is

not enforced in SimpleScalar. However, it is worth further investigation to examine where

exactly the gap arises. Even in the aggressive cache model of SimpleScalar, we observe

that evict-me is very effective at reducing cache pollution caused by prefetched or pushed

lines. It eliminates half the L1 cache pollution from the data push scheme. This result sug-

gests our cooperative techniques have potential to interact well to improve memory system

performance.
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CHAPTER 6

CONCLUSION

The memory system continues to be a major bottleneck on modern architectures. This

dissertation proposes a hardware/software cooperative approach to address this challenge.

We show the promise of our approach by examining techniques to improve cache replace-

ment and data prefetching and by demonstrating their effectiveness. This chapter summa-

rizes our contributions and discusses future work.

6.1 Contributions

We propose a unique hardware/software cooperative approach that combines the strengths

of both software and hardware. Compiler analyses can detect program characteristics such

as data locality, data access patterns, loop structures, and the call graph. These static fea-

tures provide a global view of a program, and, if communicated to the hardware, the hard-

ware can use them to direct run-time decisions. On the other hand, the hardware at run

time is able to supply a precise execution history and perfect run-time state such as variable

values, cache hits or misses, and loop bounds. However, the scope of the run-time informa-

tion is limited. The cooperative techniques discussed in this dissertation benefit from static

compiler hints as well as run time status. Our approach relies on ISA extensions to convey

compiler hints to the hardware by encoding the hints in load/store instructions. This new

interface ensures that the hints can interact with each memory access at run time and help

hardware make decisions when needed.

We apply the hardware/software cooperative approach to cache replacement. We en-

hance a primary cache replacement policy, LRU, using a one-bit (evict-me) compiler hint.
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Each cache line is augmented by a single evict-me bit. Cache replacement chooses to evict

a marked line if any and follows the LRU policy if no line is marked. This architecture

extension is unique and practical. We introduce a new notation, reuse level, to formulate

our compiler model and prove that our cache replacement strategy will at least match LRU

in hits if the compiler can make correct predictions. Our volume-based compiler analysis

uses the total data volume across adjacent loop nests to estimate reuse distance and reuse

levels. Our simulated results validate this heuristic. By applying evict-me in the L1 and L2

caches, we observe up to 56% miss reduction, and a corresponding 34% performance im-

provement. Combined with data prefetching techniques, the evict-me cache reduces cache

pollution by half.

Our cooperative approach leads to a new data prefetching paradigm: compiler-guided

prefetching. Using software hints to direct hardware prefetchers, this new paradigm en-

joys the high accuracy of software prefetchers as well the high performance of hardware

prefetchers. Specifically, we propose a new prefetching technique called guided region pre-

fetching. Guided region prefetching enhances hardware-only scheduled region prefetching

by using compiler assistance to decide when to prefetch and how big the prefetching re-

gion size should be. We propose a set of compiler analyses to generate spatial hints and

size hints. Guided by these two types of hints, GRP is able to deliver performance close to

SRP but reduce additional bus traffic from 180% to only 23%. Both GRP and SRP perform

significantly better than a state-of-the-art stride prefetcher. The stride prefetcher uses sev-

eral hardware features to control accuracy, which makes the traffic even lower than GRP.

However, GRP has a simpler hardware implementation and higher performance than the

stride prefetcher.

We propose a pointer prefetching scheme, which is essentially the same as and devel-

oped independently of a published prefetching technique, called content-aware prefetch-

ing [32]. Our content-aware prefetcher shows over a 10% performance improvement in

3 of 17 selected benchmarks. It, in fact, exploits spatial locality among two of the three
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benchmarks. We find that region prefetching mostly outperforms or subsumes pointer pre-

fetching. It will be interesting to investigate more benchmarks to see if this conclusion

holds more widely.

We propose a data push scheme that pushes prefetched data at the L2 cache to the

L1 cache. This scheme is independent of any specific L2 prefetcher. Considering the

cache pollution and cache replacement pressure introduced by the pushed lines, this scheme

works better with guided region prefetching, which reduces useless L2 prefetches. Improv-

ing over GRP, the push scheme delivers performance improvement of around 10% for two

benchmarks, and 2.5% on average by hiding L1 latencies. Varying the placement policy for

the prefetched and pushed lines has a small overall impact across all benchmarks. However,

we see larger gaps for several programs.

Combining evict-me, GRP, and data pushing brings an additional 6.5% improvement

over GRP. Evict-me helps reduce by half the L1 cache pollution due to pushed lines. The

push scheme is built upon the highly accurate GRP, which makes L1 pushing accuracy

high and cache pollution low. Our experiments on this combination use only Fortran bench-

marks, which typically show good spatial locality and yield high prefetching accuracy even

using SRP. It will be interesting to see if the combination can bring us more synergy for C

benchmarks.

6.2 Future Work

Our future interests include applying the cooperative approach to other areas and ad-

dressing some concerns of our current focuses, cache replacement and prefetching.

The evict-me cache uses one bit to denote preferred eviction of a cache line. Contrary

to the semantics of an evict-me bit would be a save-me bit, which denotes a preference to

retain a line until a hit to it. We can apply similar locality analyses to generate save-me

bits. The combination of evict-me bits and save-me bits can probably work well together.

Given a program and an input, varying the cache size could mean an evict-me hint should
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be changed to a save-me hint or vice versa. Given a loop nest, when the total data volume is

smaller than the cache size, we would want to save every reference with inter-nest reuses.

When the data volume is much greater than the cache size, we want to evict data without

temporal locality in the current nest whether it has inter-nest reuse or not. But if the cache

size is not too big or too small, we probably want to save part of the data for reuse across

nests and evict other data to exploit locality in the current nest. In this case, we need two

bits.

Our evict-me analyses now only work for Fortran code. We plan to investigate the

possibility of applying evict-me to C and Java code. Current compiler support for the evict-

me cache involves data locality analysis and data volume estimation in loop nests. Locality

analysis in C code is much harder due to aliases and the pointer-like internal representation

of C arrays. Aliases create uncertainties about temporal reuses of arrays involving aliasing.

A conservative strategy assumes temporal uses among all references in an alias group. We

are interested in the impact of the accuracy of alias analysis on marking evict-me loads.

Arrays in C code are frequently represented in pointer form. For example, *(p+i) can

be treated as an array reference when p is a pointer and i is an induction variable. We

want to extend our compiler infrastructure to detect these implicit arrays and feed them to

dependence testing.

Although region prefetching improves performance by more than 20% on average

across the SPEC CPU2000 benchmarks, there are still 7 remaining benchmarks where the

performance gap from a perfect L2 is greater than 15%. We are interested in investigating

these benchmarks further. A typical problem in these benchmarks is linked data structures

traversed in short loops. Unfortunately, we find that content-aware prefetching does not

help these benchmarks much. Content-aware prefetching does not perform as well as re-

gion prefetching and is typically subsumed by it. We are interested in examining more

benchmarks to see if content-aware pointer prefetching is always subsumed by region pre-

fetching. Content-aware prefetching detects the pointer-like values in a fetched cache line.
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This kind of prefetch is usually too late for the pointers in a short loop. It would be inter-

esting to examine the interaction between region prefetching and software linked structure

prefetching techniques. In particular, we plan to examine how jump pointer prefetching

interacts with region prefetching.

The application of the hardware/software cooperative approach is not limited to cache

replacement and prefetching. We can use compiler hints to guide data placement and move-

ment in a partitioned cache or a NUCA (non-uniform cache access) cache [60]. We also

see the applicability of this approach to cache coherence, memory disambiguation, and I/O

controls. In a partitioned cache, the compiler can tell which two arrays in a nest tend to

conflict with each other and thus should be mapped to difference partitions. In a NUCA

cache, compiler analysis can determine which cache line should be promoted to a bank

closer to the processor. Compiler dependence testing and alias analysis can specify when

there is no dependence between a store and a load. This information can be used to speed

up speculative execution.

6.3 Concluding Remarks

We have demonstrated that a hardware/software cooperative approach can bridge much

of the processor-memory performance gap. We propose two unique techniques using this

approach and show that they improve cache replacement and prefetching. We also show

that the two techniques work well independently and together. We present practical and

simple hardware designs, compiler algorithms, and compiler implementations. Our ap-

proach is thus feasible to include in future computer systems.
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