EE 5223 - Homework #3A - Due latest Tues Feb 7, 2023, 9am (Form team of 3, a least one BSEE and one MSEE student per team!)

- H1.1) For the following circuit, $v_1(t) = 120 \cos(\omega t + 0^\circ)$, $v_2(t) = 120 \sin(\omega t + 60^\circ)$ and $\mathbf{Z}_{12}^{\mathsf{J}} = 0.5 + \mathrm{j}0.5\Omega$.
 - a) Convert $v_1(t)$ and $v_2(t)$ to their phasor equivalents V_1 and V_2 . According to the "sign convention" used to label the current and sources, classify the two sources as "active" or "passive."
 - b) Calculate I_{12} .
 - c) Calculate the complex power S consumed by source 2.
 - d) Calculate the complex power S produced by source 1.
 - e) In terms of generator or load, what are sources 1 & 2? Was the correct guess made in labeling current direction?
 - f) What is the power factor of source 2?

- H1.2) A 3-phase 480-Volt circuit has a positive-sequence Y-connected source and supplies a delta-connected load. The impedance of the lines between the source and load is negligible. The angle of V_{AB} is 0° and the phase impedance of the load is 20 j8 Ohms.
 - a) Draw the circuit. Label the value of the phase voltages at the source. Label nodes A, B, and ${\it C}$
 - Label the line currents \mathbf{I}_A , \mathbf{I}_B , and \mathbf{I}_C . Label the L-L voltages at the load: \mathbf{V}_{AB} , \mathbf{V}_{BC} , and \mathbf{V}_{CA} . Label the phase currents at the load: \mathbf{I}_{AB} , \mathbf{I}_{BC} , and \mathbf{I}_{CA} .
 - b) Determine the phasor values of the L-L voltages at the load. Draw the closed voltage phasor diagram for the system, showing all L-L and L-N voltages.
 - c) Determine the phasor value of the line currents.
 - d) Determine the phasor value of the phase currents in the source and the load.
 - e) Calculate the complex power S that is consumed by the load and draw the power triangle.
 - f) What is the power factor of the load?

- H1.3) A 3-phase 480-Volt circuit has a positive-sequence Y-connected source and supplies a delta-connected load. The impedance of the lines between the source and load is $1/85^{\circ}$ Ohms. The angle of V_{AB} is 0° and the phase impedance of the load is $30/40^{\circ}$ Ohms.
 - a) Draw the circuit. Label the value of the phase voltages at the source. Label nodes A, B, and C at source and A', B', and C' at load. Label the line currents \mathbf{I}_A , \mathbf{I}_B , and \mathbf{I}_C . Label L-L voltages at the load: $\mathbf{V'}_{AB}$, $\mathbf{V'}_{BC}$, and $\mathbf{V'}_{CA}$. Label the phase currents at the load: \mathbf{I}_{AB} , \mathbf{I}_{BC} , and \mathbf{I}_{CA} .
 - b) Convert the load to an equivalent Y-connected impedance and combine with the line impedances.
 - c) Determine the phasor values of the L-L voltages at the source. Draw the closed voltage phasor diagram for the system, showing all L-L and L-N voltages.
 - d) Using an A-N per phase equivalent, determine the phasor values of the line currents.
 - e) Determine the L-N and L-L voltages at the terminals of the delta load.
 - f) Determine the phasor value of the phase currents in the source and the load.
 - g) Calculate the complex power 5 that is consumed by the load and draw the power triangle.
 - h) What is the power factor of the load?

H1.4

A balanced 3ϕ Δ -connected 4800V source supplies a balanced 208V Y-connected load through a Y- Δ transformer. Z = 4 - $j2\Omega$ in each phase of the load.

a) Determine the following voltage and current magnitudes:

V _{LL,PRI} =	V _{LN,PRI} =	_ V _{LL,SEC} =	V _{LN,SEC} =
I _{PH,SRC} =	I _{PH.PRI} =	I _{PH,SEC} =	I _{PH.LOAD} =

b) Draw closed phasor diagrams of the primary and secondary voltages, orienting all phasors to the nearest 30° angle. Label all phasors (i.e. V_A , V_{AB} , V_{a} , V_{bc} , etc.)

PRIMARY VOLTAGES

SECONDARY VOLTAGES

c) Find the phasor values of the following: V_a , I_a , V_A and I_A .

H1,5

- H2.1) A single-phase autotransformer has an input voltage of 1380 Volts and supplies a 277-Volt 15-kW load of PF = 0.8 lag. Assuming that the voltage at the load has a reference angle of zero degrees,
 - a) Draw the complete circuit, including source, transformer, and load. Label all voltages and currents. Show polarity markings on the transformer windings.
 - b) Determine the phasor value of the current flowing into the load.
 - c) Determine the phasor value of the currents in the 2 windings of the autotransformer, and specify the required voltage and current ratings for each of the windings.
 - d) What is that phase angle of the source voltage?
 - e) Calculate the volt-amp advantage of this particular transformer.
 - f) Explain what the volt-amp advantage is, by contrasting the performance and cost of this autotransformer with an equivalent 2-winding transformer.