Bus Differential Protection and **Simulation**

EE 4223/5223 April 6, 2007 Andrew Kunze

Based on Team ITC 2005/2006 Senior Design Project

Contents

- Project Description
 - Differential Protection
 - Relays
 - Current Transformers
- Settings Calculations
 - SEL-551C
 - SEL-587Z
- ATP Simulation

Sponsor

- International Transmission Company
 - Novi, MI
 - 2700 miles of transmission lines in 13 counties in southeastern MI
 - www.itctransco.com

Dependability and Security

- Reliability tripping breakers to protect from a fault
- Security tripping only the necessary breakers
- · Relay protection is finding a balance

Differential Relay Protection

 Relay trips by the difference between the current (measured by CTs) going into and out of the zone of protection

Differential Relay Protection

One-line Current Path under Normal Operation (I1=I2)

Differential Relay Protection

One-line Current Path under Fault Conditions (I1≠I2)

Existing Protection Scheme

IAC 55B

- General Electric electromechanical relay
 - Instantaneous timeovercurrent relay
 - Used by ITC to trip relay when differential current exceeds maximum value

Relay Characteristics

- SEL-551C
 - Near direct replacement for existing IAC55B relays
 - Less expensive than the SEL-587Z
 - Can be used with auxiliary CTs
 - Significantly slower trip time under some circumstances
- SEL-587Z
 - Faster fault detection & trip time
 - Provides greater degree of protection than overcurrent relays
 - High Impedance generates voltages up to 2kV (MOV)
 - Requires lock out relay protection
 - Requires dedicated main CTs

Relay Specifications

- Recommends lock out relay contacts in parallel with the 587Z CT inputs
 - Allows the relay to be shorted out on the circuit after fault is detected
- •No more then 4 cycles (67ms) of fault current through the 587Z
- Breakers not relied on to interrupt the fault current coming into the relay

Settings Calculations

- Information provided by ITC for Bus 102 of the Milan substation
- SEL-551C
 - Instantaneous Current Setting
 - Time-Overcurrent Pickup and Time Dial
- SEL-587Z
 - Voltage setting

Settings Considerations

- Minimum Internal Fault
 - Single-line to ground
 - Relay must trip for internal faults
- Maximum External Fault
 - Fault outside zone of protection causes CT saturation
 - Differential current on secondary
 - Relay should not trip for external faults

CTs

- Mistubishi Electric
- Mulit-ratio 3000:5
- C800 Accuracy

CT Saturation

- Causes of CT saturation
 - Primary winding of CT has a DC component
 - Primary winding's current is too high and core flux saturates
- Primary and secondary windings lose their linearity causing an error current

Current Transformer Saturation

Currents at the faulted CT

Saturation causes a large difference between induced CT current and the scaled line current

Parameters

- I_F = 17877 A (Maximum external fault current)
 - 19959 A (Maximum internal fault current)
 - 4168 A (Minimum internal fault current)
- N = 3000:5 (CT ratio)
- $R_{CT} = 2.0 \Omega$ (CT secondary winding and lead resistance)
- $R_{LEAD} = 0.5 \Omega$ (Resistance of lead from junction to CT)
- n = 3 (Total number of circuits)
- K = 150 % (ITC's factor of safety)

Calculate Instantaneous Setting

• The current through the relay is: $I_E = (\frac{R_{CT}}{R_{CT} + R_{7.5}}) \cdot \frac{I_F}{N}$

$$I_E = (\frac{R_{CT}}{R_{CT} + R_{7.5}}) \cdot \frac{I_F}{N}$$

$$I_E = (\frac{2.0\Omega}{2.0\Omega + 7.5\Omega}) \cdot \frac{17877A}{600} = 6.27A$$

$$I_s = K \cdot I_E = 10 \text{ A}$$

$$I_{\min} = N \cdot I_S = 600 \cdot 10$$
 = 6000 A

Time-Overcurrent Pickup

 Using ITC's standards, time-overcurrent pickup is set at 10% of the maximum external fault

$$PU = 10\% \cdot I_F$$

$$PU = 10\% \cdot 17877A \approx 1800A$$

Time Dial Calculation

$$t_p = TD \cdot (0.00262 + \frac{0.00342}{M^{0.02} - 1})$$

- TD = Time dial setting
- tp = Trip time at multiple of pick-up (12 cycles = 0.2 secs)
- M = Multiple of pick-up (3600/1800 = 2)

$$0.2 = TD \cdot (0.00262 + \frac{0.00342}{2^{0.02} - 1})$$

$$TD = 0.8$$

Calculation of the Voltage Setting

• The relay voltage across the impedance element is:

$$V_r = (R_{CT} + 2 \times R_{LEAD}) \times \frac{I_F}{N}$$

$$V_r = (2.0\Omega + 2 \cdot 0.5\Omega) \cdot \frac{17877A}{600} = 74.5 \text{ V}$$

$$V_s = K \times V_r = 1.5 \times 74.5 = 112 \text{ V}$$

Minimum Primary Current

Find minimum primary differential current by:

$$I_{\min} = (nI_e + I_r + I_m) \times N$$

 $I_{\min} = \min \max \text{ current}$

n = # of CTs in parallel

 $I_e =$ excitation current

 $I_r = \text{current through relay}$

 $I_m = \text{current through MOV}$

Excitation Current

 Using the graph for the CT the value of the excitation current (I_e) can be found given V_s = 112 V

$$I_e = 0.015A$$

Current Through the SEL-587Z

• The current through the relay (I_r) can be found by:

$$I_r = \frac{V_s}{R}$$

$$I_r = \frac{112V}{2000\,\Omega}$$

$$I_r = 0.056 \text{ A}$$

Current Through the MOV

When $V_{mov} < 1000 V$ the current through the MOV (I_m) is 0 A

Minimum Current

 Using the determined values, the minimum primary differential current (I_{min}) is:

$$I_{\min} = (nI_e + I_r + I_m) \times N$$

$$I_{\min} = (3 \times 0.015 + 0.056 + 0) \times 600$$

$$I_{\min}$$
= 61 A

Minimum Internal Fault = 4168 A

ATP Simulation

- Use ATP to simulate CTs
- Determine voltage 'seen' by the relay for internal fault conditions
- Apply simulated waveforms to the relay for testing

CT Simulation

- Ideal transformer
- Type 93 non-linear inductor
- · Series resistance

Line Impedances

Calculated Line Impedances at 120 kV

I (A)	Ζ (Ω)	R + jX (Ω)	X/R
3801 / -77	31.571 / 77	7.102 + j30.761	4.33
3001777	31.3717_77	7.102 + 330.701	4.55
2347 /75	51.129 /_ 75	13.233 + j49.387	3.73
13738 / -85	8.735 / 85	0.761 + j8.702	11.43

DC Offset

- DC offset determined by initial angle
- Use X/R ratio of line carrying most fault current

$$\alpha_{\min} = \theta - 90^{\circ}$$

$$\alpha_{\max} = \theta - 180^{\circ}$$
 $\theta = \tan^{-1} \frac{X}{R}$

- Doble Simulator maximum output 300 V
- · Resulting wavform sinusoid with decaying DC offset
- Relay trips properly on slightly saturated waveform

Conclusion

- Differential schemes protect bus from internal faults
- Relay settings must balance reliability with security
- ATP can simulate CT saturation to understand fault conditions

References

- [1] Blackburn, J. Lewis. <u>Protective Relaying: Principles and Applications</u>. 2nd ed. New York: Marcel Dekker, Inc., 1998.
- [2] Dr. Mork, Bruce. Personal communication on substation layouts and relays. Michigan Technological University. Fall 2005.
- [3] General Electric. Short-Time Overcurrent Relays.
- [4] Mitsubishi Electric Power Products, Inc. <u>Factory Test</u> Report 120-SFMT-40J Gas Circuit Breaker. Oct 4, 2004.
- [5] Schweitzer Engineering Laboratories. <u>SEL-587Z</u> Instruction Manual
- [6] Schweitzer Engineering laboratories. <u>SEL-551C</u> Instruction Manual

Questions or Comments?