Ongoing List of Topics: - URL: https://pages.mtu.edu/~bamork/EE5223/index.htm - Labs EE 5224 Labs ongoing. Key: do the prelab! - Team formations Homeworks 3A (done) and 3B (Feb 21st)! - Fri Feb 17th Proposed project topic for term project. Propose 2 project ideas (about 3 sentences each: topic, what/how you will do, and deliverables). - Today: - Show and tell 67 relays - electromechanical IRD (from SB19) - electronic BE1-67N (from SB35) - uProc SEL-311 (From SB35) - Proposed term project idea/topic (2-3 sentences) submit by end of week! - Misc Topics: insulators, BIL, NESC clearances, corona - Symmetrical Components overview - Basic pos/neg/zero networks - Fault current is only first step of calc. <u>Need fault contributions at relays!</u> - transformer connections in zero seq, and phase shifts in pos/neg. - Homework #8 group assignment by project teams. Grid & Holo Cew John Grid Area V2 (A) V2 (A) Z $\frac{P_{12}}{\sqrt{2}} = \frac{V_1 V_2}{\sqrt{2}} \sin (\alpha - \beta)$ (d-b) increases as P12 increases -Tripping line increases LSI-LB - Reclosing may be problematic...?? 67-Directional O.C. (Can also have inst. & time delay versions). Page # 5 Ref: Tables 4,34 \$ 4,35 ! GND Relay located at sending (near) and - Voltage at relay greatly reduced during fautt, but will only be zero for close-in fault. FIGURE 4.34 Sequence voltages and the voltage at the fault point for the various fault types. Solid faults with $Z_1 = Z_2 = Z_0$ for simplicity. Magnitudes are not to scale. | Fault
Type | Positive
Sequence | Negative
Sequence | Sero
Sequence | Fault
Voltages | |---------------|---------------------------------|---|---|-------------------------------------| | a,b,c | C1 B1 | | | Sero at
Pault
V =V. | | a,b | - | v _{c2} v _{b2} | | V _c V _a | | b,c | | | | -V _b - | | c,a | | v _{a2} v _{c2} v _{b2} | | A"=AC | | a,b,G | v _{cl} v _{bl} | v _{c2} | Va0-Vb0-Vc0 | v _a -v _b -0 | | b,c,G | v _{c1} v _{b1} | v _{b2} • v _{c2} | 1
1
1 | AP=AG=d | | c,a,G | V _{cl} | v _{a2} • v _{c2} | A 0 = A 90 = A E0 | A A C O | | a,G | v _{cl} v _{bl} | v _{c2} v _{b2} | A ⁶⁰ -A ⁹⁰ -A ^{G0} | V _A =0
V _b | | b,G | V _{cl} V _{bl} | v _{b2} v _{c2} | Va0 ^{=V} b0 ^{=V} c0 | v _b -0 | | c,G | v _{cl} | V _{a2} V _{c2} | Va0-Vb0-Vc0 | v _c -0 v _a | | Fault
Type | Positive
Sequence | Negative
Sequence | Zero
Sequence | Pault
Currents | |---------------|---------------------------------|---------------------------------|---|--| | a,b,c | Icl I al | | | | | a,b | I _{c1} I _{a1} | I _{b2} I _{a2} | | I _c =0 | | b,c | Ici Iiai | In2 Ic2 | | 1 =0 | | C,a | Icl Ial | I _{c2} I _{b2} | | Ibao Ia | | a,b,G | I _{c1} I _{a1} | T _{b2} T _{a2} | 71°0
1°00
1°00 | I _b | | b,c,G | T _{c1} T _{a1} | | Iad, Ibe, Ico | \right\(\begin{array}{c} \begin{array}{ | | c,a,G | r _{c1} | ic2 lb2 | / I _{a0} I _{c0} | I _b =0 | | a,G | I _{c1} | I _{b2} I _{a2} | Ia0, Ib0, Ic6 | I _b =I _c =0 | | p'e | Icl Ital | I _{a2} I _{c2} | I _{b0} | I _a =I _c =0/ | | c,G | I _{c1} I _{b1} | Jr _{c2 Ib2} | I _{a0} I _{b0} I _{c0} | ra-rb-o | Figure 4.35 Sequence currents and the fault current for the various fault types. Selid faults with $Z_1 = Z_2 = Z_0$ for simplicity. Magnitudes are not to scale. IF ZTH+ZLIKE TLOND ⇒ ZLOAD determines S.S Φ-angle of I. => ZTH+ZLINE determines of I during fault!